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            Abstract
Magic-angle twisted bilayer graphene (TBG), with rotational misalignment close to 1.1 degrees, features isolated flat electronic bands that host a rich phase diagram of correlated insulating, superconducting, ferromagnetic and topological phases1,2,3,4,5,6. Correlated insulators and superconductivity have been previously observed only for angles withinÂ 0.1 degree of the magic angle and occur in adjacent or overlapping electron-density ranges; nevertheless, the origins of these states and the relation between them remain unclear, owing to their sensitivity to microscopic details. Beyond twist angle and strain, the dependence of the TBG phase diagram on the alignment4,6 and thickness of the insulating hexagonal boron nitride (hBN)7,8 used to encapsulate the graphene sheets indicates the importance of the microscopic dielectric environment. Here we show that adding an insulating tungsten diselenide (WSe2) monolayer between the hBN and the TBG stabilizes superconductivity at twist angles much smaller than the magic angle. For the smallest twist angle of 0.79 degrees, superconductivity is still observed despite the TBG exhibiting metallic behaviour across the whole range of electron densities. Finite-magnetic-field measurements further reveal weak antilocalization signatures as well as breaking of fourfold spinâ€“valley symmetry, consistent with spinâ€“orbit coupling induced in the TBG via its proximity to WSe2. Our results constrain theoretical explanations for the emergence of superconductivity in TBG and open up avenues towards engineering quantum phases in moirÃ© systems.
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                    Fig. 1: Superconductivity in small-angle TBGâ€“WSe2 structures.[image: ]


Fig. 2: Absence of correlated insulating states and diminished gap between flat and dispersive bands.[image: ]


Fig. 3: Breaking of the fourfold degeneracy.[image: ]


Fig. 4: Spinâ€“orbit effect on TBG band structure.[image: ]
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Extended data figures and tables

Extended Data Fig. 1 Fabrication details.
aâ€“e, Critical steps in the stacking process. f, Optical images of a typical flake and stacks at different stages of the fabrication.


Extended Data Fig. 2 Optical images of devices D1â€“D4.
aâ€“d, The electrodes that are used in the measurements and the corresponding twisted angles are labelled for each device. The electrodes marked with blue lines were used for measuring the Hall conductance in Fig. 3. The scale bar in each panel corresponds to 15 Î¼m. The bottom hBN thicknesses for D1, D2, D3 and D4 are 62 nm, 40 nm, 48 nm and 56 nm, respectively. D4 differs from the other devices as it features monolayer WSe2 on both the top and bottom of the device. The contact angles for each pair of contacts listed were determined from the Landau-fan diagrams, as described in Methods.


Extended Data Fig. 3 Additional temperature data for device D1 (0.97Â°).
a, Rxx as a function of Î½ and temperature, up to 10 K. b, Temperature dependence of Rxx for Î½ = 2 (red) and Î½ = 3 (black), showing insulating behaviour. c, At other partial integer filling factors, Rxx increases with temperature, consistent with metallic behaviour.


Extended Data Fig. 4 Additional data for device D3 (1.04Â°).
a, Rxx as a function of Î½ and temperature, up to 120 K. In this device, a higher temperature was required for fitting the Arrhenius gaps, owing to the larger gap size. The data in a were therefore measured in a variable-temperature (Quantum Design PPMS) setup, whereas data from other panels were taken in the dilution fridge. b, Line cuts from a, with corresponding fits showing gaps at full filling Î”Â±4 and partial filling Î”Â±2. c, Landau-fan diagram showing similar behaviour as for D1 (0.97Â°). d, Temperature dependence up to 2 K, clearly showing superconductivity on the hole side (for âˆ’3 < Î½ < âˆ’2) and with a smaller pocket on the electron side showing signatures of developing superconductivity. e, Fraunhofer-like pattern at Î½ = âˆ’2.78.


Extended Data Fig. 5 Additional data for device D2 (0.83Â° contacts).
See Extended Data Fig. 2b for the layout of D2. a, Rxx plotted for filling factor Î½ and temperature up to 2 K, showing the superconducting pocket on the electron side. b, As in a, up to 40 K, showing the reduction of the |Î½| = 4 insulating states. c, Arrhenius fits to the gap values of 0.97 meV for Î½ = âˆ’4, and 3.7 meV for Î½ = +4. d, Rxx versus filling factor and magnetic field (B), forming a Landau-fan diagram, with white dashed lines tracing the dominant Â±2, +3, Â±4, Â±6, Â±8, Â±10, Â±14, Â±18, +20, Â±22, âˆ’26 sequence around charge neutrality. The odd level (+3) is marked with green. e, The Fraunhofer-like pattern for the superconductivity pocket, taken at Î½ = 2.08. The inset is a magnification of the low-field data, showing that the critical current reaches a local minimum about zero field, indicating â€œÏ€-junction-likeâ€� behaviour3.


Extended Data Fig. 6 Additional data from device D1 (0.97Â°).
a, Fraunhofer-like pattern for electron doping, at Î½ = 1.58. b, c, Additional Fraunhofer-like pattern for hole doping, at Î½ = âˆ’2.1 (b), and Î½ = âˆ’2.5 (c).


Extended Data Fig. 7 Additional data for device D4 (0.80Â°).
D4 was fabricated with monolayer WSe2 on both the top and bottom of the TBG. a, Rxx as a function of Î½ and temperature, to 2 K, revealing a superconducting pocket over the range 2 < Î½ < 3.2 and resistance at full filling (|Î½| = 4) of less than at the CNP. b, The Landau fan, with dotted lines drawn from the CNP according to the sequence Â±2, +3, Â±4, Â±6, Â±8, Â±10, âˆ’12, Â±14, Â±18, +22, with the odd level (+3) marked in green. c, Current versus voltage at Î½ = 2.79, at temperatures from 50 mK to 900 mK in 50 mK steps. The main plot is on a log scale in both axes, revealing a Berezinskiiâ€“Kosterlitzâ€“Thouless (BKT) transition temperature near 250 mK. Inset, Iâ€“V dependence for the same temperatures. d, Fraunhofer-like pattern for D4 at Î½ = 2.40.


Extended Data Fig. 8 Weak antilocalization data measured in D4 (Î¸ = 0.80Â°).
a, Rxx as a function of back-gate voltage, Vbg, for the 0.80Â° contacts of D4 (see Extended Data Fig. 2). The black (red) line shows the voltage range used in the flat (dispersive) bands, which corresponds to the plots in bâ€“d (e, f). The peak at B = 0 mT is prominent in both ranges, showing the presence of weak antilocalization and, consequently, spinâ€“orbit coupling. b, The change in conductivity Î”Ïƒ, relative to the 0 mT point, as a function of magnetic field, taken at several gate voltages close to Vbg â‰ˆ âˆ’2 V measured at 25 mK; the narrow peak about B = 0 mT, indicative of weak antilocalization, is clearly visible. Universal conductance fluctuations can be averaged out by taking field sweeps at different gate points53. c, d, Averaged data from b for different field ranges. The data taken at 900 mKâ€”where the weak antilocalization peak has disappearedâ€”has been subtracted, and the data points have been symmetrized about 0 mT. The dashed lines are the comparison with the model54 used previously for monolayer graphene/transition metal dichalcogenide heterostructures18,53 with a renormalized Fermi velocity to account for the flatness of the bands. For generating plots at different temperatures, only the dephasing scattering time Ï„Ï• is varied. Although the total spinâ€“orbit scattering time Ï„so â‰ˆ 10 ps better reproduces the low-field data in c, Ï„so â‰ˆ 1â€“3 ps captures the saturation at larger fields (d) with asymmetric and symmetric relaxation-time ratios54 (Ï„asym/Ï„sym) varying in the range 0.3â€“3. The values of Ï„so obtained here correspond to SOI energies50 in the range 0.5â€“1 meV. We note that, in the case of TBG, a more detailed analysis with a correct model for describing weak antilocalization in TBG is probably required for quantitative comparison. Regardless, the weak antilocalization peaks are an indication of strong SOI in WSe2â€“TBG heterostructures. e, f, The data show a weak antilocalization peak in the dispersive bands near Vbg = âˆ’6 V (red line in a). Data in e was taken at 25 mK. In f, the data points at each temperature are offset by 0.1 e2/h for clarity.


Extended Data Fig. 9 Theoretical Landau-level spectrum.
a, c, Colour plot of the phenomenologically broadened density of states (see Supplementary Information section 2 for details) as a function of energy squared, in millelectronvolts squared (roughly equivalent to the electron density that is gate-tuned in the experiment), and the magnetic field in tesla. b, d, The spectrum, without taking broadening effects into account. Blue and red lines correspond to levels originating proximate to the +K and âˆ’K valleys, respectively. The effective spinâ€“orbit coupling parameters (as distinct from those used in the continuum model) are \(({\tilde{\lambda }}_{{\rm{I}}},{\tilde{\lambda }}_{{\rm{R}}},{\tilde{\lambda }}_{{\rm{KM}}})\) = (3 meV, 4 meV, 0 meV) with a broadening Î“ = 0.22 meV (a, b) and \(({\tilde{\lambda }}_{{\rm{I}}},{\tilde{\lambda }}_{{\rm{R}}},{\tilde{\lambda }}_{{\rm{KM}}})\) = (1.5 meV, 2.5 meV, 2 meV) with a broadening Î“ = 0.15 meV (c, d). The Fermi velocity in both is vF â‰ˆ 105 m sâˆ’1, as is appropriate for Î¸ â‰ˆ 0.8Â°âˆ’0.9Â°. We note that the Landau-level sequence and energy levels on the hole-doped side are identical to those shown here for a and b. When both \({\tilde{\lambda }}_{{\rm{I}}}\) and \({\tilde{\lambda }}_{{\rm{KM}}}\) are non-zero, as in c and d, a slightly different Landau-level sequence is generically obtained at negative energies relative to the CNP.


Extended Data Fig. 10 SOI dependence of the band structure.
a, c, f, h, Flat-band energies along momentum line cuts defined in the inset of a; dashed lines indicate the chemical potential corresponding to Î½ = +2. b, d, e, g, i, j, Band structure of the electron-like bands with their Î½ = +2 Fermi surfaces indicated, for different values of the SOI parameters. We consider the cases in which no SOI is present (a, b), and where only Ising SOI (câ€“e), only Kaneâ€“Mele SOI (f, g), and only Rashba SOI (hâ€“j) are present. In câ€“j, the non-zero SOI parameter is set to 3 meV; other parameters are provided in Methods. In c, the bands possess an out-of-plane spin polarization, âŸ¨SzâŸ©, which is displayed in colour as per the inset. As indicated in Fig. 4, when both Î»I and Î»R are non-zero, the Dirac cones at Â±Îº generate masses. By contrast, when Î»I, Î»R and Î»KM are individually the only non-zero SOI, only the Kaneâ€“Mele term results in a gapped spectrum at charge neutrality. In f, the inset magnifies the âˆ’Îº point to demonstrate this point. Aside from this feature, the band structure when Î»KM = 3 meV (f, g) is qualitatively identical to the band structure without SOI (a, b). In i and j, the colour of the Fermi surfaces indicates the expectation value of the in-plane spin according to the wheel above i. All other parameter sets have a zero in-plane spin projection.
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