Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations

Abstract

Electronic band structures dictate the mechanical, optical and electrical properties of crystalline solids. Their experimental determination is therefore crucial for technological applications. Although the spectral distribution in energy bands is routinely measured by various techniques1, it is more difficult to access the topological properties of band structures such as the quantized Berry phase, γ, which is a gauge-invariant geometrical phase accumulated by the wavefunction along an adiabatic cycle2. In graphene, the quantized Berry phase γ = π accumulated by massless relativistic electrons along cyclotron orbits is evidenced by the anomalous quantum Hall effect4,5. It is usually thought that measuring the Berry phase requires the application of external electromagnetic fields to force the charged particles along closed trajectories3. Contradicting this belief, here we demonstrate that the Berry phase of graphene can be measured in the absence of any external magnetic field. We observe edge dislocations in oscillations of the charge density ρ (Friedel oscillations) that are formed at hydrogen atoms chemisorbed on graphene. Following Nye and Berry6 in describing these topological defects as phase singularities of complex fields, we show that the number of additional wavefronts in the dislocation is a real-space measure of the Berry phase of graphene. Because the electronic dispersion relation can also be determined from Friedel oscillations7, our study establishes the charge density as a powerful observable with which to determine both the dispersion relation and topological properties of wavefunctions. This could have profound consequences for the study of the band-structure topology of relativistic and gapped phases in solids.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Dislocations in Friedel oscillations near a H atom.
Fig. 2: Theoretical description of the dislocations in Friedel oscillations.
Fig. 3: Friedel oscillations around adatoms situated on different sublattices.

Data availability

The datasets generated and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. 1.

    Sólyom, J. Methods for calculating and measuring the band structure. In Fundamentals of the Physics of Solids Vol. 2 (ed. Sólyom J.) 151–194 (Springer, 2009).

  2. 2.

    Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57 (1984).

    ADS  MathSciNet  Article  Google Scholar 

  3. 3.

    Xiao, D. Chang, M.-C., Niu, D. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    CAS  ADS  MathSciNet  Article  Google Scholar 

  4. 4.

    Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    CAS  ADS  Article  Google Scholar 

  5. 5.

    Zhang, T., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    CAS  ADS  Article  Google Scholar 

  6. 6.

    Nye, J. F. & Berry, M. V. Dislocations in wave trains. Proc. R. Soc. Lond. A 336, 165–190 (1974).

    ADS  MathSciNet  Article  Google Scholar 

  7. 7.

    Crommie, M. F., Lutz, C. P. & Eigler, D. M. Imaging standing waves in a two-dimensional electron gas. Nature 363, 524–527 (1993).

    CAS  ADS  Article  Google Scholar 

  8. 8.

    Friedel, J. The distribution of electrons round impurities in monovalent metals. Philos. Mag. 43, 153–189 (1952).

    CAS  Article  Google Scholar 

  9. 9.

    Zala, G., Narozhny, B. N. & Aleiner, I. L. Interaction corrections at intermediate temperatures: longitudinal conductivity and kinetic equation. Phys. Rev. B 64, 214204 (2001).

    ADS  Article  Google Scholar 

  10. 10.

    Ruderman, M. A. & Kittel, C. Indirect exchange coupling of nuclear magnetic moments by conduction electrons. Phys. Rev. 96, 99–102 (1954).

    CAS  ADS  Article  Google Scholar 

  11. 11.

    Kasuya, T. Theory of metallic ferro- and antiferromagnetism on Zener’s model. Prog. Theor. Phys. 16, 45–57 (1956).

    ADS  Article  Google Scholar 

  12. 12.

    Yosida, K. Magnetic properties of Cu-Mn alloys. Phys. Rev. 106, 893–898 (1957).

    ADS  Article  Google Scholar 

  13. 13.

    Rutter, G. M. et al. Scattering and interference in epitaxial graphene. Science 317, 219–222 (2007).

    CAS  ADS  Article  Google Scholar 

  14. 14.

    Mallet, P. et al. Role of pseudospin in quasiparticle interferences in epitaxial graphene probed by high-resolution scanning tunneling microscopy. Phys. Rev. B 86, 045444 (2012).

    ADS  Article  Google Scholar 

  15. 15.

    Brihuega, I. et al. Quasiparticle chirality in epitaxial graphene probed at the nanometer scale. Phys. Rev. Lett. 101, 206802 (2008).

    CAS  ADS  Article  Google Scholar 

  16. 16.

    González-Herrero, H. et al. Atomic-scale control of graphene magnetism by using hydrogen atoms. Science 352, 437–441 (2016).

    ADS  Article  Google Scholar 

  17. 17.

    Sprunger, P. T., Petersen, L., Plummer, E. W., Lægsgaard, E. & Besenbasher, F. Giant Friedel oscillations on the beryllium(0001) surface. Science 275, 1764–1767 (1997).

    CAS  Google Scholar 

  18. 18.

    Cheianov, V. V. & Fal’ko, V. I. Friedel oscillations, impurity scattering, and temperature dependence of resistivity in graphene. Phys. Rev. Lett. 97, 226801 (2006).

    ADS  Article  Google Scholar 

  19. 19.

    Dutreix, C. & Katsnelson, M. I. Friedel oscillations at the surfaces of rhombohedral N-layer graphene. Phys. Rev. B 93, 035413 (2016).

    ADS  Article  Google Scholar 

  20. 20.

    Katsnelson, M. I. Graphene: Carbon in Two Dimensions (Cambridge Univ. Press, 2012).

  21. 21.

    Berry, M. V., Chambers, R. G., Large, M. D., Upstill, C. & Walmsley, J. C. Wavefront dislocations in the Aharonov–Bohm effect and its water wave analogue. Eur. J. Phys. 1, 154–162 (1980).

    MathSciNet  Article  Google Scholar 

  22. 22.

    Berry, M. V. Making waves in physics. Nature 403, 21 (2000).

    CAS  ADS  Article  Google Scholar 

  23. 23.

    Dennis, M. R., O’Holleran, K. & Padgett, M. J. Singular optics: optical vortices and polarization singularities. In Progress in Optics Vol. 53 (ed. Wolf, E.) 293–363 (Elsevier, 2009).

  24. 24.

    Rafayelyan, M. & Brasselet, E. Bragg–Berry mirrors: reflective broadband q-plates. Opt. Lett. 41, 3972–3975 (2016).

    CAS  ADS  Article  Google Scholar 

  25. 25.

    Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C 6, 1181–1203 (1973).

    CAS  ADS  Article  Google Scholar 

  26. 26.

    Feynman, R. P. Application of quantum mechanics to liquid helium. In Progress in Low Temperature Physics Vol. 1 (ed. Gorter, C. J.) 17–53 (Elsevier, 1955).

  27. 27.

    Abrikosov, A. A. On the magnetic properties of superconductors of the second group. Sov. Phys. JETP 5, 1174–1182 (1957).

    Google Scholar 

  28. 28.

    Lieb, E. H. Two theorems on the Hubbard model. Phys. Rev. Lett. 62, 1201–1204 (1989).

    CAS  ADS  MathSciNet  Article  Google Scholar 

  29. 29.

    Dutreix, C. & Delplace, P. Geometrical phase shift in Friedel oscillations. Phys. Rev. B 96, 195207 (2017).

    ADS  Article  Google Scholar 

  30. 30.

    Varchon, F., Mallet, P., Magaud, L. & Veuillen, J.-Y. Rotational disorder in few-layer graphene films on \({\rm{6H \mbox{-} SiC}}\left({\rm{000}}\bar{{\rm{1}}}\right)\): a scanning tunneling microscopy study. Phys. Rev. B 77, 165415 (2008).

    ADS  Article  Google Scholar 

  31. 31.

    Hass, J. et al. Why multilayer graphene on \({\rm{4H \mbox{-} SiC}}\left({\rm{000}}\bar{{\rm{1}}}\right)\) behaves like a single sheet of graphene. Phys. Rev. Lett. 62, 1201–1204 (2008).

    Google Scholar 

  32. 32.

    Hornekær, L. et al. Clustering of chemisorbed H(D) atoms on the graphite (0001) surface due to preferential sticking. Phys. Rev. Lett. 97, 186102 (2006).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank P. Mallet, J.-Y. Veuillen and J. M. Gómez Rodriguez for experimental support. H.G.-H. and I.B. were supported by AEI and FEDER under project MAT2016-80907-P (AEI/FEDER, UE), by the Fundación Ramón Areces and by the Comunidad de Madrid NMAT2D-CM programme under grant S2018/NMT-4511. M.I.K. acknowledges the support of NWO via the Spinoza Prize.

Author information

Affiliations

Authors

Contributions

H.G.-H. and I.B. performed the experiments. V.T.R. discovered the dislocations, which were explained with the theory derived by C.D. M.I.K. and C.C. gave technical support and conceptual advice. C.D. and V.T.R. wrote the manuscript with the input of all authors. V.T.R. coordinated the collaboration.

Corresponding authors

Correspondence to C. Dutreix or V. T. Renard.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Peer review information Nature thanks An-Ping Li and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Supplementary information

Supplementary Information

This file contains Supplementary Figures S1 to S10

Video 1: Locking of pseudospin rotation on STM tip position.

This video illustrates the pseudospin rotation in intervalley back-scattering and its winding as the STM tip circles around a H adatom. The STM tip is symbolized by the purple dot. Momentums are symbolized by grey arrows, the pseudospin of the incident electron in valley K is symbolized by a blue arrow and the pseudospin of the reflected electron in the K´ valley is symbolized by a red arrow.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dutreix, C., González-Herrero, H., Brihuega, I. et al. Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574, 219–222 (2019). https://doi.org/10.1038/s41586-019-1613-5

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing