Concise asymmetric synthesis of (−)-bilobalide


The Ginkgo biloba metabolite bilobalide is widely ingested by humans but its effect on the mammalian central nervous system is not fully understood1,2,3,4. Antagonism of γ-aminobutyric acid A receptors (GABAARs) by bilobalide has been linked to the rescue of cognitive deficits in mouse models of Down syndrome5. A lack of convulsant activity coupled with neuroprotective effects have led some to postulate an alternative, unidentified target4; however, steric congestion and the instability of bilobalide1,2,6 have prevented pull-down of biological targets other than the GABAΑRs. A concise and flexible synthesis of bilobalide would facilitate the development of probes for the identification of potential new targets, analogues with differential selectivity between insect and human GABAΑRs, and stabilized analogues with an enhanced serum half-life7. Here we exploit the unusual reactivity of bilobalide to enable a late-stage deep oxidation that symmetrizes the molecular core and enables oxidation states to be embedded in the starting materials. The same overall strategy may be applicable to G. biloba congeners, including the ginkgolides—some of which are glycine-receptor-selective antagonists8. A chemical synthesis of bilobalide should facilitate the investigation of its biological effects and its therapeutic potential.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Congeners and design considerations.
Fig. 2: Synthesis of (−)-bilobalide.
Fig. 3: Late-stage, regio- and stereoselective oxidation of C10 over C1.

Data availability

All data is available in the text of this Article or its Supplementary Information. Structural parameters are available from the Cambridge Crystallographic Data Centre (CCDC) under the following reference numbers: (−)-5, CCDC 1911131; (−)-8, CCDC 1911128; 12, CCDC 1911129; and 16c, CCDC 1911127.


  1. 1.

    DeKosky, S. T. et al. Ginkgo biloba for prevention of dementia: a randomized controlled trial. J. Am. Med. Assoc. 300, 2253–2262 (2008).

    CAS  Article  Google Scholar 

  2. 2.

    Wada, K. et al. Studies on the constitution of edible medicinal plants. Isolation and identification of 4-O-methyl-pyridoxine toxic principle from the seed of Ginkgo biloba. Chem. Pharm. Bull.  36, 1779–1782 (1988).

    CAS  Article  Google Scholar 

  3. 3.

    Clarke, T. C., Black, L. I., Stussman, B. J., Barnes, P. M. & Nahin, R. L. Trends in the Use of Complementary Health Approaches Among Adults: United States, 2002–2012.National Health Statistics Reports, no. 79 (US Department of Health and Human Services, 2015).

  4. 4.

    Kiewert, C. et al. Role of GABAergic antagonism in the neuroprotective effects of bilobalide. Brain Res. 1128, 70–78 (2007).

    ADS  CAS  Article  Google Scholar 

  5. 5.

    Fernandez, F. et al. Pharmacotherapy for cognitive impairment in a mouse model of Down syndrome. Nat. Neurosci. 10, 411–413 (2007).

    CAS  Article  Google Scholar 

  6. 6.

    van Beek, T. A. & Taylor, L. T. Sample preparation of standardized extracts of Ginkgo biloba by supercritical fluid extraction. Phytochem. Anal. 7, 185–191 (1996).

    Article  Google Scholar 

  7. 7.

    Lynch, J. W. & Chen, X. Subunit-specific potentiation of recombinant glycine receptors by NV-31, a bilobalide-derived compound. Neurosci. Lett. 435, 147–151 (2008).

    CAS  Article  Google Scholar 

  8. 8.

    Ivic, L. et al. Terpene trilactones from Ginkgo biloba are antagonists of cortical glycine and GABAA receptors. J. Biol. Chem. 278, 49279–49285 (2003).

    CAS  Article  Google Scholar 

  9. 9.

    Huang, S. H. et al. Bilobalide, a sesquiterpene trilactone from Ginkgo biloba, is an antagonist at recombinant α1β2γ2L. Eur. J. Pharm. 464, 1–8 (2003).

    CAS  Google Scholar 

  10. 10.

    Thompson, A. J., McGonigle, I., Duke, R., Johnston, G. A. R. & Lummis, S. C. R. A single amino acid determines the toxicity of Ginkgo biloba extracts. FASEB J. 26, 1884–1891 (2012).

    CAS  Article  Google Scholar 

  11. 11.

    Nakanishi, K. et al. Structure of bilobalide, a rare tert-butyl containing sesquiterpenoid related to the C20-ginkgolides. J. Am. Chem. Soc. 93, 3544–3546 (1971).

    CAS  Article  Google Scholar 

  12. 12.

    Strømgaard, K. & Nakanishi, K. Chemistry and biology of terpene trilactones from Ginkgo biloba. Angew. Chem. Int. Ed. 43, 1640–1658 (2004).

    Article  Google Scholar 

  13. 13.

    Vale, S. Subarachnoid haemorrhage associated with Ginkgo biloba. Lancet 352, 36 (1998).

    CAS  Article  Google Scholar 

  14. 14.

    Ng, C. C., Duke, R. K., Hinton, T. & Johnston, G. A. R. Effects of bilobalide, ginkgolide B and picrotoxinin on GABAA receptor modulation by structurally diverse positive modulators. Eur. J. Pharm. 806, 83–90 (2017).

    CAS  Google Scholar 

  15. 15.

    Weinges, K., Hepp, M., Huber-Patz, U., Rodewald, H. & Irngartinger, H. Chemistry of ginkgolides. 1. 10-acetyl-1-methoxycarbonyl-2,3,14,15,16-pentanorginkgolide-A, an intermediate for the synthesis of bilobalide. Liebigs Ann. Chem. 1057–1066 (1986).

  16. 16.

    Harrison, T., Myers, P. L. & Pattenden, G. Radical cyclisations onto 2(5H)-furanone and maleate electrophore. An approach to the spiro- and linear-fused γ-lactone ring systems found in the ginkgolides. Tetrahedron 45, 5247–5262 (1989).

    CAS  Article  Google Scholar 

  17. 17.

    Emsermann, J. & Opatz, T. Photochemical approaches to the bilobalide core. Eur. J. Org. Chem. 3362–3372 (2017).

  18. 18.

    Corey, E. J. & Su, W. G. Total synthesis of a C15 ginkgolide, (±)-bilobalide. J. Am. Chem. Soc. 109, 7534–7536 (1987).

    CAS  Article  Google Scholar 

  19. 19.

    Corey, E. J. & Su, W. G. Enantioselective total synthesis of Bilobalide, a C15 ginkgolide. Tetrahedr. Lett. 29, 3423–3426 (1988).

    CAS  Article  Google Scholar 

  20. 20.

    Crimmins, M. T., Jung, D. K. & Gray, J. L. Synthetic studies on the ginkgolides: total synthesis of (±)-bilobalide. J. Am. Chem. Soc. 115, 3146–3155 (1993).

    CAS  Article  Google Scholar 

  21. 21.

    Fernández-Ibáñez, M. Á., Maciá, B., Alonso, D. A. & Pastor, I. M. Recent advances in the catalytic enantioselective Reformatsky reaction. Eur. J. Org. Chem. 7028–7034 (2013).

  22. 22.

    Wolf, C. & Moskowitz, M. Bisoxazolidine-catalyzed enantioselective Reformatsky reaction. J. Org. Chem. 76, 6372–6376 (2011).

    CAS  Article  Google Scholar 

  23. 23.

    Crossley, S. W. M., Obradors, C., Martinez, R. M. & Shenvi, R. A. Mn-. Fe-, and Co-catalyzed radical hydrofunctionalizations of olefins. Chem. Rev. 116, 8912–9000 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    Obradors, C., Martinez, R. M. & Shenvi, R. A. Ph. (i-PrO)SiH2: a remarkable reductant for metal-catalyzed hydrogen atom transfers. J. Am. Chem. Soc. 138, 4962–4971 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    Maier, G., Pfriem, S., Schäfer, U. & Matusch, R. Tetra-tert-butyltetrahedrane. Angew. Chem. Int. Edn Engl. 17, 520–521 (1978).

    Article  Google Scholar 

  26. 26.

    Fernández|González, D. F., Brand, J. P. & Waser, J. Ethynyl-1,2-benziodoxol-3(1H)-one (EBX): an exceptional reagent for the ethynylation of keto, cyano, and nitro esters. Chem. Eur. J. 16, 9457–9461 (2010).

    Article  Google Scholar 

  27. 27.

    Keck, G. E. & Wagner, C. A. The first directed reduction of β-alkoxy ketones to anti-1,3-diol monoethers: identification of spectator and director alkoxy group. Org. Lett. 2, 2307–2309 (2000).

    CAS  Article  Google Scholar 

  28. 28.

    Julia, M., Saint-Jalmes, V. P. & Verpeaux, J. N. Oxidation of carbanions with lithium tert-butyl peroxide. Synlett 1993, 233–234 (1993).

    Article  Google Scholar 

  29. 29.

    Weinges, K., Hepp, M., Huber-Patz, U. & Irngartinger, H. Chemistry of ginkgolides. III. Bilobalide/isobilobalide. Structure determination by X-ray analysis. Liebigs Ann. Chem. 1079–1085 (1986).

  30. 30.

    Byun, K., Mo, Y. & Gao, J. New insight on the origin of the unusual acidity of Meldrum’s Acid from ab initio and combined QM/MM simulation study. J. Am. Chem. Soc. 123, 3974–3979 (2001).

    CAS  Article  Google Scholar 

Download references


We thank P. Baran and K. Engle for conversations, and the Engle laboratory for donations of chiral phosphoric acids, including (−)-B. A. Rheingold, C. Moore and M. Gembicky are acknowledged for X-ray crystallographic analysis. We thank J. Chen and B. Sanchez in the Scripps Research Automated Synthesis Facility for purification assistance and for analysis of chiral non-racemic compounds. Support was provided by the National Institutes of Health (R35 GM122606) and the Uehara Memorial Foundation; additional support was provided by Eli Lilly, Novartis, Bristol-Myers Squibb, Amgen, Boehringer-Ingelheim, the Sloan Foundation and the Baxter Foundation.

Author information




R.A.S., M.A.B., R.M.D. and M.O. conceived the project. R.A.S. directed the research, and R.A.S., M.O., M.A.B. and R.M.D. composed the manuscript and the Supporting Information section. M.O., M.A.B. and R.M.D. completed a first-generation synthesis of rac-1. M.A.B. conceived and developed the catalytic asymmetric synthesis of (−)-7. M.A.B. observed, designed and optimized the parallel kinetic resolution of rac-9. M.O. and R.M.D. screened and optimized conditions for the alkyne oxidation of rac-12 and (+)-12. R.M.D. developed the hydration of rac-8 and (−)-8 and optimized scale-up campaigns of rac-5 and (−)-5. M.A.B. and R.M.D. conducted large-scale syntheses of rac-5 and (−)-5. M.A.B. and R.M.D. investigated the rearrangement of rac-5 and (−)-5 to 16ac. M.O. discovered an oxidation of rac-5 to rac-1. M.A.B. investigated the rearrangement of rac-5 and (−)-5 to 16b and 16c, and discovered conditions that were utilized for the oxidation of rac-5 and (−)-5 to rac-1 and (−)-1; M.A.B. and R.M.D. both optimized this process.

Corresponding authors

Correspondence to Masaki Ohtawa or Ryan A. Shenvi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

The Supplementary Information contains detailed procedures, additional supporting figures, as well as the required spectral data for publication

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baker, M.A., Demoret, R.M., Ohtawa, M. et al. Concise asymmetric synthesis of (−)-bilobalide. Nature 575, 643–646 (2019).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing