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            Abstract
Macrophages are the first cells of the nascent immune system to emerge during embryonic development. In mice, embryonic macrophages infiltrate developing organs, where they differentiate symbiotically into tissue-resident macrophages (TRMs)1. However, our understanding of the origins and specialization of macrophages in human embryos is limited. Here we isolated CD45+ haematopoietic cells from human embryos at Carnegie stages 11 to 23 and subjected them to transcriptomic profiling by single-cell RNA sequencing, followed by functional characterization of a population of CD45+CD34+CD44+ yolkÂ sac-derived myeloid-biased progenitors (YSMPs) by single-cell culture. We also mapped macrophage heterogeneity across multiple anatomical sites and identified diverse subsets, including various types of embryonic TRM (in the head, liver, lung and skin). We further traced the specification trajectories of TRMs from either yolkÂ sac-derived primitive macrophages or YSMP-derived embryonic liver monocytes using both transcriptomic and developmental staging information, with a focus on microglia. Finally, we evaluated the molecular similarities between embryonic TRMs and their adult counterparts. Our data represent a comprehensive characterization of the spatiotemporal dynamics of early macrophage development during human embryogenesis, providing a reference for future studies of the development and function of human TRMs.




            
                
                    

    
        
            
                
                Access through your institution
            
        

        
            
                
                    Buy or subscribe
                
            

        
    



                
            


            
                
                    
                

            

            
                
                
                
                
                    
                        This is a preview of subscription content, access via your institution

                    

                    
                

                

                Access options

                


                
                    
                        
                            

    
        
            
                
                Access through your institution
            
        

        
    



                        

                        

    
        
        

        
        
            
                
                Access through your institution
            
        

        
            
                Change institution
            
        

        
        
            
                Buy or subscribe
            
        

        
    



                    
                

                
    
    Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 /Â 30Â days
cancel any time

Learn more



Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue

Learn more



Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Learn more



Prices may be subject to local taxes which are calculated during checkout



  

    
    
        
    Additional access options:

    	
            Log in
        
	
            Learn about institutional subscriptions
        
	
            Read our FAQs
        
	
            Contact customer support
        



    

                
                    Fig. 1: Transcriptomic landscape and functional characterization of CD45+ haematopoietic cells in tissues from human embryos.


Fig. 2: Developmental trajectory of YSMPs in human embryonic liver.


Fig. 3: Two distinct waves of yolk sac-derived macrophages contribute to TRM populations in human embryos.


Fig. 4: Origin and specification of microglia in human embryos.



                


                
                    
                
            

            
                Data availability

              
              Raw data from scRNA-seq analysis have been deposited in the NCBI Gene Expression OmnibusÂ (GEO) under accession numbers GSE133345 and GSE137010. Source Data for four Figures and eight Extended Data Figures are provided within the online content of this paper.

            

Code availability

              
              All data were analysed with standard programs and packages, as detailed above. Scripts can be found at https://github.com/yandgong307/human_macrophage_project.
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Extended data figures and tables

Extended Data Fig. 1 Technical information about scRNA-seq library and overview of haematopoietic clusters.
a, Graph showing distribution of UMI per cell for STRTâ€“seq data (nÂ =Â 8 biologically independent embryo samples and 1,461 cells). Threshold for final analysis was set at >10,000. b, Percentage of UMIs mapped on to ERCC and average expression of house-keeping genes. nGene: number of genes expressed, nUMI: number of UMIs expressed. c, UMAP visualization showing exclusion of non-haematopoietic cells from final analysis based on expression of PTPRC, EPCAM, KRT8 and COL1A1. d, Numbers, location and Carnegie stage information for cells used in final analysis. e, UMAP showing minimal batch effect among single cell libraries (nÂ =Â 1,231 cells). f, g, UMAP visualization of all haematopoietic cells with Carnegie stage (f) and site (g) information mapped on. h, Violin plots of average gene and UMI numbers of scRNA-seq in STRTâ€“seq data. For box plot within each violin plot, centre black lines indicate median values, boxes range from 25th to 75th percentiles, and whiskers correspond to 1.5Ã—Â IQR. i, Gene and UMI numbers of identified haematopoietic clusters. Centre black lines indicate median values, boxes range from 25th to 75th percentiles, and whiskers correspond to 1.5Ã—Â IQR. j, HeatÂ map of the top five DEGs between haematopoietic clusters. DEGs were detected using FindAllMarkers function in Seurat (one-sided Wilcoxon rank-sum test, with P value adjusted for multiple testing using Bonferroni correction), and genes with fold change >1.5 and adjusted PÂ <Â 0.05 were selected. k, GSEA plots of erythroid and myeloid signatures indicate significantly lower expression of erythroid signature in human YSMPs than in mouse EMPs (extracted from a published scRNA-seq dataset)19 (nÂ =Â 70 human YSMP cells and 118 mouse EMP cells). P value was calculated using permutation test (one-sided) based on phenotype by GSEA 3.0 software, representing statistical significance of normalized enrichment score (NES). FDR, false discovery rate. l, Gene expression of haematopoietic progenitor feature (CD34, MYB), erythroid feature (GATA1, KLF1) and myeloid feature (SPI1, MPO, LYZ, CSF1R) in human YSMPs and mouse EMPs13,19.

Source Data



Extended Data Fig. 2 Characteristics of haematopoietic progenitors in human embryos.
a, HeatÂ map showing differential regulon expression between haematopoietic progenitor clusters (YSMP, nÂ =Â 116; ErP, nÂ =Â 72; MkP, nÂ =Â 30; GMP, nÂ =Â 45; myeloblast, nÂ =Â 100; CD7lo progenitor (CD7loP), nÂ =Â 140; CD7hi progenitor (CD7hiP), nÂ =Â 104; HSPC, nÂ =Â 33) generated by SCENIC and clear sets of cell-type specific regulons that may play critical roles in the development of each progenitor population. The number of genes associated with each regulon is listed in parentheses. ErP and MkP signatures were very similar, although MkP appeared to have downregulated expression of KLF1and up-regulated expression of other platelet-related transcription factors such as TAL1 and NFIB. CD7loP had overlapping modules with myeloblast and GMP, sharing the myeloid-restricted TFEC pathways, but lacked expression of more myeloid-committed CEBPs. CD7hiP showed many signatures typical of lymphoid potential, such as the activation of LEF1 and TCF4 signals. HSPC were characterized by activation of the HOXA10 module, as well as higher levels of lymphoid-associated BCL11A when compared to YSMP. b, GSEA plots of the top two differentially expressed regulons between YSMP (nÂ =Â 116 cells) and HSPC (nÂ =Â 33 cells). GSEA analysis revealed that YSMPs highly enriched the SPR and ZFP64 regulons, while HSPCs had higher expression of the EOMES and POU3F2 modules. P value was calculated using permutation test (one-sided) based on phenotype by GSEA 3.0 software, representing the statistical significance of enrichment score. c, Volcano plot of DEGs between YSMP (nÂ =Â 116 cells) and HSPC (nÂ =Â 33 cells), with the top 10 genes for each cluster indicated. Although the regulon landscape was similar between these two groups, we identified 110 DEGs (Supplementary Table 3). There were more upregulated genes in HSPC (86, red) than in YSMP (24, blue), with HSPC expressing genes related to antigen presentation including CD74 and HLA-DRA as well as lymphoid-related genes including IGLL1. DEGs were detected using FindAllMarkers function in Seurat (one-sided Wilcoxon rank-sum test, with P value adjusted for multiple testing using Bonferroni correction), and genes with fold change >1.25 and adjusted PÂ <Â 0.05 were selected. d, Proportion changes of YSMPs and HSPCs in the haematopoietic progenitor populations of yolk sac and liver between CS11 and CS23 (nÂ =Â 8 biologically independent embryo samples). The proportion of the YSMP population peaked at CS11 before steadily decreasing, while that of the HSPC population expanded between CS17 and CS20 before reducing to about 10% at CS23. e, Proportion changes of different haematopoietic progenitor clusters from CS12 to CS23 in the liver (nÂ =Â 6 biologically independent embryo samples and 259 cells), and CS13 to CS20 in the blood (nÂ =Â 5 biologically independent embryo samples and 131 cells). f, HeatÂ map showing expression levels of the top five differentially expressed transcription factors between YSMP, ErP, MkP, myeloblast, HSPC, CD7loP and CD7hiP cells. DEGs were detected using FindAllMarkers function in Seurat (one-sided Wilcoxon rank-sum test, with P value adjusted for multiple testing using Bonferroni correction), and genes with fold change >1.5 and adjusted PÂ <Â 0.05 were selected.

Source Data



Extended Data Fig. 3 Validation of STRTâ€“seq macrophage clustering in yolk sac by 10x Genomics.
a, Quality control for 10x Genomics data by UMI and gene numbers (nÂ =Â 2 biologically independent embryo samples and 11,944 cells). The threshold for final analysis was set as gene number >1,000 per cell. b, UMAP visualization of total haematopoietic clusters generated via STRTâ€“seq with cells from yolk sac (nÂ =Â 5 biologically independent embryo samples and 238 cells) mapped on and coloured by stage information, which were extracted for further analysis. c, PCA of cells from yolk sac in STRTâ€“seq with re-clustering (left) and stage (right) information mapped on (nÂ =Â 5 biologically independent embryo samples and 238 cells). These cells were re-clustered into three clusters and annotated by gene expression profiles. The YS-Mac1 cluster mainly consisted of cells from CS11, while the YS-Mac2 cluster mainly consisted of cells from CS15. Based on these findings, we selected the 10x Genomics data from the CS11 and CS15 yolk sacs to validate our clustering. d, UMAP visualization of 10x Genomics data from CS11 and CS15 yolk sacs (nÂ =Â 2 biologically independent embryo samples and 9,565 cells). The Mac cluster was extracted for further analysis. e, PCA of Mac cluster in 10x Genomics data with re-clustering (left) and stage (right) information mapped on. f, Expression profile of top ten DEGs between YS-Mac1 and YS-Mac2 identified by STRTâ€“seq (nÂ =Â 238 cells) and projected onto the 10x Genomics data (nÂ =Â 9,565 cells). Even though 10x Genomics data have lower depth compared to STRTâ€“seq, similar expression profiles can be seen for the majority of genes. g, UMAP visualization of integrated yolk sac data from STRTâ€“seq and 10x Genomics analysis (nÂ =Â 9,803 cells). There is less overlap in the mesenchymal (Mes1 and Mes2) and epithelial (Epi1) clusters because the STRTâ€“seq data were only from CD45+ haematopoietic cells, whereas the 10x Genomics data were from all yolk sac cells. Note that YSMPs from both datasets are well merged. h, Bar plot showing putative surface markers of YSMPs. On the basis of these data, CD34 and CD44 were selected for functional assays. DEGs were identified from combined STRTâ€“seq and 10x Genomics data using FindAllMarkers function in Seurat (one-sided Wilcoxon rank-sum test with P value adjusted for multiple testing using Bonferroni correction), and surface marker genes with fold change >1.25 and adjusted PÂ <Â 0.05 were selected.
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Extended Data Fig. 4 In vitro functional assay of YSMPs.
a, Gating strategy for sorting of the YSMPs (CD45+CD34+CD44+) from a CS12 yolk sac. b, Representative morphologies of bulk cultures (100 cells per well) of negative control cells (CD45+CD34âˆ’CD44âˆ’, nÂ =Â 5 replication wells) and YSMPs (CD45+CD34+CD44+, nÂ =Â 16 replication wells) after 14 days of culture on MS5 feeder layer. nÂ =Â 3 independent experiments from one sample of CS11 yolk sac and two samples of CS 12 yolk sac for YSMPs. Scale bars, 100Â Î¼m. c, Representative FACS analysis of cells collected from bulk cultures of YSMPs. Note that the myeloid cells (CD33+) are predominant, in contrast to a small number of erythroid cells (CD235a+) detected (nÂ =Â 3 independent experiments). d, Representative morphologies of haematopoietic cells generated by a single YSMP from a CS13 yolk sac after 3 and 10 days of culture on MS5 feeder layer. In total, 184 YSMPs were individually cultured and 67 of them generated morphologically typical haematopoietic clusters. Scale bars, 100Â Î¼m. e, Representative FACS analysis of four kinds of distinct differentiation potential of single YSMPs. Cells were collected from the single-cell YSMP cultures and in total 39 wells were individually analysed. Lineage differentiation potentials are indicated in red for each clone. Mo/Mac, monocytes/macrophages (CD45+CD33+CD14+); Gr, granulocytes (CD45+CD33+CD66b+); Ery, erythrocytes (CD235a+); Mk, megakaryocytes (CD41a+).
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Extended Data Fig. 5 Developmental trajectory of YSMP in human embryonic liver.
a, PCA of YSMP, GMP, myeloblast and monocyte populations sampled from CS12 to CS17 livers using PC1 and PC2 (nÂ =Â 4 biologically independent embryo samples and 88 cells). b, PCA matrix of YSMP, GMP, myeloblast and monocyte populations. c, Monocle visualization of YSMP, GMP, myeloblast and monocyte populations sampled from CS12 to CS17 livers with the expression of the indicated genes mapped on. d, HeatÂ map showing scaled expression of branching curated genes of monocyte and neutrophil fates ordered by pseudotime. e, Six main patterns of gene expression compared between YSMP, GMP, myeloblast and monocyte clusters. The expression levels of all pattern genes (coloured lines) and the average expression of each pattern (black line) are shown. The complete list of genes can be found in Supplementary Table 5. f, g, HeatÂ maps displaying expression of monocyte specification-related surface markers (f) and transcription factors (g) along pseudotime.
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Extended Data Fig. 6 Two distinct waves of yolkÂ sac-derived macrophages contribute to TRM populations in human embryos.
a, The area coloured lavender on the UMAP visualization highlights the myeloid groups selected for re-analysis (nÂ =Â 8 biologically independent embryo samples and 1,231 cells). b, UMAP visualization of all the haematopoietic cells with re-clustered myeloid and macrophage clusters (nÂ =Â 782 myeloid cells) mapped on. c, HeatÂ map showing scaled expression of the top five DEGs for each re-clustered myeloid and macrophage population. DEGs were detected using FindAllMarkers function in Seurat (one-sided Wilcoxon rank-sum test, with P value adjusted for multiple testing using Bonferroni correction), and genes with fold change >1.5 and adjusted PÂ <Â 0.05 were selected. d, UMAP visualization of myeloid cells with stage (top) and site (bottom) information mapped on. e, HeatÂ map showing scaled expression of curated TRM signature genes from a previous mouse study24 in the re-clustered macrophage populations (nÂ =Â 450 cells: 7 Liver_Mac cells, 51 Blood_Mac cells, 71 Lung_Mac cells, 46 Skin_Mac cells, 61 YS_Mac1 cells, 29 YS_Mac2 cells, 73 Head_Mac1 cells, 38 Head_Mac2 cells, 41 Head_Mac3 cells, and 33 Head_Mac4 cells).
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Extended Data Fig. 7 Monocyte distribution and macrophage specification in human embryonic head, lung, liver and skin.
a, UMAP visualization of myeloid cells with monocytes (nÂ =Â 64 cells) coloured by site information mapped on. Bar plot shows cell numbers at different sites. b, UMAP visualization of myeloid cells with monocytes and macrophages from human embryonic head (nÂ =Â 176 cells) mapped on. Cluster (left) and stage information (right) are indicated by colours. c, UMAP visualization of myeloid cells with monocytes and macrophages from human embryonic lung (nÂ =Â 64 cells) mapped on. Cluster (top) and stage information (bottom) is indicated by colours. d, UMAP visualization of the myeloid cells with macrophages from human embryonic liver (nÂ =Â 41 cells) coloured by stage information mapped on. These cells were used to study Kupffer cell specification in situ. e, DiffusionMap visualizing differentiation trajectory of embryonic Kupffer cells with stage information (left) and pseudo-order (right) mapped on. Note that the cells also lined up in a continuum from CS12 to CS23, suggesting the gradual and sequential acquisition of TRM identity. f, HeatÂ maps showing scaled expression of DEGs (left) and transcription factors within DEGs (right) in embryonic Kupffer cells across stages with three main gene expression patterns identified. DEGs were detected using FindAllMarkers function in Seurat (one-sided Wilcoxon rank-sum test, with P value adjusted for multiple testing using Bonferroni correction), and genes with fold change >1.5 and adjusted PÂ <Â 0.05 were selected. Complete gene list can be found in Supplementary Table 9. g, DiffusionMap visualizing differentiation trajectory of embryonic Kupffer cells with expression levels of the indicated genes mapped on. Expression of C1QB, a gene associated with macrophage tissue residency, was gradually upregulated, while genes related to Kupffer cell function such as CD5L, SPIC and VCAM1 were expressed only at the end of the developmental pathway, suggesting that specialized Kupffer cells began to appear after CS17. Many of the downregulated genes are inflammation- or migration-related, such as CCR2, S100A4 and IL17RA, while the expression of residency and Kupffer cell identity genes such as CD163, TIMD4 and VSIG4 was increased. Many of the signature genes, such as SPIC and VCAM1, have been previously reported in TRMs using animal models, which confirms that these cells were moving towards a more differentiated tissue-resident state. h, DiffusionMap visualization of macrophages from human embryonic skin (nÂ =Â 49 cells) with stage information (left) and the expression levels of the indicated genes (right) mapped on.
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Extended Data Fig. 8 Characteristics of human embryonic TRMs versus conventional TRMs.
a, b, UMAP visualization of embryonic TRMs and their conventional TRM counterparts with site and stage (a) and cluster (b) information mapped on (nÂ =Â 464 cells: 20 adult head macrophages, 39 embryonic head macrophages, 97 adult liver macrophages, 9 embryonic liver macrophages, 160 adult lung macrophages, 59 embryonic lung macrophages, 37 paediatric skin macrophages, and 43 embryonic skin macrophages). We performed combined analysis including the four embryonic TRM populations in the present study (Head_Mac4, Liver_Mac, Lung_Mac, and Skin_Mac) and the corresponding conventional TRMs in adults (head, liver and lung from public scRNA-seq data)46,47,48 and children (skin). In total, five main macrophage clusters (head, liver, lung, skin and unspecified) were identified by unsupervised clustering. Two of the embryonic TRM populations (head and liver) clustered with their corresponding adult counterparts. The embryonic skin TRMs distributed into both specified and unspecified clusters, with the former cluster together with those from paediatric skin. The embryonic lung macrophages did not cluster at all with those in the adult lung, which indicated that the differentiation and specification of these TRMs had not yet occurred. c, UMAP visualizations of all TRM clusters with the expression levels of Langerhans (CD207, CD1A and CD1C), microglial (SALL1, CX3CR1 and TMEM119) and Kupffer (ID1, VCAM1 and TIMD4) cell-related genes mapped on. d, HeatÂ map showing scaled expression of the top ten DEGs between the five identified human macrophage clusters (nÂ =Â 464 cells: 58 head macrophages, 104 liver macrophages, 156 lung macrophages, 45 skin macrophages, and 101 unspecified macrophages). DEGs were detected using FindAllMarkers function in Seurat (one-sided Wilcoxon rank-sum test, with P value adjusted for multiple testing using Bonferroni correction), and genes with fold change >1.5 and adjusted PÂ <Â 0.05 were selected. Note that they were distinguished by the expression of TRM genes that have been well described in previous animal and human studies, such as CD207 for the skin, VCAM1 for the liver and P2RY12 for the head. e, HeatÂ map showing scaled expression of DEGs between the embryonic TRMs and their conventional TRM counterparts in each tissue (head, liver, lung and skin). DEGs were detected using FindAllMarkers function in Seurat (one-sided Wilcoxon rank-sum test, with P value adjusted for multiple testing using Bonferroni correction), and genes with fold change >1.5 and adjusted PÂ <Â 0.05 were selected. The complete list of genes can be found in Supplementary Table 8. Many of the upregulated genes in the embryonic TRMs are related to cell cycle or tissue development, whereas the upregulated genes in the conventional TRMs are more related to immune function. For example, in the head, the embryonic TRMs expressed the neurodevelopmental gene TMSB4X as well as the cell cycle-related gene EEF1A1, whereas conventional TRMs expressed the immune-related gene ITGAX. Embryonic skin macrophages expressed the chemokine SPP1, indicating that they are either cells in transition or have newly arrived in the niche, further supporting our prediction that skin TRM specification has just begun at this time-point.
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Supplementary Figure 1Gating strategy for FACS. a, Gating strategy for CD45+CD235a- cells for STRT-seq. b, Gating Strategy for pediatric Langerhans Cells (skin tissue resident macrophages).


Reporting Summary

Supplementary Table 1
Sample Information and cells enrolled. This table shows the Carnegie staging, anatomical location of sample extraction and cell number pre and post quality control.


Supplementary Table 2
Cell information and DEG of all clusters of STRT-seq. This table shows the differentially expressed genes between the clusters obtained by STRT-seq. A total of n = 8 biologically independent embryo samples and 1231 hematopoietic cells were included in this analysis.


Supplementary Table 3
DEG of progenitors and SCENIC binary matrix. This table shows the differentially expressed genes between all progenitor populations, as well as between specifically YSMP and HSPC. The SCENIC binary matrix is also included. This table including n = 640 progenitor cells, which consits of 116 YSMP cells, 72 ErP cells, 30 MkP cells, 45 GMP cells, 100 Myeloblast cells, 33 HSPCs, 104 CD7hiP cells and 140 CD7loP cells, for the sheet of â€œDEG of all clustersâ€�; 116 YSMPs and 33 HSPCs for the sheet of â€œDEG of between YSMP and HSPCâ€� and â€œscenic binary matrixâ€�.


Supplementary Table 4
Cell information and DEG of all clusters of 10x Genomics. This table shows the annotation and differentially expressed genes of the data obtained from CS11 and CS15 yolk sac by 10x Genomics. The sheet1, DEGs_all_clusters_10x, including n = 9803 cells which consists of 6449 cells in CS 11 YS from 10x data, 3116 cells in CS 15 YS from 10x data. The sheet2, DEGs of integrated data, including 9803 cells from 10x and 238 YS cells from STRT-seq.


Supplementary Table 5
Gene patterns of YSMP specification in liver. This table shows the genes that correspond to the patterns identified in Extended Data Fig. 5e.


Supplementary Table 6
DEG of myeloid group subclusters. This table shows the differentially expressed genes between the myeloid clusters identified in Fig. 3a, including n = 782 myeloid cells.


Supplementary Table 7
Gene patterns of head macrophages specification. This table shows the genes that correspond to the patterns identified in Fig. 4c. This table including n = 155 macrophage cells sampling in head, which consists of 9 Head_Mac0 cells, 45 Head_Mac1 cells, 29 Head_Mac2 cells, 39 Head_Mac3 cells and 33 Head_Mac4 cells.


Supplementary Table 8
TRM comparison between embryo and adult (pediatric). This table shows the differentially expressed genes between embryonic and adult/pediatric tissue resident macrophages in Extended Data Fig. 8. This table including n = 464 macrophage cells, which consists of 20 Adult head macrophage cells, 39 embryonic head macrophage cells, 97 adult liver macrophage cells, 9 embryonic macrophage cells, 160 adult lung macrophage cell, 59 embryonic lung macrophage cells, 37 child skin macrophage cells, 43 embryonic skin macrophage cells.


Supplementary Table 9
Gene patterns of liver macrophages specification. This table shows the genes that correspond to the patterns identified in Extended Data Fig. 7f, including n = 41 macrophage cells sampling in liver.
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