Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A measure of the size of the magnetospheric accretion region in TW Hydrae


Stars form by accreting material from their surrounding disks. There is a consensus that matter flowing through the disk is channelled onto the stellar surface by the stellar magnetic field. This is thought to be strong enough to truncate the disk close to the corotation radius, at which the disk rotates at the same rate as the star. Spectro-interferometric studies in young stellar objects show that hydrogen emission (a well known tracer of accretion activity) mostly comes from a region a few milliarcseconds across, usually located within the dust sublimation radius1,2,3. The origin of the hydrogen emission could be the stellar magnetosphere, a rotating wind or a disk. In the case of intermediate-mass Herbig AeBe stars, the fact that Brackett γ (Brγ) emission is spatially resolved rules out the possibility that most of the emission comes from the magnetosphere4,5,6 because the weak magnetic fields (some tenths of a gauss) detected in these sources7,8 result in very compact magnetospheres. In the case of T Tauri sources, their larger magnetospheres should make them easier to resolve. The small angular size of the magnetosphere (a few tenths of a milliarcsecond), however, along with the presence of winds9,10 make the interpretation of the observations challenging. Here we report optical long-baseline interferometric observations that spatially resolve the inner disk of the T Tauri star TW Hydrae. We find that the near-infrared hydrogen emission comes from a region approximately 3.5 stellar radii across. This region is within the continuum dusty disk emitting region (7 stellar radii across) and also within the corotation radius, which is twice as big. This indicates that the hydrogen emission originates in the accretion columns (funnel flows of matter accreting onto the star), as expected in magnetospheric accretion models, rather than in a wind emitted at much larger distance (more than one astronomical unit).

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: VLTI-GRAVITY observations of TW Hya.
Fig. 2: Visibility plot of TW Hya.

Data availability

This work is based on observations collected at the European Southern Observatory (ESO) under ESO programme 0102.C-0408(C). The raw data are publicly available in the ESO Science Archive Facility. The reduced data that support the findings of this study are available from the corresponding author under reasonable request.


  1. Kraus, S. et al. The origin of hydrogen line emission for five Herbig Ae/Be stars spatially resolved by VLTI/AMBER spectro-interferometry. Astron. Astrophys. 489, 1157–1173 (2008).

    ADS  CAS  Article  Google Scholar 

  2. Eisner, J. A. et al. Near-infrared interferometric, spectroscopic, and photometric monitoring of T Tauri inner disks. Astrophys. J. 669, 1072–1084 (2007).

    ADS  CAS  Article  Google Scholar 

  3. Perraut, K. et al. A disk wind in AB Aurigae traced with Hα interferometry. Astron. Astrophys. 596, A17 (2016).

    Article  Google Scholar 

  4. Kurosawa, R. et al. Probing the wind-launching regions of the Herbig Be star HD 58647 with high spectral resolution interferometry. Mon. Not. R. Astron. Soc. 457, 2236–2251 (2016).

    ADS  CAS  Article  Google Scholar 

  5. Garcia Lopez, R. et al. Probing the accretion-ejection connection with VLTI/AMBER. High spectral resolution observations of the Herbig Ae star HD 163296. Astron. Astrophys. 576, A84 (2015).

    Article  Google Scholar 

  6. Caratti o Garatti, A. et al. AMBER/VLTI high spectral resolution observations of the Brγ emitting region in HD 98922. A compact disc wind launched from the inner disc region. Astron. Astrophys. 582, A44 (2015).

    Article  Google Scholar 

  7. Hubrig, S., Carroll, T. A., Schöller, M. & Ilyin, I. The prevalence of weak magnetic fields in Herbig Ae stars: the case of PDS 2. Mon. Not. R. Astron. Soc. 449, L118–L122 (2015).

    ADS  CAS  Article  Google Scholar 

  8. Alecian, E. et al. A high-resolution spectropolarimetric survey of Herbig Ae/Be stars—I. Observations and measurements. Mon. Not. R. Astron. Soc. 429, 1001–1026 (2013).

    ADS  Article  Google Scholar 

  9. Banzatti, A. et al. Kinematic links and the coevolution of MHD winds, jets, and inner disks from a high-resolution optical [O I] survey. Astrophys. J. 870, 76 (2019).

    ADS  CAS  Article  Google Scholar 

  10. Simon, M. N. et al. Tracing slow winds from T Tauri stars via low-velocity forbidden line emission. Astrophys. J. 831, 169 (2016).

    ADS  Article  Google Scholar 

  11. Huang, J. et al. CO and dust properties in the TW Hya disk from high-resolution ALMA observations. Astrophys. J. 852, 122 (2018).

    ADS  Article  Google Scholar 

  12. van Boekel, R. et al. Three radial gaps in the disk of TW Hydrae imaged with SPHERE. Astrophys. J. 837, 132 (2017).

    ADS  Article  Google Scholar 

  13. Calvet, N. et al. in Protostars and Planets IV 377−399 (Univ. Arizona Press, 2000).

  14. Manara, C. F. et al. Gas content of transitional disks: a VLT/X-Shooter study of accretion and winds. Astron. Astrophys. 568, A18 (2014).

    Article  Google Scholar 

  15. Venuti, L. et al. X-shooter spectroscopy of young stars with disks. The TW Hydrae association as a probe of the final stages of disk accretion. Astron. Astrophys. 632, A46 (2019).

    Article  Google Scholar 

  16. Donati, J. F. et al. The large-scale magnetic field and poleward mass accretion of the classical T Tauri star TW Hya. Mon. Not. R. Astron. Soc. 417, 472–487 (2011).

    ADS  Article  Google Scholar 

  17. Muzerolle, J., Hartmann, L. & Calvet, N. A Brγ probe of disk accretion in T Tauri stars and embedded young stellar objects. Astron. J. 116, 2965–2974 (1998).

    ADS  Article  Google Scholar 

  18. Alcalá, J. M. et al. X-shooter spectroscopy of young stellar objects. IV. Accretion in low-mass stars and substellar objects in Lupus. Astron. Astrophys. 561, A2 (2014).

    Article  Google Scholar 

  19. Akeson, R. L. et al. Radial structure in the TW Hya circumstellar disk. Astrophys. J. 728, 96 (2011).

    ADS  Article  Google Scholar 

  20. Pascucci, I. et al. The photoevaporative wind from the disk of TW Hya. Astrophys. J. 736, 13 (2011).

    ADS  Article  Google Scholar 

  21. Ercolano, B., Rosotti, G. P., Picogna, G. & Testi, L. A photoevaporative gap in the closest planet-forming disc. Mon. Not. R. Astron. Soc. 464, L95–L99 (2017).

    ADS  CAS  Article  Google Scholar 

  22. Fang, M. et al. A new look at T Tauri star forbidden lines: MHD-driven winds from the inner disk. Astrophys. J. 868, 28 (2018).

    ADS  CAS  Article  Google Scholar 

  23. Muzerolle, J., Calvet, N. & Hartmann, L. Emission-line diagnostics of T Tauri magnetospheric accretion. II. Improved model tests and insights into accretion physics. Astrophys. J. 550, 944–961 (2001).

    ADS  CAS  Article  Google Scholar 

  24. Kurosawa, R., Romanova, M. M. & Harries, T. J. Multidimensional models of hydrogen and helium emission line profiles for classical T Tauri stars: method, tests and examples. Mon. Not. R. Astron. Soc. 416, 2623–2639 (2011).

    ADS  CAS  Article  Google Scholar 

  25. Gullbring, E., Hartmann, L., Briceno, C. & Calvet, N. Disk accretion rates for T Tauri stars. Astrophys. J. 492, 323 (1998).

    ADS  Article  Google Scholar 

  26. Gregory, S. G., Matt, S. P., Donati, J. F. & Jardine, M. The non-dipolar magnetic fields of accreting T Tauri stars. Mon. Not. R. Astron. Soc. 389, 1839–1850 (2008).

    ADS  Article  Google Scholar 

  27. Romanova, M. M., Long, M., Lamb, F. K., Kulkarni, A. K. & Donati, J. F. Global 3D simulations of disc accretion on to the classical T Tauri star V2129 Oph. Mon. Not. R. Astron. Soc. 411, 915–928 (2011).

    ADS  Article  Google Scholar 

  28. Bessolaz, N., Zanni, C., Ferreira, J., Keppens, R. & Bouvier, J. Accretion funnels onto weakly magnetized young stars. Astron. Astrophys. 478, 155–162 (2008).

    ADS  Article  Google Scholar 

  29. Johnstone, C. P. et al. Classical T Tauri stars: magnetic fields, coronae and star-disc interactions. Mon. Not. R. Astron. Soc. 437, 3202–3220 (2014).

    ADS  Article  Google Scholar 

  30. Gravity Collaboration. First light for GRAVITY: phase referencing optical interferometry for the Very Large Telescope Interferometer. Astron. Astrophys. 602, A94 (2017).

    Article  Google Scholar 

  31. Lapeyrere, V. et al. GRAVITY data reduction software. In Proc. SPIE Optical and Infrared Interferometry IV Vol. 9146, 91462D (SPIE, 2014).

  32. Eisner, J. A., Chiang, E. I. & Hillenbrand, L. A. Spatially resolving the inner disk of TW Hydrae. Astrophys. J. 637, L133–L136 (2006).

    ADS  CAS  Article  Google Scholar 

  33. Sokal, K. R. et al. Characterizing TW Hydra. Astrophys. J. 853, 120 (2018).

    ADS  Article  Google Scholar 

  34. Eisner, J. A. et al. Time-variable accretion in the TW Hya star/disk system. Astrophys. J. 722, L28–L32 (2010).

    ADS  CAS  Article  Google Scholar 

  35. Vacca, W. D. & Sandell, G. Near-infrared spectroscopy of TW Hya: a revised spectral type and comparison with magnetospheric accretion models. Astrophys. J. 732, 8 (2011).

    ADS  Article  Google Scholar 

  36. Weigelt, G. et al. Near-infrared interferometry of η Carinae with spectral resolutions of 1 500 and 12 000 using AMBER/VLTI. Astron. Astrophys. 464, 87–106 (2007).

    ADS  CAS  Article  Google Scholar 

  37. Whelan, E. T. et al. Classical T Tauri-like outflow activity in the brown dwarf mass regime. Astrophys. J. 706, 1054–1068 (2009).

    ADS  CAS  Article  Google Scholar 

  38. Agra-Amboage, V. et al. Origin of the wide-angle hot H2 in DG Tauri. New insight from SINFONI spectro-imaging. Astron. Astrophys. 564, A11 (2014).

    Article  Google Scholar 

  39. Dullemond, C. P., Dominik, C. & Natta, A. Passive irradiated circumstellar disks with an inner hole. Astrophys. J. 560, 957–969 (2001).

    ADS  Article  Google Scholar 

  40. Setiawan, J. et al. A young massive planet in a star–disk system. Nature 451, 38–41 (2008).

    ADS  CAS  Article  Google Scholar 

  41. Bailer-Jones, C. A. L., Rybizki, J., Fouesneau, M., Mantelet, G. & Andrae, R. Estimating distance from parallaxes. IV. Distances to 1.33 billion stars in Gaia Data Release 2. Astron. J. 156, 58 (2018).

    ADS  Article  Google Scholar 

Download references


We thank C. Manara for providing the XSHOOTER spectrum of TW Hya and the template of the stellar photosphere. This material is based upon works supported by Science Foundation Ireland under grant number 18/SIRG/5597. M.K. was funded by the Irish Research Council (IRC), grant GOIPG/2016/769. R.F. acknowledges support from the Chalmers Initiative on Cosmic Origins (CICO) postdoctoral fellowship. A.C.G. and T.P.R. have received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 743029). A.N. acknowledges the hospitality of DIAS. A.A., M.F. and P.J.V.G. acknowledge funding by the Fundação para a Ciência e a Tecnologia, with grant references UID/FIS/00099/2013 and SFRH/BSAB/142940/2018. Th.H. acknowledges support from the European Research Council under the Horizon 2020 Framework Program via the ERC Advanced Grant Origins 832428.

Author information

Authors and Affiliations



GRAVITY is developed as a collaboration by the Max Planck Institute for Extraterrestrial Physics, LESIA of Paris Observatory and the IPAG of Université Grenoble Alpes/CNRS, the Max Planck Institute for Astronomy, the University of Cologne, the Centro Multidisciplinar de Astrofisica Lisbon and Porto, and the European Southern Observatory. Authors from these institutes contributed to the concept, design, assembly, instrumental tests, science cases, verification and implementation of GRAVITY and its subsystems, and the data reduction pipeline. P.J.V.G. conducted the observations. R.G.L., K.P. and M.K. reduced the data. R.G.L. and M.K. analysed the data. A.N. estimated the location of the disk rim, and the corotation and truncation radii. R.F. performed the model fitting of the continuum-subtracted visibilities. R.G.L. wrote the manuscript. A.N., T.P. and A.C.G. edited the manuscript. R.G.L., A.N., A.C.G., T.P.R., R.F., M.K., L.K., K.P., J.S.-B., M.B., C.D., L.L., W.B., P.J.V.G., Th.H., P.C., G.D., T.Z. and R.G. discussed the results and their implications, and commented on the manuscript.

Corresponding author

Correspondence to R. Garcia Lopez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Best-fit model to the continuum-subtracted Brγ line visibilities.

Continuum subtracted visibilities are represented in colour in the u–v plane. The symbol size indicate the error of each single data point. For comparison, the average visibility error is represented by the dark full circle at the bottom right of the figure. Contours represent the visibility values of the best two-dimensional Gaussian model.

Extended Data Fig. 2 Sketch of the inner-disk region of TW Hya.

The main features of the inner disk are represented: the dusty disk (brown), the dust sublimation radius located at about 7.5R⁎, the inner gaseous disk (blue), truncated by the stellar magnetosphere (red) at about 3.5R⁎, along with the Brγ line emitting region, which is probably tracing the width of the accretion columns.

Extended Data Table 1 Observation log of the VLTI GRAVITY+UT high-resolution observations of TW Hya

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

GRAVITY Collaboration. A measure of the size of the magnetospheric accretion region in TW Hydrae. Nature 584, 547–550 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing