Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Megathrust shear force controls mountain height at convergent plate margins

This article has been updated


The shear force along convergent plate boundary faults (megathrusts) determines the height of mountain ranges that can be mechanically sustained1,2,3,4. However, whether the true height of mountain ranges corresponds to this tectonically supported elevation is debated4,5,6,7. In particular, climate-dependent erosional processes are often assumed to exert a first-order control on mountain height5,6,7,8,9,10,11,12, although this assumption has remained difficult to validate12. Here we constrain the shear force along active megathrusts using their rheological properties and then determine the tectonically supported elevation using a force balance model. We show that the height of mountain ranges around the globe matches this elevation, irrespective of climatic conditions and the rate of erosion. This finding indicates that mountain ranges are close to force equilibrium and that their height is primarily controlled by the megathrust shear force. We conclude that temporal variations in mountain height reflect long-term changes in the force balance but are not indicative of a direct climate control on mountain elevation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Schematic summary of processes and topography at convergent plate margins.
Fig. 2: Megathrust shear strength envelopes derived from the rheological model.
Fig. 3: Maximum mean elevation compared to the tectonically supported elevation.
Fig. 4: Maximum mean elevation compared to the shear-force component supporting mountain height.

Data availability

All data used in this study are from the published literature as referenced14,15,16,17,18,47,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73 in Extended Data Tables 1 and 2. The solutions of the rheological model and the force balance model are available at

Code availability

To create the maps in Extended Data Figs. 13, we used the Python package Matplotlib74 and MATLAB75. To create the swath profiles in Extended Data Figs. 6 and 7, we used TopoToolbox76. All force-balance calculations are based on the analytical expressions described in the Methods. The Python scripts used for the calculations of the shear force and the tectonically supported elevation are available from the corresponding author upon reasonable request.

Change history

  • 08 July 2020

    The online publication date in the printed version of this article was listed incorrectly as 10 June 2020; the date was correct online.


  1. 1.

    Husson, L. & Ricard, Y. Stress balance above subduction: application to the Andes. Earth Planet. Sci. Lett. 222, 1037–1050 (2004).

    ADS  CAS  Google Scholar 

  2. 2.

    Wang, K. & He, J. Mechanics of low-stress forearcs: Nankai and Cascadia. J. Geophys. Res. 104, 15191–15205 (1999).

    ADS  Google Scholar 

  3. 3.

    Lamb, S. Shear stresses on megathrusts: implications for mountain building behind subduction zones. J. Geophys. Res. 111, B07401 (2006).

    ADS  Google Scholar 

  4. 4.

    Lamb, S. & Davis, P. Cenozoic climate change as a possible cause for the rise of the Andes. Nature 425, 792–797 (2003).

    ADS  CAS  PubMed  Google Scholar 

  5. 5.

    Champagnac, J. D., Molnar, P., Sue, C. & Herman, F. Tectonics, climate, and mountain topography. J. Geophys. Res. 117, B02403 (2012).

    ADS  Google Scholar 

  6. 6.

    Brozović, N., Burbank, D. W. & Meigs, A. J. Climatic limits on landscape development in the northwestern Himalaya. Science 276, 571–574 (1997).

    Google Scholar 

  7. 7.

    Egholm, D. L., Nielsen, S. B., Pedersen, V. K. & Lesemann, J.-E. Glacial effects limiting mountain height. Nature 460, 884–887 (2009).

    ADS  CAS  PubMed  Google Scholar 

  8. 8.

    Whipple, K. X. & Meade, B. J. Orogen response to changes in climatic and tectonic forcing. Earth Planet. Sci. Lett. 243, 218–228 (2006).

    ADS  CAS  Google Scholar 

  9. 9.

    Roe, G. H., Stolar, D. B. & Willett, S. D. In Tectonics, Climate, and Landscape Evolution (eds Willett, S. D., Hovius, N., Brandon, M. T. & Fisher, D. M.) Vol. 398, 227–239 (Geological Society of America, 2006).

  10. 10.

    Willett, S. D. & Brandon, M. T. On steady states in mountain belts. Geology 30, 175–178 (2002).

    ADS  Google Scholar 

  11. 11.

    Willett, S. D. Orogeny and orography: the effects of erosion on the structure of mountain belts. J. Geophys. Res. 104, 28,957–28,981 (1999).

    ADS  Google Scholar 

  12. 12.

    Whipple, K. X. The influence of climate on the tectonic evolution of mountain belts. Nat. Geosci. 2, 97–104 (2009).

    ADS  CAS  Google Scholar 

  13. 13.

    Gao, X. & Wang, K. Rheological separation of the megathrust seismogenic zone and episodic tremor and slip. Nature 543, 416–419 (2017).

    ADS  CAS  PubMed  Google Scholar 

  14. 14.

    Gao, X. & Wang, K. Strength of stick-slip and creeping subduction megathrusts from heat flow observations. Science 345, 1038–1041 (2014).

    ADS  CAS  PubMed  Google Scholar 

  15. 15.

    Dielforder, A. Constraining the strength of megathrusts from fault geometries and application to the Alpine collision zone. Earth Planet. Sci. Lett. 474, 49–58 (2017).

    ADS  CAS  Google Scholar 

  16. 16.

    Wang, K., Hu, Y., von Huene, R. & Kukowski, N. Interplate earthquakes as a driver of shallow subduction erosion. Geology 38, 431–434 (2010).

    ADS  CAS  Google Scholar 

  17. 17.

    Shimamoto, T. & Noda, H. A friction to flow constitutive law and its application to a 2-D modeling of earthquakes. J. Geophys. Res. 119, 8089–8106 (2014).

    ADS  Google Scholar 

  18. 18.

    Hayes, G. P., Wald, D. J. & Johnson, R. L. Slab1.0: a three-dimensional model of global subduction zone geometries. J. Geophys. Res. 117, B01302 (2012).

    ADS  Google Scholar 

  19. 19.

    Wallace, L. M. et al. Characterizing the seismogenic zone of a major plate boundary subduction thrust: Hikurangi Margin, New Zealand. Geochem. Geophys. Geosyst. 10, Q10006 (2009).

    ADS  Google Scholar 

  20. 20.

    Wada, I. & Wang, K. Common depth of slab-mantle decoupling: reconciling diversity and uniformity of subduction zones. Geochem. Geophys. Geosyst. 10, Q10009 (2009).

    ADS  Google Scholar 

  21. 21.

    Reuter, H. I., Nelson, A. & Jarvis, A. An evaluation of void filling interpolation methods for SRTM data. Int. J. Geogr. Inform. Sci. 21, 983–1008 (2007).

    Google Scholar 

  22. 22.

    Montgomery, D. R., Balco, G. & Willett, S. D. Climate, tectonics, and the morphology of the Andes. Geology 29, 579–582 (2001).

    ADS  Google Scholar 

  23. 23.

    Sobolev, S. V. & Babeyko, A. Y. What drives orogeny in the Andes? Geology 33, 617–620 (2005).

    ADS  Google Scholar 

  24. 24.

    Luo, G. & Liu, M. Why short-term crustal shortening leads to mountain building in the Andes, but not in Cascadia? Geophys. Res. Lett. 36, L08301 (2009).

    ADS  Google Scholar 

  25. 25.

    Oncken, O., Boutelier, D., Dresen, G. & Schemmann, K. Strain accumulation controls failure of plate boundary zone: linking deformation of the Central Andes and lithosphere mechanics. Geochem. Geophys. Geosyst. 13, Q12007 (2012).

    ADS  Google Scholar 

  26. 26.

    Carrapa, B. & DeCelles, P. G. Regional exhumation and kinematic history of the central Andes in response to cyclical orogenic processes. In Geodynamics of a Cordilleran Orogenic System: The Central Andes of Argentina and Northern Chile (eds DeCelles, P. G., Ducea, M. N., Carrapa B. & Kapp, B. A.) Vol. 212 (Geological Society of America, 2015).

  27. 27.

    Strecker, M. et al. Tectonics and climate of the southern Central Andes. Annu. Rev. Earth Planet. Sci. 35, 747–787 (2007).

    ADS  CAS  Google Scholar 

  28. 28.

    Bookhagen, B. & Burbank, D. W. Topography, relief, and TRMM-derived rainfall variations along the Himalaya. Geophys. Res. Lett. 33, L08405 (2006).

    ADS  Google Scholar 

  29. 29.

    Horton, B. K. Erosional control on the geometry and kinematics of thrust belt development in the central Andes. Tectonics 18, 1292–1304 (1999).

    ADS  Google Scholar 

  30. 30.

    McQuarrie, N., Ehlers, T. A., Barnes, J. B. & Meade, B. Temporal variation in climate and tectonic coupling in the central Andes. Geology 36, 999–1002 (2008).

    ADS  Google Scholar 

  31. 31.

    Wang, K. et al. Stable forearc stressed by weak megathrust: mechanical and geodynamic implications of stress changes caused by the M = 9 Tohoku-Oki earthquake. J. Geophys. Res. 124, 6179–6194 (2019).

    ADS  Google Scholar 

  32. 32.

    Hasegawa, A. et al. Change in stress field after the 2011 great Tohoku-Oki earthquake. Earth Planet. Sci. Lett. 355–356, 231–243 (2012).

    ADS  Google Scholar 

  33. 33.

    Hardebeck, J. L. Coseismic and postseismic stress rotations due to great subduction zone earthquakes. Geophys. Res. Lett. 39, L21313 (2012).

    ADS  Google Scholar 

  34. 34.

    Allmann, B. P. & Shearer, P. M. Global variations of stress drop for moderate to large earthquakes. J. Geophys. Res. 114, B01310 (2009).

    ADS  Google Scholar 

  35. 35.

    Allmendinger, R. W. & González, G. Neogene to Quaternary tectonics of the coastal Cordillera, northern Chile. Tectonophysics 495, 93–110 (2010).

    ADS  Google Scholar 

  36. 36.

    Wang, K. Stress–strain ‘paradox’, plate coupling, and forearc seismicity at the Cascadia and Nankai subduction zones. Tectonophysics 319, 321–338 (2000).

    ADS  Google Scholar 

  37. 37.

    Molnar, P. & Lyon-Caen, H. In Processes in Continental Lithospheric Deformation (eds Clark, S. P. Jr, Burchfiel, B. C. & Suppe, J.) Vol. 218, 179–207 (Geological Society of America, 1988).

  38. 38.

    Schoenbohm, L. M. & Strecker, M. R. Normal faulting along the southern margin of the Puna Plateau, northwest Argentina. Tectonics 28, TC5008 (2009).

    ADS  Google Scholar 

  39. 39.

    Byerlee, J. D. Friction of rocks. Pure Appl. Geophys. 116, 615–626 (1978).

    ADS  Google Scholar 

  40. 40.

    Tesei, T., Lacroix, B. & Collettini, C. Fault strength in thin-skinned tectonic wedges across the smectite-illite transition: constraints from friction experiments and critical tapers. Geology 43, 923–926 (2015).

    ADS  Google Scholar 

  41. 41.

    Ikari, M. J., Saffer, D. M. & Marone, C. Frictional and hydrologic properties of clay-rich fault gouge. J. Geophys. Res. 114, B05409 (2009).

    ADS  Google Scholar 

  42. 42.

    Wesson, R. L. & Boyd, O. S. Stress before and after the 2002 Denali fault earthquake. Geophys. Res. Lett. 34, L07303 (2007).

    ADS  Google Scholar 

  43. 43.

    Yoshida, K., Hasegawa, A., Okada, T. & Iinuma, T. Changes in the stress field after the 2008 M7.2 Iwate-Miyagi Nairiku earthquake in northeastern Japan. J. Geophys. Res. 119, 9016–9030 (2014).

    ADS  Google Scholar 

  44. 44.

    Wobus, C., Heimsath, A., Whipple, K. & Hodges, K. Active out-of-sequence thrust faulting in the central Nepalese Himalaya. Nature 434, 1008–1011 (2005).

    ADS  CAS  PubMed  Google Scholar 

  45. 45.

    Berger, A. L. et al. Architecture, kinematics, and exhumation of a convergent orogenic wedge: a thermochronological investigation of tectonic-climatic interactions within the central St. Elias orogen, Alaska. Earth Planet. Sci. Lett. 270, 13–24 (2008).

    ADS  CAS  Google Scholar 

  46. 46.

    Lamb, S. Did shortening in thick crust cause rapid Late Cenozoic uplift in the northern Bolivian Andes? J. Geol. Soc. Lond. 168, 1079–1092 (2011).

    Google Scholar 

  47. 47.

    Nábělek, J. L. et al. Underplating in the Himalaya-Tibet Collision Zone revealed by the Hi-CLIMB experiment. Science 325, 1371–1374 (2009).

    ADS  PubMed  Google Scholar 

  48. 48.

    Gao, R. et al. Crustal-scale duplexing beneath the Yarlung Zangbo suture in the western Himalaya. Nat. Geosci. 9, 555–560 (2016).

    ADS  CAS  Google Scholar 

  49. 49.

    Herman, F. et al. Exhumation, crustal deformation, and thermal structure of the Nepal Himalaya derived from the inversion of thermochronological and thermobarometric data and modeling of the topography. J. Geophys. Res. 115, B06407 (2010).

    ADS  Google Scholar 

  50. 50.

    Wang, K. & Hu, Y. Accretionary prisms in subduction earthquake cycles: the theory of dynamic Coulomb wedge. J. Geophys. Res. 111, B06410 (2006).

    ADS  Google Scholar 

  51. 51.

    Chapple, W. M. Mechanics of thin-skinned fold-and-thrust belts. Geol. Soc. Am. Bull. 89, 1189–1198 (1978).

    ADS  Google Scholar 

  52. 52.

    Davis, D., Suppe, J. & Dahlen, F. A. Mechanics of fold-and-thrust belts and accretionary wedges. J. Geophys. Res. 88, 1153–1172 (1983).

    ADS  Google Scholar 

  53. 53.

    Dahlen, F. A. Critical taper model of fold-and-thrust belts and accretionary wedges. Annu. Rev. Earth Planet. Sci. 18, 55–99 (1990).

    ADS  Google Scholar 

  54. 54.

    Williams, C. A., Connors, C., Dahlen, F. A., Price, E. J. & Suppe, J. Effect of the brittle-ductile transition on the topography of compressive mountain belts on Earth and Venus. J. Geophys. Res. 99, 19,947–19,974 (1994).

    ADS  Google Scholar 

  55. 55.

    Wang, K. & Tréhu, A. M. Some outstanding issues in the study of great megathrust earthquakes—the Cascadia example. J. Geodyn. 98, 1–18 (2016).

    CAS  Google Scholar 

  56. 56.

    Hayes, G. P. et al. Slab2, a comprehensive subduction zone geometry model. Science 362, 58–61 (2018).

    ADS  CAS  PubMed  Google Scholar 

  57. 57.

    Sippl, C., Schurr, B., Asch, G. & Kummerow, J. Seismicity structure of the Northern Chile Forearc from >100,000 double-difference relocated hypocenters. J. Geophys. Res. 123, 4063–4087 (2018).

    ADS  Google Scholar 

  58. 58.

    Rietbrock, A. et al. Aftershock seismicity of the 2010 Maule Mw=8.8, Chile, earthquake: correlation between co-seismic slip models and aftershock distribution? Geophys. Res. Lett. 39, L08310 (2012).

    ADS  Google Scholar 

  59. 59.

    Hippchen, S. & Hyndman, R. D. Thermal and structural models of the Sumatra subduction zone: implications for the megathrust seismogenic zone. J. Geophys. Res. 113, B12103 (2008).

    ADS  Google Scholar 

  60. 60.

    Klingelhoefer, F. et al. Limits of the seismogenic zone in the epicentral region of the 26 December 2004 great Sumatra-Andaman earthquake: results from seismic refraction and wide-angle reflection surveys and thermal modeling. J. Geophys. Res. 115, B01304 (2010).

    ADS  Google Scholar 

  61. 61.

    Heuret, A., Lallemand, S., Funiciello, F., Piromallo, C. & Faccenna, C. Physical characteristics of subduction interface type seismogenic zones revisited. Geochem. Geophys. Geosyst. 12, Q01004 (2011).

    ADS  Google Scholar 

  62. 62.

    Williams, C. A. et al. Revised interface geometry for the Hikurangi subduction zone, New Zealand. Seismol. Res. Lett. 84, 1066–1073 (2013).

    Google Scholar 

  63. 63.

    Ader, T. et al. Convergence rate across the Nepal Himalaya and interseismic coupling on the Main Himalayan Thrust: implications for seismic hazard. J. Geophys. Res. 117, B04403 (2012).

    ADS  Google Scholar 

  64. 64.

    Elliott, J. R. et al. Himalayan megathrust geometry and relation to topography revealed by the Gorkha earthquake. Nat. Geosci. 9, 174–180 (2016).

    ADS  CAS  Google Scholar 

  65. 65.

    Stevens, V. L. & Avouac, J. P. Interseismic coupling on the main Himalayan thrust. Geophys. Res. Lett. 42, 5828–5837 (2015).

    ADS  Google Scholar 

  66. 66.

    Ramachandran, K., Hyndman, R. D. & Brocher, T. M. Regional P wave velocity structure of the Northern Cascadia Subduction Zone. J. Geophys. Res. 111, B12301 (2006).

    ADS  Google Scholar 

  67. 67.

    Bostock, M. G., Hyndman, R. D., Rondenay, S. & Peacock, S. M. An inverted continental Moho and serpentinization of the forearc mantle. Nature 417, 536–538 (2002).

    ADS  CAS  PubMed  Google Scholar 

  68. 68.

    Oncken, O. et al. Seismic imaging of a convergent continental margin and plateau in the central Andes (Andean Continental Research Project 1996 (ANCORP’96)). J. Geophys. Res. 108, 2328 (2003).

    ADS  Google Scholar 

  69. 69.

    Tassara, A., Götze, H.-J., Schmidt, S. & Hackney, R. Three-dimensional density model of the Nazca plate and the Andean continental margin. J. Geophys. Res. 111, B09404 (2006).

    ADS  Google Scholar 

  70. 70.

    Simoes, M., Avouac, J. P., Cattin, R. & Henry, P. The Sumatra subduction zone: a case for a locked fault zone extending into the mantle. J. Geophys. Res. 109, B10402 (2004).

    ADS  Google Scholar 

  71. 71.

    Iwasaki, T., Levin, V., Nikulin, A. & Iidaka, T. Constraints on the Moho in Japan and Kamchatka. Tectonophysics 609, 184–201 (2013).

    ADS  Google Scholar 

  72. 72.

    Katsumata, A. Depth of the Moho discontinuity beneath the Japanese islands estimated by traveltime analysis. J. Geophys. Res. 115, B04303 (2010).

    ADS  Google Scholar 

  73. 73.

    Salmon, M., Kennett, B. L. N., Stern, T. & Aitken, A. R. A. The Moho in Australia and New Zealand. Tectonophysics 609, 288–298 (2013).

    ADS  Google Scholar 

  74. 74.

    Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Google Scholar 

  75. 75.

    MATLAB and Statistics Toolbox Release (The MathWorks, 2012).

  76. 76.

    Schwanghart, W. & Scherler, D. TopoToolbox 2 – MATLAB-based software for topographic analysis and modeling in Earth surface sciences. Earth Surf. Dyn. 2, 1–7 (2014).

    ADS  Google Scholar 

  77. 77.

    Heidbach, O., Rajabi, M., Reiter, K., Ziegler, M. & Team, W. S. M. World Stress Map Database Release 2016 (2016).

  78. 78.

    Amante, C. & Eakins, B. W. ETOPO1 1 Arc-Minute Global Relief Model NOAA Technical Memorandum (National Centers for Environmental Information, 2009).

Download references


We thank S. Brune, A. Hampel and R. Danisi for comments on earlier versions of the manuscript.

Author information




A.D. designed the study, compiled the data and conducted the force analysis. All authors discussed and analysed the results. A.D. and R.H. wrote the manuscript.

Corresponding author

Correspondence to Armin Dielforder.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Barbara Carrapa, Kelin Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Map with the localities of the convergent margin segments studied.

Red and blue circles indicate margins where the frictional strength of the megathrust has been derived from heat dissipation models and from Coulomb wedge models, respectively. 1, Northern Cascadia; 2, 3 and 4, The Andes at 23° S, 34° S, and 36° S, respectively; 5, Northern Sumatra; 6, Kamchatka; 7, Japan Trench; 8, Nankai Trough; 9, Northern Hikurangi; 10, Himalayas. Maps of the study sites are shown in Extended Data Figs. 2 and 3.

Extended Data Fig. 2 Map view of the convergent margin segments studied.

af, Thick black lines and black rectangles indicate the trace and width (100 km), respectively, of the swath profiles shown in Extended Data Figs. 6 and 7. Small red, yellow, and blue circles are continental earthquakes with normal faulting, strike-slip and thrust faulting focal mechanisms, respectively77. Lines associated with symbols indicate the orientation of the maximum horizontal compressional stress.

Extended Data Fig. 3 Map view of the convergent margin segments studied.

ac, Thick black lines and black rectangles indicate the trace and width (100 km), respectively, of the swath profile shown in Extended Data Fig. 7. Small red, yellow, and blue circles are continental earthquakes with normal faulting, strike-slip, and thrust faulting focal mechanisms, respectively77. Lines associated with symbols indicate the orientation of the maximum horizontal compressional stress.

Extended Data Fig. 4 Coulomb wedge model for the Andean outer wedge at 23° S.

The model is constrained by the wedge geometry (surface slope α and basal dip angle β), the coefficient of friction of the wedge material μw (0.45), and the pore fluid pressure ratio in the wedge λ (see refs. 15,16,50 for details). The open circle indicates the ideal state of basal erosion, which is given by the intersection of the compressively critical strength envelope with the straight line that represents all principal solutions for which the effective strength of the megathrust is equal to the effective strength of the wedge (μ′ = μw(1 − λ)). Basal erosion occurs during coseismic strengthening of the shallow megathrust beneath the outer wedge and constrains the dynamic strength of the fault during great earthquakes16. The average interseismic strength of the megathrust (solid circle) used for the calculation of the megathrust shear force is taken to be lower by 0.01 than the dynamic strength (open circle) of the megathrust during coseismic strengthening of the shallow megathrust.

Extended Data Fig. 5 Analytical force balance model.

a, b, Schematic illustration of the force balance model for subduction and collision zones, respectively. Fs is the shear force along the megathrust and Fg is the gravitational force. \(\bar{\rho }\) is the average density of the triangular wedge above the megathrust. P is the push of the upper plate. L is the downdip extent of the megathrust. dT is the trench depth and γ is the surface slope of the submarine part of the wedge. See Methods and refs. 2,3 for details.

Extended Data Fig. 6 Topographic swath profiles.

ae, Mean elevation (red line) ± 1 standard deviation (grey). Width of the swath profiles is 100 km. The submarine topography and subaerial topography were obtained from the ETOPO1 global relief model78 and the SRTM 90-m digital elevation model21, respectively. To calculate the MME, we first identified the maximum value of the mean elevation along each swath. We then averaged the elevation over the area (black bars) in which the elevation is within 95% of this maximum value. The uncertainty represents one standard deviation of the mean elevation within that area. Dashed horizontal lines indicate sea level. Vertical arrows indicate the position of the trench at subduction zones. Vertical exaggeration is 10.

Extended Data Fig. 7 Topographic swath profiles.

ae, Mean elevation (red line) ± 1 standard deviation (grey). Width of the swath profiles is 100 km. The submarine topography and subaerial topography were obtained from the ETOPO1 global relief model78 and the SRTM 90-m digital elevation model21, respectively. To calculate the MME, we first identified the maximum value of the mean elevation along each swath. We then averaged the elevation over the area (black bars) in which the elevation is within 95% of this maximum value. The uncertainty represents one standard deviation of the mean elevation within that area. Dashed horizontal lines indicate sea level. Vertical arrows indicate the position of the trench at subduction zones and the position of the Main Frontal Thrust for the Himalayas. Vertical exaggeration is 10.

Extended Data Table 1 Parameters of the rheological model
Extended Data Table 2 Parameters of the force balance model
Extended Data Table 3 Components of the megathrust shear force Fs

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dielforder, A., Hetzel, R. & Oncken, O. Megathrust shear force controls mountain height at convergent plate margins. Nature 582, 225–229 (2020).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing