Axionic charge-density wave in the Weyl semimetal (TaSe4)2I

Abstract

An axion insulator is a correlated topological phase, which is predicted to arise from the formation of a charge-density wave in a Weyl semimetal1,2—that is, a material in which electrons behave as massless chiral fermions. The accompanying sliding mode in the charge-density-wave phase—the phason—is an axion3,4 and is expected to cause anomalous magnetoelectric transport effects. However, this axionic charge-density wave has not yet been experimentally detected. Here we report the observation of a large positive contribution to the magnetoconductance in the sliding mode of the charge-density-wave Weyl semimetal (TaSe4)2I for collinear electric and magnetic fields. The positive contribution to the magnetoconductance originates from the anomalous axionic contribution of the chiral anomaly to the phason current, and is locked to the parallel alignment of the electric and magnetic fields. By rotating the magnetic field, we show that the angular dependence of the magnetoconductance is consistent with the anomalous transport of an axionic charge-density wave. Our results show that it is possible to find experimental evidence for axions in strongly correlated topological condensed matter systems, which have so far been elusive in any other context.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Charge-density wave in the Weyl semimetal (TaSe4)2I.
Fig. 2: Propagation of the charge-density wave in (TaSe4)2I.
Fig. 3: Evidence for an axionic phason in (TaSe4)2I.
Fig. 4: Angular dependence of the axial current.

Data availability

All data generated or analysed during this study are available within the paper and its Extended Data files. Reasonable requests for further source data should be addressed to the corresponding author.

Change history

  • 15 May 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. 1.

    Wang, Z. & Zhang, S.-C. Chiral anomaly, charge density waves, and axion strings from Weyl semimetals. Phys. Rev. B 87, 161107 (2013).

    ADS  Article  CAS  Google Scholar 

  2. 2.

    Roy, B. & Sau, J. D. Magnetic catalysis and axionic charge density wave in Weyl semimetals. Phys. Rev. B 92, 125141 (2015).

    ADS  Article  CAS  Google Scholar 

  3. 3.

    Peccei, R. D. & Quinn, H. R. CP conservation in the presence of pseudoparticles. Phys. Rev. Lett. 38, 1440–1443 (1977).

    ADS  CAS  Article  Google Scholar 

  4. 4.

    Wilczek, F. Two applications of axion electrodynamics. Phys. Rev. Lett. 58, 1799–1802 (1987).

    ADS  CAS  PubMed  Article  Google Scholar 

  5. 5.

    Li, R., Wang, J., Qi, X.-L. & Zhang, S.-C. Dynamical axion field in topological magnetic insulators. Nat. Phys. 6, 284–288 (2010).

    CAS  Article  Google Scholar 

  6. 6.

    Qi, X. L., Hughes, T. L. & Zhang, S. C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008).

    ADS  Article  CAS  Google Scholar 

  7. 7.

    Yu, R. et al. Quantized anomalous Hall effect in magnetic topological insulators. Science 329, 61–64 (2010).

    ADS  CAS  PubMed  Article  Google Scholar 

  8. 8.

    Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    ADS  CAS  PubMed  Article  Google Scholar 

  9. 9.

    Checkelsky, J. G. et al. Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator. Nat. Phys. 10, 731–736 (2014).

    CAS  Article  Google Scholar 

  10. 10.

    Tse, W. K. & MacDonald, H. Giant magneto-optical Kerr effect and universal Faraday effect in thin-film topological insulators. Phys. Rev. Lett. 105, 057401 (2010).

    ADS  PubMed  Article  CAS  Google Scholar 

  11. 11.

    Maciejko, J., Qi, X.-L., Drew, H. D. & Zhang, S.-C. Topological quantization in units of the fine structure constant. Phys. Rev. Lett. 105, 166803 (2010).

    ADS  PubMed  Article  CAS  Google Scholar 

  12. 12.

    Wang, J., Lian, B., Qi, X.-L. & Zhang, S.-C. Quantized topological magnetoelectric effect of the zero-plateau quantum anomalous Hall state. Phys. Rev. B 92, 081107 (2015).

    ADS  Article  CAS  Google Scholar 

  13. 13.

    Morimoto, T., Furusaki, A. & Nagaosa, N. Topological magnetoelectric effects in thin films of topological insulators. Phys. Rev. B 92, 085113 (2015).

    ADS  Article  CAS  Google Scholar 

  14. 14.

    Essin, A. M., Moore, J. E. & Vanderbilt, D. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Phys. Rev. Lett. 102, 146805 (2009).

    ADS  PubMed  Article  CAS  Google Scholar 

  15. 15.

    Mogi, M. et al. A magnetic heterostructure of topological insulators as a candidate for an axion insulator. Nat. Mater. 16, 516 (2017).

    ADS  CAS  PubMed  Article  Google Scholar 

  16. 16.

    Grauer, S. et al. Scaling of the quantum anomalous Hall effect as an indicator of axion electrodynamics. Phys. Rev. Lett. 118, 246801 (2017).

    ADS  CAS  PubMed  Article  Google Scholar 

  17. 17.

    Xiao, D. et al. Realization of the axion insulator state in quantum anomalous Hall sandwich heterostructures. Phys. Rev. Lett. 120, 056801 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  18. 18.

    Wei, H., Chao, S.-P. & Aji, V. Excitonic phases from Weyl semimetals. Phys. Rev. Lett. 109, 196403 (2012).

    ADS  PubMed  Article  CAS  Google Scholar 

  19. 19.

    Laubach, M., Platt, C., Thomale, R., Neupert, T. & Rachel, S. Density wave instabilities and surface state evolution in interacting Weyl semimetals. Phys. Rev. B 94, 241102 (2016).

    ADS  Article  Google Scholar 

  20. 20.

    You, Y., Cho, G. Y. & Hughes, T. L. Response properties of axion insulators and Weyl semimetals driven by screw dislocations and dynamical axion strings. Phys. Rev. B 94, 085102 (2016).

    ADS  Article  CAS  Google Scholar 

  21. 21.

    Trescher, M., Bergholtz, E. J., Udagawa, M. & Knolle, J. Charge density wave instabilities of type-II Weyl semimetals in a strong magnetic field. Phys. Rev. B 96, 201101 (2017).

    ADS  Article  Google Scholar 

  22. 22.

    Lu, L. et al. Experimental observation of Weyl points. Science 349, 622–624 (2015).

    ADS  MathSciNet  CAS  PubMed  MATH  Article  Google Scholar 

  23. 23.

    Bradlyn, B. et al. Beyond Dirac and Weyl fermions: unconventional quasiparticles in conventional crystals. Science 353, aaf5037 (2016).

    MathSciNet  PubMed  MATH  Article  CAS  Google Scholar 

  24. 24.

    Bradlyn, B. et al. Topological quantum chemistry. Nature 547, 298–305 (2017).

    ADS  CAS  PubMed  Article  Google Scholar 

  25. 25.

    Xiong, J. et al. Evidence for the chiral anomaly in the Dirac semimetal Na3Bi. Science 350, 413–416 (2015).

    ADS  MathSciNet  CAS  PubMed  MATH  Article  Google Scholar 

  26. 26.

    Grüner, G. The dynamics of charge-density waves. Rev. Mod. Phys. 60, 1129–1181 (1988).

    ADS  Article  Google Scholar 

  27. 27.

    Fukuyama, H. & Lee, P. A. Dynamics of the charge-density wave. I. Impurity pinning in a single chain. Phys. Rev. B 17, 535–541 (1978).

    ADS  CAS  Article  Google Scholar 

  28. 28.

    Lee, P. A. & Rice, T. M. Electric field depinning of charge density waves. Phys. Rev. B 19, 3970–3980 (1979).

    ADS  CAS  Article  Google Scholar 

  29. 29.

    Juyal, A., Agarwal, A. & Mukhopadhyay, S. Negative longitudinal magnetoresistance in the density wave phase of Y2Ir2O7. Phys. Rev. Lett. 120, 096801 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  30. 30.

    Shi, W. et al. A charge-density-wave Weyl semimetal. Preprint at https://arxiv.org/abs/1909.04037 (2019).

  31. 31.

    Tournier-Colletta, C. et al. Electronic instability in a zero-gap semiconductor: the charge-density wave in (TaSe4)2I. Phys. Rev. Lett. 110, 236401 (2013).

    ADS  CAS  PubMed  Article  Google Scholar 

  32. 32.

    Wang, Z. Z. et al. Charge density wave transport in (TaSe4)2I. Solid State Commun. 46, 325–328 (1983).

    ADS  CAS  Article  Google Scholar 

  33. 33.

    Forró, L., Cooper, J. R., Jánossy, A. & Maki, M. Hall effect in the charge density wave system (TaSe4)2I. Solid State Commun. 62, 715–718 (1987).

    ADS  Article  Google Scholar 

  34. 34.

    Anderson, P. W. Basic Notions of Condensed Matter Physics (CRC Press, 2018).

  35. 35.

    Lee, P. A., Rice, T. M. & Anderson, P. W. Conductivity from charge or spin density waves. Solid State Commun. 14, 703–709 (1974).

    ADS  Article  Google Scholar 

  36. 36.

    Burkov, A. A. Chiral anomaly and diffusive magnetotransport in Weyl metals. Phys. Rev. Lett. 113, 247203 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  37. 37.

    Nielsen, H. B. & Ninomiya, M. The Adler–Bell–Jackiw anomaly and Weyl fermions in a crystal. Phys. Lett. B 130, 389–396 (1983).

    ADS  MathSciNet  Article  Google Scholar 

  38. 38.

    Son, D. T. & Spivak, B. Z. Chiral anomaly and classical negative magnetoresistance of Weyl metals. Phys. Rev. B 88, 104412 (2013).

    ADS  Article  CAS  Google Scholar 

  39. 39.

    Bardeen, J. Tunneling theory of charge-density-wave depinning. Phys. Rev. Lett. 45, 1978 (1980).

    ADS  CAS  Article  Google Scholar 

  40. 40.

    Fujishita, H., Sato, M. & Hoshino, S. X-ray diffraction study of the quasi-one-dimensional conductors (MSe4)2I (M=Ta and Nb). J. Phys. C 18, 1105 (1985).

    ADS  CAS  Article  Google Scholar 

  41. 41.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    ADS  CAS  Article  Google Scholar 

  42. 42.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Mostofi, A. A. et al. An updated version of wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 185, 2309–2310 (2014).

    ADS  CAS  MATH  Article  Google Scholar 

  44. 44.

    Hirschberger, M. et al. The chiral anomaly and thermopower of Weyl fermions in the half-Heusler GdPtBi. Nat. Mater. 15, 1161 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  45. 45.

    Gooth, J. et al. Experimental signatures of the mixed axial–gravitational anomaly in the Weyl semimetal NbP. Nature 547, 324–327 (2017).

    ADS  CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

C.F. acknowledges the research grant DFG-RSF (NI616 22/1; ‘Contribution of topological states to the thermoelectric properties of Weyl semimetals’) and SFB 1143. First-principles calculations were funded by the US Department of Energy through grant number DE-SC0016239. B.A.B. acknowledges additional support from the US National Science Foundation EAGER through grant number NOA-AWD1004957, Simons Investigator grants ONR-N00014-14-1-0330 and NSF-MRSEC DMR-1420541, the Packard Foundation and the Schmidt Fund for Innovative Research. Z.W. acknowledges support from the National Thousand-Young-Talents Program, the CAS Pioneer Hundred Talents Program and the National Natural Science Foundation of China.

Author information

Affiliations

Authors

Contributions

B.A.B., C.F. and J.G. conceived the experiment. N.K., C. Shekhar and Y.Q. synthesized the single-crystal bulk samples. J.G., S.H. and C. Schindler fabricated the electrical-transport devices. J.G. carried out the transport measurements with the help of S.S.H. and C. Schindler. J.G. and C. Shekhar analysed the data. J.N., Z.W. and Y.S. calculated the band structure. B.B. and B.A.B. provided the theoretical background of the work. All authors contributed to the interpretation of the data and to the writing of the manuscript.

Corresponding author

Correspondence to J. Gooth.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Jian Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 (TaSe4)2I crystal structure, growth, device and transport characterization.

a, Crystal structure of (TaSe4)2I. b, Sketch of the growth principle. A temperature gradient (temperatures T1 > T2) is imposed on an evacuated quartz ampule, which contains (TaSe4)2I powder at T1. The evaporated (TaSe4)2I diffuses towards the area with temperature T2 and condenses into single crystals. c, Optical micrograph of the as-grown (TaSe4)2I crystals. d, Distribution of Weyl points in momentum (k) space of chirality ±χ. e, Scanning electron microscope image of a crystal. f, Typical device used for electrical-transport measurements. g, h, Single-particle resistance of samples B, C, D and E. The electrical resistance R, normalized by R0 = R(300 K) (g) and its logarithmic derivative (h) as a function of T−1, where T is the temperature. i, Single-particle gaps of all (TaSe4)2I samples investigated. The error denotes the fitting error of 1σ. The dotted line displays the mean value of all samples.

Extended Data Fig. 2 Hall measurements and Fermi level position of sample D.

a, Device used for the Hall measurements in a magnetic field B. b, Single-particle longitudinal resistivity ρ versus temperature T. ci, Single-particle Hall resistance RH at 125 K (c), 155 K (d), 185 K (e), 215 K (f), 245 K (g) and 300 K (h). The measured data (black) are fitted linearly (red) to extract the carrier concentration n (i). The error bars denote the error of the linear fits to 1σ. j, Estimated Fermi level position below Tc. ΔE is the single-particle gap, obtained from Extended Data Fig. 1.

Extended Data Fig. 3 VI characteristics of sample A at zero magnetic field and selected temperatures.

aj, VI characteristics at 80 K (a), 105 K (b), 130 K (c), 155 K (d), 180 K (e), 205 K (f), 230 K (g), 255 K (h), 280 K (i) and 305 K (j). These data were used to calculate the differential resistance dV/dI curves in Fig. 2d. At temperatures below 180 K, we start to observe nonlinearity. This nonlinearity becomes even more apparent in the dV/dI curves shown in Fig. 2d, where a deviation from the linear behaviour is already seen at 230 K.

Extended Data Fig. 4 Fitting the nonlinear VI characteristics of sample A at zero magnetic field.

ag, VI characteristics (black line), a linear fit Isp(V) = mV (green line) and a fit with the Bardeen model6 I(V) = Isp(V) + ICDW(V) (red line), where ICDW(V) = I0(V − VT)exp(−V0/V) at 80 K (a), 105 K (b), 130 K (c), 155 K (d), 180 K (e), 205 K (f) and 230 K (g). h, i, m (h) and the threshold voltage Vth extracted from Fig. 2 were employed to extract the fit parameters. j, I0. k, V0. The error bars in hk denote the error of the fits to 1σ.

Extended Data Fig. 5 Dependence of the switching voltage of sample A on the contact separation.

a, b, VI characteristics (a) and differential resistance dV/dI (b) at 80 K and zero magnetic field B for various contact lengths L on sample A. ce, Second derivatives d2V/dI2 used to estimate the threshold voltages Vth shown in Fig. 2g. We define Vth as the voltage at which the last data point of d2V/dI2 (marked by the vertical line) touches the zero baseline before the global minimum upon enhancing V.

Extended Data Fig. 6 Testing the origin of the nonlinear VI curves of sample A.

a, The increasing Joule heating power Pth = Vth2/[dV/dI(Vth)] at the threshold, as a function of increasing T. b, The linear dependence of Vth on L shown at 80 K (the line denotes a linear fit) demonstrate that the observed effects are intrinsic to the (TaSe4)2I crystals.

Extended Data Fig. 7 Symmetry and temperature dependence of the VI characteristics in the magnetic field of sample A.

a, b, VI characteristics (a) and differential resistance dV/dI (b) at 80 K for sample A in magnetic fields perpendicular to the applied current, but opposite to the magnetic field in Fig. 3. c, d, Corresponding VI characteristics (c) and dV/dI (d) in magnetic fields parallel to the applied current. eg, VI characteristics at 80 K (e), 105 K (f) and 130 K (g).

Extended Data Fig. 8 Bias-dependent data of samples A and B at 105 K.

The two samples have similar contact separation. a, b, VI characteristics (a) and differential resistance dV/dI (b) at various magnetic fields B applied perpendicular to the current direction (IB) for sample A. c, Magnetic field dependence of the magnetoconductance Δ(dI/dV)B = (dI/dV)B − (dI/dV)0 T at 105 K and at various voltages V for sample A. d, e, Corresponding VI characteristics (d) and dV/dI (e) at various magnetic fields B applied perpendicular to the current direction (IB). f, Magnetic field dependence of the magnetoconductance Δ(dI/dV)B for sample B.

Extended Data Fig. 9 Fitting parameters of the second-order polynomial fits \({{\boldsymbol{d}}}_{{\bf{1}}}{{\boldsymbol{B}}}_{{\boldsymbol{\parallel }}}{\boldsymbol{+}}{{\boldsymbol{d}}}_{{\bf{2}}}{{\boldsymbol{B}}}_{{\boldsymbol{\parallel }}}^{{\bf{2}}}\) to the experimental longitudinal Δ(dI/dV)B shown in Fig. 3g

a, d1. b, d2.

Extended Data Fig. 10 Homogeneity test of the current distribution on sample E.

a, First configuration. I is injected from contacts 1 and 6 and V is measured between contacts 2 and 3. be, VI characteristics (b, d) and dV/dI (c, e) at 80 K and at various magnetic fields B for IB (b, c) and for IB (d, e). f, g, Δ(dI/dV)B = (dI/dV)B − (dI/dV)0 T for IB (f) and for IB (g). h, Second configuration. V is measured between contacts 4 and 5. in, Corresponding characteristics (i, k) and dV/dI (j, l) for IB (i, j) and for IB (k, l). m, n, Δ(dI/dV)B = (dI/dV)B − (dI/dV)0 T for IB (m) and for IB (n).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gooth, J., Bradlyn, B., Honnali, S. et al. Axionic charge-density wave in the Weyl semimetal (TaSe4)2I. Nature 575, 315–319 (2019). https://doi.org/10.1038/s41586-019-1630-4

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.