Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cold gas in the Milky Way’s nuclear wind


The centre of the Milky Way hosts several high-energy processes that have strongly affected the inner regions of our Galaxy. Activity from the super-massive black hole at the Galactic Centre, which is coincident with the radio source Sagittarius A*, and stellar feedback from the inner molecular ring1 expel matter and energy from the disk in the form of a galactic wind2. Multiphase gas has been observed within this outflow, including hot highly ionized3,4 (temperatures of about 106 kelvin), warm ionized5,6 (104 to 105 kelvin) and cool atomic7,8 (103 to 104 kelvin) gas. However, so far there has been no evidence of the cold dense molecular phase (10 to 100 kelvin). Here we report observations of molecular gas outflowing from the centre of our Galaxy. This cold material is associated with atomic hydrogen clouds travelling in the nuclear wind8. The morphology and the kinematics of the molecular gas, resolved on a scale of about one parsec, indicate that these clouds are mixing with the warmer medium and are possibly being disrupted. The data also suggest that the mass of the molecular gas outflow is not negligible and could affect the rate of star formation in the central regions of the Galaxy. The presence of this cold, dense and high-velocity gas is puzzling, because neither Sagittarius A* at its current level of activity nor star formation in the inner Galaxy seems to be a viable source for this material.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Atomic hydrogen gas outflowing from the Galactic Centre.
Fig. 2: Atomic hydrogen and molecular gas in two clouds in the Milky Way’s nuclear wind.
Fig. 3: Molecular gas kinematics in MW-C1 and MW-C2.

Data availability

The APEX raw datasets analysed for this study will be available at the end of the proprietary period (September 2020) on the ESO archive, archive main.html. The GBT raw datasets are publicly available at the NRAO archive, Fully reduced data are available from the corresponding author on reasonable request.

Code availability

The software used in this work is publicly available. The GILDAS/CLASS packages for submillimetre data reduction can be found at The DUCHAMP source finder can be downloaded from The DESPOTIC radiative-transfer code is available at


  1. 1.

    Molinari, S. et al. A 100 pc elliptical and twisted ring of cold and dense molecular clouds revealed by Herschel around the Galactic center. Astrophys. J. Lett. 735, 33 (2011).

    ADS  Article  Google Scholar 

  2. 2.

    Bland-Hawthorn, J. & Cohen, M. The large-scale bipolar wind in the Galactic center. Astrophys. J. 582, 246–256 (2003).

    ADS  Article  Google Scholar 

  3. 3.

    Kataoka, J. et al. Suzaku observations of the diffuse X-ray emission across the Fermi Bubbles’ edges. Astrophys. J. 779, 57 (2013).

    ADS  Article  Google Scholar 

  4. 4.

    Ponti, G. et al. An X-ray chimney extending hundreds of parsecs above and below the Galactic Centre. Nature 567, 347–350 (2019).

    ADS  CAS  Article  Google Scholar 

  5. 5.

    Fox, A. J. et al. Probing the Fermi Bubbles in ultraviolet absorption: a spectroscopic signature of the Milky Way’s biconical nuclear outflow. Astrophys. J. 799, L7 (2015).

    ADS  CAS  Article  Google Scholar 

  6. 6.

    Bordoloi, R. et al. Mapping the nuclear outflow of the Milky Way: studying the kinematics and spatial extent of the northern Fermi Bubble. Astrophys. J. 834, 191 (2017).

    ADS  Article  Google Scholar 

  7. 7.

    McClure-Griffiths, N. M. et al. Atomic hydrogen in a Galactic center outflow. Astrophys. J. Lett. 770, 4 (2013); erratum 884, 27 (2019).

    ADS  Article  Google Scholar 

  8. 8.

    Di Teodoro, E. M. et al. Blowing in the Milky Way wind: neutral hydrogen clouds tracing the Galactic nuclear outflow. Astrophys. J. 855, 33 (2018).

    ADS  Article  Google Scholar 

  9. 9.

    Gravity Collaboration. Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole. Astron. Astrophys. 636, L5 (2020).

    ADS  Article  Google Scholar 

  10. 10.

    Su, M., Slatyer, T. R. & Finkbeiner, D. P. Giant gamma-ray bubbles from Fermi-LAT: active galactic nucleus activity or bipolar Galactic wind? Astrophys. J. 724, 1044–1082 (2010).

    ADS  Article  Google Scholar 

  11. 11.

    Miller, M. J. & Bregman, J. N. The interaction of the Fermi Bubbles with the Milky Way’s hot gas halo. Astrophys. J. 829, 9 (2016).

    ADS  Article  Google Scholar 

  12. 12.

    Lockman, F. J., Di Teodoro, E. M. & McClure-Griffiths, N. M. Observation of acceleration of HI clouds within the Fermi Bubbles. Astrophys. J. 888, 51 (2020).

    ADS  CAS  Article  Google Scholar 

  13. 13.

    Bolatto, A. D., Wolfire, M. & Leroy, A. K. The CO-to-H2 conversion factor. Annu. Rev. Astron. Astrophys. 51, 207–268 (2013).

    ADS  CAS  Article  Google Scholar 

  14. 14.

    Longmore, S. N. et al. Variations in the Galactic star formation rate and density thresholds for star formation. Mon. Not. R. Astron. Soc. 429, 987–1000 (2013).

    ADS  Article  Google Scholar 

  15. 15.

    Bolatto, A. D. et al. Suppression of star formation in the galaxy NGC253 by a starburst-driven molecular wind. Nature 499, 450–453 (2013).

    ADS  CAS  Article  Google Scholar 

  16. 16.

    Veilleux, S., Maiolino, R., Bolatto, A. D. & Aalto, S. Cool outflows in galaxies and their implications. Annu. Rev. Astron. Astrophys. 28, 2 (2020).

    Article  Google Scholar 

  17. 17.

    Scannapieco, E. & Brüggen, M. The launching of cold clouds by Galaxy outflows. I. Hydrodynamic interactions with radiative cooling. Astrophys. J. 805, 158 (2015).

    ADS  Article  Google Scholar 

  18. 18.

    Thompson, T. A., Fabian, A. C., Quataert, E. & Murray, N. Dynamics of dusty radiation- pressure-driven shells and clouds: fast outflows from galaxies, star clusters, massive stars, and AGN. Mon. Not. R. Astron. Soc. 449, 147–161 (2015).

    ADS  Article  Google Scholar 

  19. 19.

    Mukherjee, D., Bicknell, G. V., Sutherland, R. & Wagner, A. Relativistic jet feedback in high-redshift galaxies – I. Dynamics. Mon. Not. R. Astron. Soc. 461, 967–983 (2016).

    ADS  Article  Google Scholar 

  20. 20.

    Richings, A. J. & Faucher-Giguère, C.-A. Radiative cooling of swept-up gas in AGN-driven galactic winds and its implications for molecular outflows. Mon. Not. R. Astron. Soc. 478, 3100–3119 (2018).

    ADS  CAS  Article  Google Scholar 

  21. 21.

    Armillotta, L., Krumholz, M. R., Di Teodoro, E. M. & McClure-Griffiths, N. M. The life cycle of the Central Molecular Zone – I. Inflow, star formation, and winds. Mon. Not. R. Astron. Soc. 490, 4401–4418 (2019).

    ADS  CAS  Article  Google Scholar 

  22. 22.

    Barnes, A. T. et al. Star formation rates and efficiencies in the Galactic Centre. Mon. Not. R. Astron. Soc. 469, 2263–2285 (2017).

    ADS  CAS  Article  Google Scholar 

  23. 23.

    Krumholz, M. R., Kruijssen, J. M. D. & Crocker, R. M. A dynamical model for gas flows, star formation and nuclear winds in galactic centres. Mon. Not. R. Astron. Soc. 466, 1213–1233 (2017).

    ADS  CAS  Article  Google Scholar 

  24. 24.

    Armillotta, L., Krumholz, M. R. & Di Teodoro, E. M. The life cycle of the Central Molecular Zone – II. Distribution of atomic and molecular gas tracers. Mon. Not. R. Astron. Soc. 493, 5273–5289 (2020).

    ADS  CAS  Article  Google Scholar 

  25. 25.

    Girichidis, P., Naab, T., Hanasz, M. & Walch, S. Cooler and smoother – the impact of cosmic rays on the phase structure of galactic outflows. Mon. Not. R. Astron. Soc. 479, 3042–3067 (2018).

    ADS  CAS  Article  Google Scholar 

  26. 26.

    Zhang, D., Thompson, T. A., Quataert, E. & Murray, N. Entrainment in trouble: cool cloud acceleration and destruction in hot supernova-driven galactic winds. Mon. Not. R. Astron. Soc. 468, 4801–4814 (2017).

    ADS  CAS  Article  Google Scholar 

  27. 27.

    McCourt, M., O’Leary, R. M., Madigan, A.-M. & Quataert, E. Magnetized gas clouds can survive acceleration by a hot wind. Mon. Not. R. Astron. Soc. 449, 2–7 (2015).

    ADS  Article  Google Scholar 

  28. 28.

    Armillotta, L., Fraternali, F., Werk, J. K., Prochaska, J. X. & Marinacci, F. The survival of gas clouds in the circumgalactic medium of Milky Way-like galaxies. Mon. Not. R. Astron. Soc. 470, 114–125 (2017).

    ADS  CAS  Article  Google Scholar 

  29. 29.

    Gronke, M. & Oh, S. P. The growth and entrainment of cold gas in a hot wind. Mon. Not. R. Astron. Soc. 480, L111–L115 (2018).

    ADS  CAS  Article  Google Scholar 

  30. 30.

    Schneider, E. E., Ostriker, E. C., Robertson, B. E. & Thompson, T. A. The physical nature of starburst-driven Galactic outflows. Astrophys. J. 895, 43 (2020).

    ADS  Article  Google Scholar 

  31. 31.

    Güsten, R. et al. The Atacama Pathfinder EXperiment (APEX) – a new submillimeter facility for southern skies. Astron. Astrophys. 454, L13–L16 (2006).

    ADS  Article  Google Scholar 

  32. 32.

    Klein, B. et al. High-resolution wide-band fast Fourier transform spectrometers. Astron. Astrophys. 542, L3 (2012).

    ADS  Article  Google Scholar 

  33. 33.

    Gildas Team. GILDAS: Grenoble Image and Line Data Analysis Software. Astrophysics Source Code Library (2013).

  34. 34.

    Whiting, M. T. DUCHAMP: a 3D source finder for spectral-line data. Mon. Not. R. Astron. Soc. 421, 3242–3256 (2012).

    ADS  CAS  Article  Google Scholar 

  35. 35.

    Roberts, M. S. Radio observations of neutral hydrogen in galaxies. In Galaxies and the Universe (eds Sandage, A., Sandage, M. & Kristian, J.) 309–358 (Univ. of Chicago Press, 1975).

  36. 36.

    Heyer, M., Krawczyk, C., Duval, J. & Jackson, J. M. Re-examining Larson’s scaling relationships in galactic molecular clouds. Astrophys. J. 699, 1092–1103 (2009).

    ADS  CAS  Article  Google Scholar 

  37. 37.

    Krumholz, M. R. DESPOTIC – a new software library to Derive the Energetics and SPectra of Optically Thick Interstellar Clouds. Mon. Not. R. Astron. Soc. 437, 1662–1680 (2014).

    ADS  Article  Google Scholar 

  38. 38.

    Gong, M., Ostriker, E. C. & Wolfire, M. G. A simple and accurate network for hydrogen and carbon chemistry in the interstellar medium. Astrophys. J. 843, 38 (2017); erratum 866, 163 (2018).

    ADS  Article  Google Scholar 

  39. 39.

    Draine, B. T. Photoelectric heating of interstellar gas. Astrophys. J. Suppl. Ser. 36, 595–619 (1978).

    ADS  CAS  Article  Google Scholar 

  40. 40.

    Indriolo, N. & McCall, B. J. Investigating the cosmic-ray ionization rate in the galactic diffuse interstellar medium through observations of H3 +. Astrophys. J. 745, 91 (2012).

    ADS  Article  Google Scholar 

  41. 41.

    Oka, T. et al. The central 300 pc of the Galaxy probed by infrared spectra of H3 + and CO. I. Predominance of warm and diffuse gas and high H2 ionization rate. Astrophys. J. 883, 54 (2019).

    ADS  CAS  Article  Google Scholar 

  42. 42.

    Bland-Hawthorn, J. & Gerhard, O. The Galaxy in context: structural, kinematic, and integrated properties. Annu. Rev. Astron. Astrophys. 54, 529–596 (2016).

    ADS  CAS  Article  Google Scholar 

Download references


E.M.D.T. and L.A. thank E. Ostriker, C.-G. Kim and J.-G. Kim for discussions and M. Krumholz for support with the DESPOTIC code. E.M.D.T. was supported by the US National Science Foundation under grant 1616177. E.M.D.T. and N.M.M.-G. acknowledge the support of the Australian Research Council (ARC) through grant DP160100723. N.M.M.-G. acknowledges funding from the ARC via Future Fellowship FT150100024. CO observations were made with APEX under ESO proposal 0104.B-0106A. APEX is a collaboration between Max-Planck-Institut für Radioastronomie, the European Southern Observatory and the Onsala Space Observatory. The Green Bank Observatory is a facility of the US National Science Foundation operated under a cooperative agreement by Associated Universities, Inc. The ATCA is part of the Australia Telescope National Facility, which is funded by the Australian Government for operation as a National Facility managed by CSIRO.

Author information




E.M.D.T., N.M.M.-G. and F.J.L. developed the idea for the project. E.M.D.T. reduced and analysed the APEX data, L.A. ran the radiative-transfer models. E.M.D.T. wrote the paper with direct contributions from N.M.M.-G., F.J.L. and L.A. All authors reviewed the manuscript.

Corresponding author

Correspondence to Enrico M. Di Teodoro.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Mark Morris and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Table 1 Properties of molecular gas clouds outflowing from the Galactic Centre

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Di Teodoro, E.M., McClure-Griffiths, N.M., Lockman, F.J. et al. Cold gas in the Milky Way’s nuclear wind. Nature 584, 364–367 (2020).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing