Abstract
Most supernova explosions accompany the death of a massive star. These explosions give birth to neutron stars and black holes, and eject solar masses of heavy elements. However, determining the mechanism of explosion has been a half-century journey of great numerical and physical complexity. Here we present the status of this theoretical quest and the physics and astrophysics upon which its resolution seems to depend. The delayed neutrino-heating mechanism is emerging as the key driver of supernova explosions, but there remain many issues to address, such as the chaos of the involved dynamics.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout







Similar content being viewed by others
References
Chandrasekhar, S. An Introduction to the Study of Stellar Structure (Dover Publications, 1939).
O’Connor, E. et al. Global comparison of core-collapse supernova simulations in spherical symmetry. J. Phys. G 45, 104001 (2018). One of the few group-to-group and code-to-code comparison papers in supernova theory.
Radice, D., Burrows, A., Vartanyan, D., Skinner, M. A. & Dolence, J. C. Electron-capture and low-mass iron-core-collapse supernovae: new neutrino-radiation-hydrodynamics simulations. Astrophys. J. 850, 43 (2017).
Burrows, A., Vartanyan, D., Dolence, J. C., Skinner, M. A. & Radice, D. Crucial physical dependencies of the core-collapse supernova mechanism. Space Sci. Rev. 214, 33 (2018).
Vartanyan, D., Burrows, A., Radice, D., Skinner, M. A. & Dolence, J. Revival of the fittest: exploding core-collapse supernovae from 12 to 25 M⊙. Mon. Not. R. Astron. Soc. 477, 3091–3108 (2018).
Vartanyan, D., Burrows, A., Radice, D., Skinner, M. A. & Dolence, J. A successful 3D core-collapse supernova explosion model. Mon. Not. R. Astron. Soc. 482, 351–369 (2019).
Burrows, A., Radice, D. & Vartanyan, D. Three-dimensional supernova explosion simulations of 9-, 10-, 11-, 12-, and 13-M⊙ stars. Mon. Not. R. Astron. Soc. 485, 3153–3168 (2019).
Nagakura, H., Burrows, A., Radice, D. & Vartanyan, D. Towards an understanding of the resolution dependence of core-collapse supernova simulations. Mon. Not. R. Astron. Soc. 490, 4622–4637 (2019).
Burrows, A. et al. The overarching framework of core-collapse supernova explosions as revealed by 3D FORNAX simulations. Mon. Not. R. Astron. Soc. 491, 2715–2735 (2020). The largest collection of full-physics 3D simulations published so far, describing the witnessed systematics with progenitor mass and initial core density structure.
Nagakura, H., Burrows, A., Radice, D. & Vartanyan, D. A systematic study of proto-neutron star convection in three-dimensional core-collapse supernova simulations. Mon. Not. R. Astron. Soc. 492, 5764–5779 (2020).
Skinner, M. A., Dolence, J. C., Burrows, A., Radice, D. & Vartanyan, D. FORNAX: a flexible code for multiphysics astrophysical simulations. Astrophys. J. Suppl. Ser. 241, 7 (2019).
Lentz, E. J. et al. Three-dimensional core-collapse supernova simulated using a 15 M⊙ progenitor. Astrophys. J. Lett. 807, L31 (2015). A comprehensive study of the hydrodynamics of a 3D core-collapse simulation.
Melson, T. et al. Neutrino-driven explosion of a 20 solar-mass star in three dimensions enabled by strange-quark contributions to neutrino–nucleon scattering. Astrophys. J. Lett. 808, L42 (2015).
Melson, T., Janka, H.-T. & Marek, A. Neutrino-driven supernova of a low-mass iron-core progenitor boosted by three-dimensional turbulent convection. Astrophys. J. 801, L24 (2015).
Janka, H.-T., Melson, T. & Summa, A. Physics of core-collapse supernovae in three dimensions: a sneak preview. Annu. Rev. Nucl. Part. Sci. 66, 341–375 (2016). A useful review of core-collapse systematics, with some insights into the possible effects of rapid rotation.
Takiwaki, T., Kotake, K. & Suwa, Y. Three-dimensional simulations of rapidly rotating core-collapse supernovae: finding a neutrino-powered explosion aided by non-axisymmetric flows. Mon. Not. R. Astron. Soc. 461, L112–L116 (2016).
Müller, B., Melson, T., Heger, A. & Janka, H.-T. Supernova simulations from a 3D progenitor model – impact of perturbations and evolution of explosion properties. Mon. Not. R. Astron. Soc. 472, 491–513 (2017). An important paper on the potential effects of initial perturbations on supernova explosions.
O’Connor, E. P. & Couch, S. M. Exploring fundamentally three-dimensional phenomena in high-fidelity simulations of core-collapse supernovae. Astrophys. J. 865, 81 (2018).
Kuroda, T., Kotake, K., Takiwaki, T. & Thielemann, F.-K. A full general relativistic neutrino radiation-hydrodynamics simulation of a collapsing very massive star and the formation of a black hole. Mon. Not. R. Astron. Soc. 477, L80–L84 (2018). An important study using a fully general-relativistic hydrodynamic and transport approach.
Glas, R., Just, O., Janka, H. T. & Obergaulinger, M. Three-dimensional core-collapse supernova simulations with multidimensional neutrino transport compared to the ray-by-ray-plus approximation. Astrophys. J. 873, 45 (2019).
Kuroda, T., Arcones, A., Takiwaki, T. & Kotake, K. Magnetorotational explosion of a massive star supported by neutrino heating in general relativistic three-dimensional simulations. Astrophys. J. 896, 102 (2020).
Jones, S. et al. Do electron-capture supernovae make neutron stars? First multidimensional hydrodynamic simulations of the oxygen deflagration. Astron. Astrophys. 593, A72 (2016).
Kirsebom, O. S. et al. Discovery of an exceptionally strong β-decay transition of 20F and implications for the fate of intermediate-mass stars. Phys. Rev. Lett. 123, 262701 (2019).
Jones, S. et al. Remnants and ejecta of thermonuclear electron-capture supernovae. Constraining oxygen-neon deflagrations in high-density white dwarfs. Astron. Astrophys. 622, A74 (2019).
Zha, S., Leung, S.-C., Suzuki, T. & Nomoto, K. Evolution of ONeMg core in super-AGB stars toward electron-capture supernovae: effects of updated electron-capture rate. Astrophys. J. 886, 22 (2019).
Burrows, A., Dessart, L., Livne, E., Ott, C. D. & Murphy, J. Simulations of magnetically driven supernova and hypernova explosions in the context of rapid rotation. Astrophys. J. 664, 416–434 (2007). A magneto-radiation-hydrodynamic study of magnetic jet-driven explosions for rapidly rotating cores.
Mösta, P. et al. A large-scale dynamo and magnetoturbulence in rapidly rotating core-collapse supernovae. Nature 528, 376–379 (2015).
Bethe, H. A. Supernova mechanisms. Rev. Mod. Phys. 62, 801–866 (1990). An early qualitative discussion of the salient aspects of the delayed neutrino-driven explosion mechanism.
Woosley, S. & Janka, T. The physics of core-collapse supernovae. Nat. Phys. 1, 147–154 (2005).
Janka, H.-T. Explosion mechanisms of core-collapse supernovae. Annu. Rev. Nucl. Part. Sci. 62, 407–451 (2012). An important review of general core-collapse supernova physics.
Burrows, A. Perspectives on core-collapse supernova theory. Rev. Mod. Phys. 85, 245–261 (2013).
Nomoto, K. Evolution of 8–10 solar mass stars toward electron capture supernovae. I – Formation of electron-degenerate O + Ne + Mg cores. Astrophys. J. 277, 791–805 (1984).
Kitaura, F. S., Janka, H.-T. & Hillebrandt, W. Explosions of O-Ne-Mg cores, the Crab supernova, and subluminous type II-P supernovae. Astron. Astrophys. 450, 345–350 (2006).
Burrows, A., Hayes, J. & Fryxell, B. A. On the nature of core-collapse supernova explosions. Astrophys. J. 450, 830 (1995). One of the early papers detailing the role of convection and turbulence in the supernova explosion mechanism.
Foglizzo, T., Scheck, L. & Janka, H. T. Neutrino-driven convection versus advection in core-collapse supernovae. Astrophys. J. 652, 1436–1450 (2006).
Chatzopoulos, E., Graziani, C. & Couch, S. M. Characterizing the convective velocity fields in massive stars. Astrophys. J. 795, 92 (2014).
Couch, S. M. & Ott, C. D. The role of turbulence in neutrino-driven core-collapse supernova explosions. Astrophys. J. 799, 5 (2015).
Müller, B. & Janka, H.-T. Non-radial instabilities and progenitor asphericities in core-collapse supernovae. Mon. Not. R. Astron. Soc. 448, 2141–2174 (2015).
Murphy, J. W. & Burrows, A. Criteria for core-collapse supernova explosions by the neutrino mechanism. Astrophys. J. 688, 1159–1175 (2008).
Müller, B. & Varma, V. A 3D simulation of a neutrino-driven supernova explosion aided by convection and magnetic fields. Mon. Not. R. Astron. Soc. 498, L109–L113 (2020).
Burrows, A. & Sawyer, R. F. Effects of correlations on neutrino opacities in nuclear matter. Phys. Rev. C 58, 554–571 (1998).
Burrows, A. & Sawyer, R. F. Many-body corrections to charged-current neutrino absorption rates in nuclear matter. Phys. Rev. C 59, 510–514 (1999).
Reddy, S., Prakash, M., Lattimer, J. M. & Pons, J. A. Effects of strong and electromagnetic correlations on neutrino interactions in dense matter. Phys. Rev. C 59, 2888–2918 (1999).
Burrows, A., Reddy, S. & Thompson, T. A. Neutrino opacities in nuclear matter. Nucl. Phys. A 777, 356–394 (2006).
Roberts, L. F., Reddy, S. & Shen, G. Medium modification of the charged-current neutrino opacity and its implications. Phys. Rev. C 86, 065803 (2012).
Fischer, T. et al. Neutrino signal from proto-neutron star evolution: effects of opacities from charged-current–neutrino interactions and inverse neutron decay. Phys. Rev. C 101, 025804 (2020).
Roberts, L. F. & Reddy, S. Charged current neutrino interactions in hot and dense matter. Phys. Rev. C 95, 045807 (2017).
Horowitz, C. J., Caballero, O. L., Lin, Z., O’Connor, E. & Schwenk, A. Neutrino–nucleon scattering in supernova matter from the virial expansion. Phys. Rev. C 95, 025801 (2017).
Langanke, K. et al. Electron capture rates on nuclei and implications for stellar core collapse. Phys. Rev. Lett. 90, 241102 (2003).
Juodagalvis, A., Langanke, K., Hix, W. R., Martínez-Pinedo, G. & Sampaio, J. M. Improved estimate of electron capture rates on nuclei during stellar core collapse. Nucl. Phys. A 848, 454–478 (2010).
Lentz, E. J., Mezzacappa, A., Messer, O. E. B., Hix, W. R. & Bruenn, S. W. Interplay of neutrino opacities in core-collapse supernova simulations. Astrophys. J. 760, 94 (2012).
Mezzacappa, A. & Bruenn, S. W. Stellar core collapse: a Boltzmann treatment of neutrino–electron scattering. Astrophys. J. 410, 740 (1993).
Bruenn, S. W. et al. CHIMERA: a massively parallel code for core-collapse supernova simulations. Astrophys. J. Suppl. Ser. 248, 11 (2020).
Dolence, J. C., Burrows, A., Murphy, J. W. & Nordhaus, J. Dimensional dependence of the hydrodynamics of core-collapse supernovae. Astrophys. J. 765, 110 (2013).
Vartanyan, D., Burrows, A. & Radice, D. Temporal and angular variations of 3D core-collapse supernova emissions and their physical correlations. Mon. Not. R. Astron. Soc. 489, 2227–2246 (2019).
Couch, S. M., Chatzopoulos, E., Arnett, W. D. & Timmes, F. X. The three-dimensional evolution to core collapse of a massive star. Astrophys. J. 808, L21 (2015). A benchmark study of 3D stellar evolution just prior to core collapse.
Chatzopoulos, E., Couch, S. M., Arnett, W. D. & Timmes, F. X. Convective properties of rotating two-dimensional core-collapse supernova progenitors. Astrophys. J. 822, 61 (2016).
Müller, B. et al. Three-dimensional simulations of neutrino-driven core-collapse supernovae from low-mass single and binary star progenitors. Mon. Not. R. Astron. Soc. 484, 3307–3324 (2019).
Keil, W., Janka, H.-T. & Mueller, E. Ledoux convection in protoneutron stars—a clue to supernova nucleosynthesis? Astrophys. J. 473, L111 (1996).
Dessart, L., Burrows, A., Livne, E. & Ott, C. D. Multidimensional radiation/hydrodynamic simulations of proto-neutron star convection. Astrophys. J. 645, 534–550 (2006).
Sukhbold, T., Woosley, S. E. & Heger, A. A high-resolution study of presupernova core structure. Astrophys. J. 860, 93 (2018). An important source of 1D massive star progenitor models using a state-of-the-art stellar evolution code.
O’Connor, E. & Ott, C. D. Black hole formation in failing core-collapse supernovae. Astrophys. J. 730, 70 (2011).
Ebinger, K. et al. PUSHing core-collapse supernovae to explosions in spherical symmetry. IV. Explodability, remnant properties, and nucleosynthesis yields of low-metallicity stars. Astrophys. J. 888, 91 (2020).
Müller, B. The dynamics of neutrino-driven supernova explosions after shock revival in 2D and 3D. Mon. Not. R. Astron. Soc. 453, 287–310 (2015).
Hanke, F., Marek, A., Müller, B. & Janka, H.-T. Is strong SASI activity the key to successful neutrino-driven supernova explosions? Astrophys. J. 755, 138 (2012).
Hanke, F., Müller, B., Wongwathanarat, A., Marek, A. & Janka, H.-T. SASI activity in three-dimensional neutrino-hydrodynamics simulations of supernova cores. Astrophys. J. 770, 66 (2013).
Couch, S. M. On the impact of three dimensions in simulations of neutrino-driven core-collapse supernova explosions. Astrophys. J. 775, 35 (2013).
Summa, A. et al. Progenitor-dependent explosion dynamics in self-consistent, axisymmetric simulations of neutrino-driven core-collapse supernovae. Astrophys. J. 825, 6 (2016).
Summa, A., Janka, H.-T., Melson, T. & Marek, A. Rotation-supported neutrino-driven supernova explosions in three dimensions and the critical luminosity condition. Astrophys. J. 852, 28 (2018).
Sukhbold, T., Ertl, T., Woosley, S. E., Brown, J. M. & Janka, H.-T. Core-collapse supernovae from 9 to 120 solar masses based on neutrino-powered explosions. Astrophys. J. 821, 38 (2016).
Ertl, T., Woosley, S. E., Sukhbold, T. & Janka, H. T. The explosion of helium stars evolved with mass loss. Astrophys. J. 890, 51 (2020).
Özel, F., Psaltis, D., Narayan, R. & Santos Villarreal, A. On the mass distribution and birth masses of neutron stars. Astrophys. J. 757, 55 (2012).
Pruet, J., Hoffman, R. D., Woosley, S. E., Janka, H. T. & Buras, R. Nucleosynthesis in early supernova winds. II. The role of neutrinos. Astrophys. J. 644, 1028–1039 (2006).
Fröhlich, C. et al. Neutrino-induced nucleosynthesis of A > 64 nuclei: the νp process. Phys. Rev. Lett. 96, 142502 (2006).
Fischer, T., Whitehouse, S. C., Mezzacappa, A., Thielemann, F.-K. & Liebendörfer, M. Protoneutron star evolution and the neutrino-driven wind in general relativistic neutrino radiation hydrodynamics simulations. Astron. Astrophys. 517, A80 (2010).
Thielemann, F.-K., Hashimoto, M.-A. & Nomoto, K. Explosive nucleosynthesis in SN 1987A. II. Composition, radioactivities, and the neutron star mass. Astrophys. J. 349, 222 (1990).
Tamborra, I. et al. Self-sustained asymmetry of lepton-number emission: a new phenomenon during the supernova shock-accretion phase in three dimensions. Astrophys. J. 792, 96 (2014).
Glas, R., Janka, H. T., Melson, T., Stockinger, G. & Just, O. Effects of LESA in three-dimensional supernova simulations with multidimensional and ray-by-ray-plus neutrino transport. Astrophys. J. 881, 36 (2019).
Arzoumanian, Z., Chernoff, D. F. & Cordes, J. M. The velocity distribution of isolated radio pulsars. Astrophys. J. 568, 289–301 (2002).
Faucher-Giguère, C.-A. & Kaspi, V. M. Birth and evolution of isolated radio pulsars. Astrophys. J. 643, 332–355 (2006).
Cordes, J. M., Romani, R. W. & Lundgren, S. C. The Guitar nebula: a bow shock from a slow-spin, high-velocity neutron star. Nature 362, 133–135 (1993).
Burrows, A. & Hayes, J. Pulsar recoil and gravitational radiation due to asymmetrical stellar collapse and explosion. Phys. Rev. Lett. 76, 352–355 (1996).
Scheck, L., Plewa, T., Janka, H. T., Kifonidis, K. & Müller, E. Pulsar recoil by large-scale anisotropies in supernova explosions. Phys. Rev. Lett. 92, 011103 (2004). A summary of general theory and results concerning the recoil mechanism of pulsar kick speeds.
Scheck, L., Kifonidis, K., Janka, H. T. & Müller, E. Multidimensional supernova simulations with approximative neutrino transport. I. Neutron star kicks and the anisotropy of neutrino-driven explosions in two spatial dimensions. Astron. Astrophys. 457, 963–986 (2006).
Wongwathanarat, A., Janka, H.-T. & Müller, E. Hydrodynamical neutron star kicks in three dimensions. Astrophys. J. 725, L106–L110 (2010).
Nordhaus, J., Brandt, T. D., Burrows, A. & Almgren, A. The hydrodynamic origin of neutron star kicks. Mon. Not. R. Astron. Soc. 423, 1805–1812 (2012).
Wongwathanarat, A., Janka, H. T. & Müller, E. Three-dimensional neutrino-driven supernovae: neutron star kicks, spins, and asymmetric ejection of nucleosynthesis products. Astron. Astrophys. 552, A126 (2013).
Nakamura, K., Takiwaki, T. & Kotake, K. Long-term simulations of multi-dimensional core-collapse supernovae: implications for neutron star kicks. Publ. Astron. Soc. Jpn. 71, 98 (2019).
Burrows, A., Livne, E., Dessart, L., Ott, C. D. & Murphy, J. Features of the acoustic mechanism of core-collapse supernova explosions. Astrophys. J. 655, 416–433 (2007).
Burrows, A. The birth of neutron stars and black holes. Phys. Today 40, 28–37 (1987).
Timmes, F. X., Woosley, S. E. & Weaver, T. A. The neutron star and black hole initial mass function. Astrophys. J. 457, 834 (1996).
Chan, C., Müller, B., Heger, A., Pakmor, R. & Springel, V. Black hole formation and fallback during the supernova explosion of a 40 M⊙ star. Astrophys. J. Lett. 852, 19 (2018).
Woosley, S., Sukhbold, T. & Janka, H. T. The birth function for black holes and neutron stars in close binaries. Astrophys. J. 896, 56 (2020).
Farr, W. M. et al. The mass distribution of stellar-mass black holes. Astrophys. J. 741, 103 (2011).
Seadrow, S., Burrows, A., Vartanyan, D., Radice, D. & Skinner, M. A. Neutrino signals of core-collapse supernovae in underground detectors. Mon. Not. R. Astron. Soc. 480, 4710–4731 (2018).
Cerdá-Durán, P., DeBrye, N., Aloy, M. A., Font, J. A. & Obergaulinger, M. Gravitational wave signatures in black hole forming core collapse. Astrophys. J. 779, L18 (2013).
Burrows, A. Speculations on the fizzled collapse of a massive star. Astrophys. J. 300, 488 (1986).
Nadyozhin, D. K. Some secondary indications of gravitational collapse. Astrophys. Space Sci. 69, 115–125 (1980).
Lovegrove, E. & Woosley, S. E. Very low energy supernovae from neutrino mass loss. Astrophys. J. 769, 109 (2013).
Blondin, J. M. & Mezzacappa, A. Pulsar spins from an instability in the accretion shock of supernovae. Nature 445, 58–60 (2007).
Rantsiou, E., Burrows, A., Nordhaus, J. & Almgren, A. Induced rotation in three-dimensional simulations of core-collapse supernovae: implications for pulsar spins. Astrophys. J. 732, 57 (2011).
Stockinger, G. et al. Three-dimensional models of core-collapse supernovae from low-mass progenitors with implications for Crab. Mon. Not. R. Astron. Soc. 496, 2039–2084 (2020).
Morozova, V., Piro, A. L. & Valenti, S. Measuring the progenitor masses and dense circumstellar material of Type II supernovae. Astrophys. J. 858, 15 (2018).
Martinez, L. & Bersten, M. C. Mass discrepancy analysis for a select sample of Type II-plateau supernovae. Astron. Astrophys. 629, A124 (2019).
Pumo, M. L. & Zampieri, L. Radiation-hydrodynamical modeling of core-collapse supernovae: light curves and the evolution of photospheric velocity and temperature. Astrophys. J. 741, 41 (2011).
Pumo, M. L. et al. Radiation-hydrodynamical modelling of underluminous Type II plateau supernovae. Mon. Not. R. Astron. Soc. 464, 3013–3020 (2017).
Utrobin, V. P. Nonthermal ionization and excitation in Type IIb supernova 1993J. Astron. Astrophys. 306, 219 (1996).
Utrobin, V. P. & Chugai, N. N. Type IIP supernova 2008in: the explosion of a normal red supergiant. Astron. Astrophys. 555, A145 (2013).
Utrobin, V. P. & Chugai, N. N. Luminous Type IIP SN 2013ej with high-velocity 56Ni ejecta. Mon. Not. R. Astron. Soc. 472, 5004–5010 (2017).
Utrobin, V. P. & Chugai, N. N. Resolving the puzzle of type IIP SN 2016X. Mon. Not. R. Astron. Soc. 490, 2042–2049 (2019).
Acknowledgements
We thank J. Insley and S. Rizzi of the Argonne National Laboratory and the Argonne Leadership Computing Facility (ALCF) for considerable support with the 3D graphics. We also acknowledge ongoing collaborations with H. Nagakura, D. Radice, J. Dolence, A. Skinner and M. Coleman. We acknowledge E. O’Connor regarding the equation of state, G. Martínez-Pinedo concerning electron capture on heavy nuclei, T. Sukhbold and S. Woosley for providing details concerning the initial models, and T. Thompson and T. Wang regarding inelastic scattering. Funding was provided by the US Department of Energy (DOE) Office of Science and the Office of Advanced Scientific Computing Research via the Scientific Discovery through Advanced Computing (SciDAC4) programme and Grant DE-SC0018297 (subaward 00009650) and by the US NSF under grants AST-1714267 and PHY-1804048 (the latter via the Max-Planck/Princeton Center (MPPC) for Plasma Physics). Awards of computer time were provided by the INCITE programme using resources of the ALCF, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357, under a Blue Waters sustained-petascale computing project, supported by the National Science Foundation (awards OCI-0725070 and ACI-1238993) and the state of Illinois, under a PRAC allocation from the National Science Foundation (#OAC-1809073), and under award #TG-AST170045 to the resource Stampede2 in the Extreme Science and Engineering Discovery Environment (XSEDE, ACI-1548562). Finally, we employed computational resources provided by the TIGRESS high-performance computer centre at Princeton University, which is jointly supported by the Princeton Institute for Computational Science and Engineering (PICSciE) and the Princeton University Office of Information Technology, and acknowledge their continuing allocation at the National Energy Research Scientific Computing Center (NERSC), supported by the DOE Office of Science under contract DE-AC03-76SF00098.
Author information
Authors and Affiliations
Contributions
A.B. organized the paper and wrote most of it. D.V. conducted the 2D calculations. Otherwise, the authors contributed equally to the document.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature thanks Friedrich-Karl Thielemann and Stan Woosley for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Burrows, A., Vartanyan, D. Core-collapse supernova explosion theory. Nature 589, 29–39 (2021). https://doi.org/10.1038/s41586-020-03059-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41586-020-03059-w
This article is cited by
-
Unmasking the shape of stellar explosions
Nature Astronomy (2023)
-
An aspherical distribution for the explosive burning ash of core-collapse supernovae
Nature Astronomy (2023)
-
The origin of elements: the need for UV spectra
Experimental Astronomy (2023)
-
Origin of the elements
The Astronomy and Astrophysics Review (2023)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.