Asymmetric mass ratios for bright double neutron-star mergers

Abstract

The discovery of a radioactively powered kilonova associated with the binary neutron-star merger GW170817 remains the only confirmed electromagnetic counterpart to a gravitational-wave event1,2. Observations of the late-time electromagnetic emission, however, do not agree with the expectations from standard neutron-star merger models. Although the large measured ejecta mass3,4 could be explained by a progenitor system that is asymmetric in terms of the stellar component masses (that is, with a mass ratio q of 0.7 to 0.8)5, the known Galactic population of merging double neutron-star systems (that is, those that will coalesce within billions of years or less) has until now consisted only of nearly equal-mass (q > 0.9) binaries6. The pulsar PSR J1913+1102 is a double system in a five-hour, low-eccentricity (0.09) orbit, with an orbital separation of 1.8 solar radii7, and the two neutron stars are predicted to coalesce in \({470}_{-11}^{+12}\) million years owing to gravitational-wave emission. Here we report that the masses of the pulsar and the companion neutron star, as measured by a dedicated pulsar timing campaign, are 1.62 ± 0.03 and 1.27 ± 0.03 solar masses, respectively. With a measured mass ratio of q = 0.78 ± 0.03, this is the most asymmetric merging system reported so far. On the basis of this detection, our population synthesis analysis implies that such asymmetric binaries represent between 2 and 30 per cent (90 per cent confidence) of the total population of merging binaries. The coalescence of a member of this population offers a possible explanation for the anomalous properties of GW170817, including the observed kilonova emission from that event.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Pulsar mass–companion mass diagram for the PSR J1913+1102 system.
Fig. 2: Probability density of the population of PSR J1913+1102 -like DNS systems in the Galaxy, as a fraction of the total number of DNSs that will merge within a Hubble time.
Fig. 3: Post-fit timing residuals for PSR J1913+1102.

Data availability

All data are available from the corresponding author on request.

Code availability

The code used in this analysis is publicly available at: https://github.com/nanograv/tempo (pulsar timing analysis); https://github.com/NihanPol/2018-DNS-merger-rate (population synthesis); https://github.com/rferdman/pypsr (plotting tools).

References

  1. 1.

    Abbott, B. et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Abbott, B. P. et al. Multi-messenger observations of a binary neutron star merger. Astrophys. J. Lett. 848, 12 (2017).

    ADS  Google Scholar 

  3. 3.

    Abbott, B. P. et al. Estimating the contribution of dynamical ejecta in the kilonova associated with GW170817. Astrophys. J. Lett. 850, 39 (2017).

    ADS  Google Scholar 

  4. 4.

    Cowperthwaite, P. S. et al. The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. II. UV, optical, and near-infrared light curves and comparison to kilonova models. Astrophys. J. Lett. 848, 17 (2017).

    ADS  Google Scholar 

  5. 5.

    Pankow, C. On GW170817 and the Galactic binary neutron star population. Astrophys. J. 866, 60 (2018).

    ADS  Google Scholar 

  6. 6.

    Tauris, T. M. et al. Formation of double neutron star systems. Astrophys. J. 846, 170 (2017).

    ADS  Google Scholar 

  7. 7.

    Lazarus, P. et al. Einstein@Home discovery of a double neutron star binary in the PALFA survey. Astrophys. J. 831, 150 (2016).

    ADS  Google Scholar 

  8. 8.

    Kramer, M. et al. Tests of general relativity from timing the double pulsar. Science 314, 97–102 (2006).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Ferdman, R. D. et al. PSR J1756−2251: a pulsar with a low-mass neutron star companion. Mon. Not. R. Astron. Soc. 443, 2183–2196 (2014).

    ADS  CAS  Google Scholar 

  10. 10.

    Stovall, K. et al. PALFA discovery of a highly relativistic double neutron star binary. Astrophys. J. Lett. 854, 22 (2018).

    ADS  Google Scholar 

  11. 11.

    Tauris, T. M. et al. Ultra-stripped type Ic supernovae from close binary evolution. Astrophys. J. Lett. 778, 23 (2013).

    ADS  Google Scholar 

  12. 12.

    Miyaji, S., Nomoto, K., Yokoi, K. & Sugimoto, D. Supernova triggered by electron captures. Publ. Astron. Soc. Jpn. 32, 303–329 (1980).

    ADS  CAS  Google Scholar 

  13. 13.

    Nomoto, K. Evolution of 8–10 solar mass stars toward electron capture supernovae. I – formation of electron-degenerate O + NE + MG cores. Astrophys. J. 277, 791–805 (1984).

    ADS  CAS  Google Scholar 

  14. 14.

    Podsiadlowski, P. et al. The double pulsar J0737–3039: testing the neutron star equation of state. Mon. Not. R. Astron. Soc. 361, 1243–1249 (2005).

    ADS  CAS  Google Scholar 

  15. 15.

    Martinez, J. G. et al. Pulsar J0453+1559: a double neutron star system with a large mass asymmetry. Astrophys. J. 812, 143 (2015).

    ADS  Google Scholar 

  16. 16.

    Kasen, D., Metzger, B., Barnes, J., Quataert, E. & Ramirez-Ruiz, E. Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event. Nature 551, 80–84 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Hotokezaka, K. et al. Mass ejection from the merger of binary neutron stars. Phys. Rev. D 87, 024001 (2013).

    ADS  Google Scholar 

  18. 18.

    Radice, D. & Dai, L. Multimessenger parameter estimation of GW170817. Eur. Phys. J. A 55, 50 (2019).

    ADS  CAS  Google Scholar 

  19. 19.

    Siegel, D. M. & Metzger, B. D. Three-dimensional GRMHD simulations of neutrino-cooled accretion disks from neutron star mergers. Astrophys. J. 858, 52 (2018).

    ADS  Google Scholar 

  20. 20.

    Fernández, R., Tchekhovskoy, A., Quataert, E., Foucart, F. & Kasen, D. Long-term GRMHD simulations of neutron star merger accretion discs: implications for electromagnetic counterparts. Mon. Not. R. Astron. Soc. 482, 3373–3393 (2018).

    ADS  Google Scholar 

  21. 21.

    Radice, D. et al. Binary neutron star mergers: mass ejection, electromagnetic counterparts and nucleosynthesis. Astrophys. J. 869, 130 (2018).

    ADS  CAS  Google Scholar 

  22. 22.

    Troja, E. et al. The X-ray counterpart to the gravitational-wave event GW170817. Nature 551, 71–74 (2017).

    ADS  Google Scholar 

  23. 23.

    Haggard, D. et al. A deep Chandra X-ray study of neutron star coalescence GW170817. Astrophys. J. 848, L25 (2017).

    ADS  Google Scholar 

  24. 24.

    Mooley, K. P. et al. A mildly relativistic wide-angle outflow in the neutron-star merger event GW170817. Nature 554, 207–210 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Piro, A. L. & Kollmeier, J. A. Evidence for cocoon emission from the early light curve of SSS17a. Astrophys. J. 855, 103 (2018).

    ADS  Google Scholar 

  26. 26.

    Metzger, B. D., Thompson, T. A. & Quataert, E. A magnetar origin for the kilonova ejecta in GW170817. Astrophys. J. 856, 101 (2018).

    ADS  Google Scholar 

  27. 27.

    Li, S.-Z., Liu, L.-D., Yu, Y.-W. & Zhang, B. What powered the optical transient AT2017gfo associated with GW170817? Astrophys. J. Lett. 861, 12 (2018).

    ADS  Google Scholar 

  28. 28.

    Chang, P. & Murray, N. GW170817: A neutron star merger in a mass-transferring triple system. Mon. Not. R. Astron. Soc. Lett. 474, 12–16 (2018).

    ADS  Google Scholar 

  29. 29.

    Shibata, M. & Taniguchi, K. Merger of binary neutron stars to a black hole: disk mass, short gamma-ray bursts, and quasinormal mode ringing. Phys. Rev. D 73, 064027 (2006).

    ADS  Google Scholar 

  30. 30.

    Rezzolla, L., Baiotti, L., Giacomazzo, B., Link, D. & Font, J. A. Accurate evolutions of unequal-mass neutron-star binaries: properties of the torus and short GRB engines. Class. Quantum Gravity 27, 114105 (2010).

    ADS  MATH  Google Scholar 

  31. 31.

    Dietrich, T. & Ujevic, M. Modeling dynamical ejecta from binary neutron star mergers and implications for electromagnetic counterparts. Class. Quantum Gravity 34, 105014 (2017).

    ADS  MATH  Google Scholar 

  32. 32.

    Lehner, L. et al. Unequal mass binary neutron star mergers and multimessenger signals. Class. Quantum Gravity 33, 184002 (2016).

    ADS  Google Scholar 

  33. 33.

    Tanvir, N. R. et al. A ‘kilonova’ associated with the short-duration γ-ray burst GRB 130603B. Nature 500, 547–549 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Just, O., Bauswein, A., Pulpillo, R. A., Goriely, S. & Janka, H.-T. Comprehensive nucleosynthesis analysis for ejecta of compact binary mergers. Mon. Not. R. Astron. Soc. 448, 541–567 (2015).

    ADS  CAS  Google Scholar 

  35. 35.

    Read, J. S. et al. Measuring the neutron star equation of state with gravitational wave observations. Phys. Rev. D 79, 124033 (2009).

    ADS  Google Scholar 

  36. 36.

    Lackey, B. D. & Wade, L. Reconstructing the neutron-star equation of state with gravitational-wave detectors from a realistic population of inspiralling binary neutron stars. Phys. Rev. D 91, 043002 (2015).

    ADS  Google Scholar 

  37. 37.

    Agathos, M. et al. Constraining the neutron star equation of state with gravitational wave signals from coalescing binary neutron stars. Phys. Rev. D 92, 023012 (2015).

    ADS  Google Scholar 

  38. 38.

    Abbott, B. P. et al. GW170817: measurements of neutron star radii and equation of state. Phys. Rev. Lett. 121, 161101 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    The LIGO Scientific Collaboration et al. A gravitational-wave standard siren measurement of the Hubble constant. Nature 551, 85–88 (2017).

    Google Scholar 

  40. 40.

    Hotokezaka, K. et al. A Hubble constant measurement from superluminal motion of the jet in GW170817. Nat. Astron. 3, 940–944 (2019).

    ADS  Google Scholar 

  41. 41.

    Planck Collaboration. Planck 2018 results. VI. Cosmological parameters. Preprint at https://arxiv.org/abs/1807.06209 (2018).

  42. 42.

    Riess, A. G., Casertano, S., Yuan, W., Macri, L. M. & Scolnic, D. Large Magellanic Cloud Cepheid standards provide a 1% foundation for the determination of the Hubble constant and stronger evidence for physics beyond CDM. Astrophys. J. 876, 85 (2019).

    ADS  CAS  Google Scholar 

  43. 43.

    Damour, T. & Deruelle, N. General relativistic celestial mechanics of binary systems. I. The post-Newtonian motion. Ann. I.H.P. Phys. Theor. 43, 107–132 (1985).

    MathSciNet  MATH  Google Scholar 

  44. 44.

    Damour, T. & Deruelle, N. General relativistic celestial mechanics of binary systems. II. The post-Newtonian timing formula. Ann. I.H.P. Phys. Theor. 44, 263–292 (1986).

    MathSciNet  MATH  Google Scholar 

  45. 45.

    Damour, T. & Taylor, J. H. Strong-field tests of relativistic gravity and binary pulsars. Phys. Rev. D 45, 1840–1868 (1992).

    ADS  CAS  Google Scholar 

  46. 46.

    Yao, J. M., Manchester, R. N. & Wang, N. A new electron-density model for estimation of pulsar and FRB distances. Astrophys. J. 835, 29 (2017).

    ADS  Google Scholar 

  47. 47.

    Lorimer, D. R. & Kramer, M. Handbook of Pulsar Astronomy Vol. 4 (Cambridge Univ. Press, 2004).

  48. 48.

    Taylor, J. H. Pulsar timing and relativistic gravity. Phil. Trans. R. Soc. A 341, 117–134 (1992).

    ADS  Google Scholar 

  49. 49.

    Hotan, A. W., van Straten, W. & Manchester, R. N. PSRCHIVE and PSRFITS: an open approach to radio pulsar data storage and analysis. Publ. Astron. Soc. Pacif. 21, 302–309 (2004).

    ADS  Google Scholar 

  50. 50.

    Shklovskii, I. S. Possible causes of the secular increase in pulsar periods. Sov. Astron. 13, 562 (1970).

    ADS  Google Scholar 

  51. 51.

    Nice, D. J. & Taylor, J. H. PSR J2019+2425 and PSR J2322+2057 and the proper motions of millisecond pulsars. Astrophys. J. 441, 429–435 (1995).

    ADS  Google Scholar 

  52. 52.

    Perera, B. B. P. et al. The dynamics of Galactic centre pulsars: constraining pulsar distances and intrinsic spin-down. Mon. Not. R. Astron. Soc. 487, 1025–1039 (2019).

    ADS  Google Scholar 

  53. 53.

    Kruckow, M. U., Tauris, T. M., Langer, N., Kramer, M. & Izzard, R. G. Progenitors of gravitational wave mergers: binary evolution with the stellar grid-based code COMBINE. Mon. Not. R. Astron. Soc. 481, 1908–1949 (2018).

    ADS  CAS  Google Scholar 

  54. 54.

    Kim, C., Kalogera, V. & Lorimer, D. R. The probability distribution of binary pulsar coalescence rates. I. Double neutron star systems in the Galactic field. Astrophys. J. 584, 985–995 (2003).

    ADS  Google Scholar 

  55. 55.

    Kim, C., Perera, B. B. P. & McLaughlin, M. A. Implications of PSR J0737-3039B for the Galactic NS-NS binary merger rate. Mon. Not. R. Astron. Soc. 448, 928–938 (2015).

    ADS  CAS  Google Scholar 

  56. 56.

    Pol, N., McLaughlin, M. & Lorimer, D. R. Future prospects for ground-based gravitational-wave detectors: the Galactic double neutron star merger rate revisited. Astrophys. J. 870, 71 (2019); erratum 874, 186 (2019).

    ADS  CAS  Google Scholar 

  57. 57.

    Pol, N., McLaughlin, M. & Lorimer, D. R. An updated Galactic double neutron star merger rate based on radio pulsar populations. Res. Notes AAS 4, 22 (2020).

    ADS  Google Scholar 

  58. 58.

    Bagchi, M., Lorimer, D. R. & Wolfe, S. On the detectability of eccentric binary pulsars. Mon. Not. R. Astron. Soc. 432, 1303–1314 (2013).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank S. Nissanke, T. Tauris and B. Metzger for constructive discussions, as well as C. Belczynski and T. Tauris for useful comments. The Arecibo Observatory is operated by the University of Central Florida, Ana G. Mèndez-Universidad Metropolitana and Yang Enterprises under a cooperative agreement with the National Science Foundation (NSF; AST-1744119). R.D.F. and P.C.C.F. acknowledge the support of the PHAROS COST Action (CA16214). S.C., J.M.C., F. Crawford, M.A.M. and N.P. are members of the NANOGrav Physics Frontiers Center, which is supported by NSF award number PHY-1430284. S.C. and J.M.C. also acknowledge support from NSF award AAG-1815242. J.W.T.H. acknowledges funding from an NWO Vici grant (‘AstroFlash’). V.M.K. acknowledges support from an NSERC Discovery Grant and Herzberg Award, the Canada Research Chairs programme, the Canadian Institute for Advanced Research and FRQ-NT. E.P. is a Vanier Canada Graduate Scholar. I.H.S. acknowledges support for pulsar research at the University of British Columbia by an NSERC Discovery Grant and by the Canadian Institute for Advanced Research. J.v.L. acknowledges funding from an NWO Vici grant (‘ARGO’).

Author information

Affiliations

Authors

Contributions

R.D.F. contributed to timing analysis, wrote and ran mass probability contour code, led proposals for observing campaigns for this pulsar with the Arecibo telescope, composed the manuscript and produced Figs. 1, 3. P.C.C.F. led the timing analysis. B.P.P.P. and N.P. led the population synthesis analysis and produced Fig. 2. R.D.F., P.C.C.F., B.P.P.P., F. Camilo, S.C., J.M.C., F. Crawford, J.W.T.H., V.M.K., M.A.M., E.P., I.H.S. and J.v.L. contributed to the PALFA survey operations, as well as the discovery and follow-up observations of this pulsar. All authors contributed to discussion regarding the content of this manuscript.

Corresponding author

Correspondence to R. D. Ferdman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Chris Belczynski and Thomas Tauris for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ferdman, R.D., Freire, P.C.C., Perera, B.B.P. et al. Asymmetric mass ratios for bright double neutron-star mergers. Nature 583, 211–214 (2020). https://doi.org/10.1038/s41586-020-2439-x

Download citation

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing