Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Surface erosion events controlled the evolution of plate tectonics on Earth

Abstract

Plate tectonics is among the most important geological processes on Earth, but its emergence and evolution remain unclear. Here we extrapolate models of present-day plate tectonics to the past and propose that since about three billion years ago the rise of continents and the accumulation of sediments at continental edges and in trenches has provided lubrication for the stabilization of subduction and has been crucial in the development of plate tectonics on Earth. We conclude that the two largest surface erosion and subduction lubrication events occurred after the Palaeoproterozoic Huronian global glaciations (2.45 to 2.2 billion years ago), leading to the formation of the Columbia supercontinent, and after the Neoproterozoic ‘snowball’ Earth glaciations (0.75 to 0.63 billion years ago). The snowball Earth event followed the ‘boring billion’—a period of reduced plate tectonic activity about 1.75 to 0.75 billion years ago that was probably caused by a shortfall of sediments in trenches—and it kick-started the modern episode of active plate tectonics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global and regional models showing the effect of sediments on contemporary subduction.
Fig. 2: Geological proxies for subduction and plate tectonic activity.
Fig. 3: Geodynamic interpretation of geochemical proxies for recycling of sediments.
Fig. 4: Plume-induced retreating subduction generating a regional ‘plate tectonics’ cell48.
Fig. 5: Summary of the factors that control the emergence and evolution of plate tectonics on Earth.

Similar content being viewed by others

Data and code availability

The executable file, as well as all input and output files, used in the calculations of the global plate velocities are available on request.

References

  1. Hawkesworth, C. J. & Brown, M. Earth dynamics and the development of plate tectonics. Phil. Trans. R. Soc. A 376, 20180228 (2018).

    Article  ADS  Google Scholar 

  2. Stern, R. J. The evolution of plate tectonics. Phil. Trans. R. Soc. A 376, 20170406 (2018).

    Article  ADS  Google Scholar 

  3. Herzberg, C., Condie, K. & Korenaga, J. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292, 79–88 (2010).

    Article  CAS  ADS  Google Scholar 

  4. Cawood, P. A. & Hawkesworth, C. J. Earth’s middle age. Geology 42, 503–506 (2014).

    Article  ADS  Google Scholar 

  5. Brown, M. & Johnson, T. Secular change in metamorphism and the onset of global plate tectonics. Am. Mineral. 103, 181–196 (2018).

    Article  ADS  Google Scholar 

  6. Spencer, C. J. et al. A Palaeoproterozoic tectono-magmatic lull as a potential trigger for the supercontinent cycle. Nat. Geosci. 11, 97–101 (2018).

    Article  CAS  ADS  Google Scholar 

  7. Ricard, Y. & Vigny, C. Mantle dynamics with induced plate tectonics. J. Geophys. Res. 94, 17543–17559 (1989).

    Article  ADS  Google Scholar 

  8. Zhong, S. & Gurnis, M. Viscous flow model of a subduction zone with a faulted lithosphere: long and short wavelength topography, gravity and geoid. Geophys. Res. Lett. 19, 1891–1894 (1992).

    Article  ADS  Google Scholar 

  9. Tackley, P. J. Self-consistent generation of tectonic plates in three-dimensional mantle convection. Earth Planet. Sci. Lett. 157, 9–22 (1998).

    Article  CAS  ADS  Google Scholar 

  10. Moresi, L. & Solomatov, V. Mantle convection with a brittle lithosphere: thoughts on the global tectonic style of the Earth and Venus. Geophys. J. Int. 133, 669–682 (1998).

    Article  ADS  Google Scholar 

  11. Bercovici, D. The generation of plate tectonics from mantle convection. Earth Planet. Sci. Lett. 205, 107–121 (2003).

    Article  CAS  ADS  Google Scholar 

  12. O’Neill, C. et al. Episodic Precambrian subduction. Earth Planet. Sci. Lett. 262, 552–562 (2007).

    Article  ADS  Google Scholar 

  13. van Hunen, J. & van den Berg, A. P. Plate tectonics on the early Earth: limitations imposed by strength and buoyancy of subducted lithosphere. Lithos 103, 217–235 (2008).

    Article  ADS  Google Scholar 

  14. Scholz, C. H. Earthquakes and friction laws. Nature 391, 37–42 (1998).

    Article  CAS  ADS  Google Scholar 

  15. Byerlee, J. Friction of rocks. Pure Appl. Geophys. 116, 615–626 (1978).

    Article  ADS  Google Scholar 

  16. Shreve, R. T. & Cloos, M. Dynamics of sediment subduction, melange formation, and prism accretion. J. Geophys. Res. 91, 10229–10245 (1986).

    Article  ADS  Google Scholar 

  17. Lamb, S. & Davis, P. Cenozoic climate change as a possible cause for the rise of the Andes. Nature 425, 792–797 (2003).

    Article  CAS  ADS  Google Scholar 

  18. Sobolev, S. V. & Babeyko, A. Y. What drives orogeny in the Andes? Geology 33, 617–620 (2005).

    Article  ADS  Google Scholar 

  19. Sobolev, S. V. & Muldashev, I. Modelling seismic cycles of great megathrust earthquakes across the scales with focus at postseismic phase. Geochem. Geophys. Geosyst. 18, 4387–4408 (2017).

    Article  ADS  Google Scholar 

  20. Behr, W. M. & Becker, T. W. Sediment control on subduction plate speeds. Earth Planet. Sci. Lett. 502, 166–173 (2018).

    Article  CAS  ADS  Google Scholar 

  21. Gurnis, M., Hall, C. & Lavier, L. Evolving force balance during incipient subduction. Geochem. Geophys. Geosyst. 5, Q07001 (2004).

    Article  ADS  Google Scholar 

  22. Baes, M. & Sobolev, S. V. Mantle flow as a trigger for subduction initiation: a missing element of the Wilson Cycle concept. Geochem. Geophys. Geosyst. 18, 4469–4486 (2017).

    Article  ADS  Google Scholar 

  23. Sizova, E. et al. Generation of felsic crust in the Archean: a geodynamic modeling perspective. Precambr. Res. 271, 198–224 (2015).

    Article  CAS  ADS  Google Scholar 

  24. Cawood, P. A. et al. Geological archive of the onset of plate tectonics. Phil. Trans. R. Soc. A 376, 20170405 (2018).

    Article  ADS  Google Scholar 

  25. Bradley, D. C. Passive margins through earth history. Earth Sci. Rev. 91, 1–26 (2008).

    Article  ADS  Google Scholar 

  26. Condie, K. C. A planet in transition: the onset of plate tectonics on Earth between 3 and 2 Ga? Geosci. Front. 9, 51–60 (2018).

    Article  CAS  Google Scholar 

  27. Li, Z. X. et al. Decoding Earth’s rhythms: modulation of supercontinent cycles by longer superocean episodes. Precambr. Res. 323, 1–5 (2019).

    Article  CAS  ADS  Google Scholar 

  28. Dal Zilio, L. et al. The role of deep subduction in supercontinent breakup. Tectonophysics 746, 312–324 (2018).

    Article  ADS  Google Scholar 

  29. Shields, G. A. A normalised seawater strontium isotope curve: possible implications for Neoproterozoic-Cambrian weathering rates and the further oxygenation of the Earth. eEarth 2, 35–42 (2007).

    Article  CAS  ADS  Google Scholar 

  30. Cawood, P. A., Hawkesworth, C. J. & Dhuime, B. The continental record and the generation of continental crust. Geol. Soc. Am. Bull. 125, 14–32 (2013).

    Article  CAS  ADS  Google Scholar 

  31. Spencer, C. J., Roberts, N. M. W. & Santosh, M. Growth, destruction, and preservation of Earth’s continental crust. Earth Sci. Rev. 172, 87–106 (2017).

    Article  CAS  Google Scholar 

  32. Flament, N., Coltice, N. & Rey, P. F. A case for late-Archaean continental emergence from thermal evolution models and hypsometry. Earth Planet. Sci. Lett. 275, 326–336 (2008).

    Article  CAS  ADS  Google Scholar 

  33. Korenaga, J., Planavsky, N. J. & Evans, D. A. D. Global water cycle and the coevolution of the Earth’s interior and surface environment. Phil. Trans. R. Soc. A 375, 20150393 (2017).

    Article  ADS  Google Scholar 

  34. Bindeman, I. N. et al. Rapid emergence of subaerial landmasses and onset of a modern hydrologic cycle 2.5 billion years ago. Nature 557, 545–548 (2018).

    Article  CAS  ADS  Google Scholar 

  35. Hoffman, P. F. & Schrag, D. P. The snowball Earth hypothesis: testing the limits of global change. Terra Nova 14, 129–155 (2002).

    Article  CAS  ADS  Google Scholar 

  36. Keller, C. B. et al. Neoproterozoic glacial origin of the Great Unconformity. Proc. Natl Acad. Sci. USA 116, 1136–1145 (2019).

    Article  CAS  ADS  Google Scholar 

  37. Bleeker, W. The late Archean record: a puzzle in ca. 35 pieces. Lithos 71, 99–134 (2003).

    Article  CAS  ADS  Google Scholar 

  38. Domeier, M. & Torsvik, T. H. Plate tectonics in the late Paleozoic. Geosci. Front. 5, 303–350 (2014).

    Article  Google Scholar 

  39. Matthews, K. J. et al. Global plate boundary evolution and kinematics since the late Paleozoic. Global Planet. Change 146, 226–250 (2016).

    Article  ADS  Google Scholar 

  40. Torsvik, T. H., Smethurst, M. A., Burke, K. & Steinberger, B. Large igneous provinces generated from the margins of the large low-velocity provinces in the deep mantle. Geophys. J. Int. 167, 1447–1460 (2006).

    Article  ADS  Google Scholar 

  41. Tan, E., Leng, W., Zhong, S. & Gurnis, M. On the location of plumes and lateral movement of thermochemical structures with high bulk modulus in the 3-D compressible mantle. Geochem. Geophys. Geosyst. 12, Q07005 (2011).

    Article  ADS  Google Scholar 

  42. Steinberger, B. & Torsvik, T. H. A geodynamic model of plumes from the margins of Large Low Shear Velocity Provinces. Geochem. Geophys. Geosyst. 13, Q01W09 (2012).

    Article  Google Scholar 

  43. Dhuime, B. et al. A change in the geodynamics of continental growth 3 billion years ago. Science 335, 1334–1336 (2012).

    Article  CAS  ADS  Google Scholar 

  44. Clift, P. & Vannucchi, P. Controls on tectonic accretion versus erosion in subduction zones: implications for the origin and recycling of the continental crust. Rev. Geophys. 42, RG2001 (2004).

    Article  ADS  Google Scholar 

  45. Johnson, T. E. et al. Delamination and recycling of Archaean crust caused by gravitational instabilities. Nat. Geosci. 7, 47–52 (2014).

    Article  CAS  ADS  Google Scholar 

  46. Rozel, A. B. et al. Continental crust formation on early Earth controlled by intrusive magmatism. Nature 545, 332–335 (2017).

    Article  CAS  ADS  Google Scholar 

  47. Arndt, N. & Davaille, A. Episodic Earth evolution. Tectonophysics 609, 661–674 (2013).

    Article  CAS  ADS  Google Scholar 

  48. Gerya, T. V. et al. Plate tectonics on the Earth triggered by plume-induced subduction initiation. Nature 527, 221–225 (2015).

    Article  CAS  ADS  Google Scholar 

  49. O’Neill, C. et al. Impact-driven subduction on the Hadean Earth. Nat. Geosci. 10, 793–797 (2017).

    Article  ADS  Google Scholar 

  50. Rey, P. F., Coltice, N. & Flament, N. Spreading continents kick-started plate tectonics. Nature 513, 405–408 (2014).

    Article  CAS  ADS  Google Scholar 

  51. Heuret, A., Lallemand, S., Funiciello, S., Piromallo, C. & Faccenna, C. Physical characteristics of subduction interface type seismogenic zones revisited. Geochem. Geophys. Geosyst. 12, Q01004 (2011).

    Article  ADS  Google Scholar 

  52. England, P. & Wilkins, C. A. simple analytical approximation to the temperature structure in subduction zones. Geophys. J. Int. 159, 1138–1154 (2004).

    Article  ADS  Google Scholar 

  53. Syracuse, E. M., van Keken, P. E. & Abers, G. A. The global range of subduction zone thermal models. Phys. Earth Planet. Inter. 183, 73–90 (2010).

    Article  ADS  Google Scholar 

  54. Nakagawa, T. & Tackley, P. J. Influence of plate tectonic mode on the coupled thermochemical evolution of Earth’s mantle and core. Geochem. Geophys. Geosys. 16, 3400–3413 (2015).

    Article  CAS  ADS  Google Scholar 

  55. Bürgmann, R. & Dresen, G. Rheology of the lower crust and upper mantle: evidence from rock mechanics, geodesy, and field observations. Annu. Rev. Earth Planet. Sci. 36, 531–567 (2008).

    Article  ADS  Google Scholar 

  56. Popov, A. A. & Sobolev, S. V. SLIM3D: a tool for three-dimensional thermo mechanical modeling of lithospheric deformation with elasto-visco-plastic rheology. Phys. Earth Planet. Inter. 171, 55–75 (2008).

    Article  ADS  Google Scholar 

  57. Steinberger, B. & Calderwood, A. Models of large-scale viscous flow in the Earth’s mantle with constraints from mineral physics and surface observations. Geophys. J. Int. 167, 1461–1481 (2006).

    Article  CAS  ADS  Google Scholar 

  58. Osei Tutu, A. et al. Evaluating the influence of plate boundary friction and mantle viscosity on plate velocities. Geochem. Geophys. Geosyst. 19, 642–666 (2018).

    Article  CAS  ADS  Google Scholar 

  59. Hirth, G. & Kohlstedt, D. L. in Inside the Subduction Factory (ed. Eiler, J.) 83–105 (American Geophysical Union, 2004).

  60. Artemieva, I. Global thermal model TC1 for the continental lithosphere: implications for lithosphere secular evolution. Tectonophysics 416, 245–277 (2006).

    Article  ADS  Google Scholar 

  61. Parsons, B. & Sclater, J. G. An analysis of the variation of ocean floor bathymetry and heat flow with age. J. Geophys. Res. 82, 803–827 (1977).

    Article  ADS  Google Scholar 

  62. Steinberger, B. Slabs in the lower mantle – results of dynamic modelling compared with tomographic images and the geoid. Phys. Earth Planet. Inter. 118, 241–257 (2000).

    Article  ADS  Google Scholar 

  63. Wu, B. et al. Reconciling strong slab pull and weak plate bending: the plate motion constraint on the strength of mantle slabs. Earth Planet. Sci. Lett. 272, 412–421 (2008).

    Article  CAS  ADS  Google Scholar 

  64. DeMets, C., Gordon, R. G. & Argus, D. F. Geologically current plate motions. Geophys. J. Int. 181, 1–80 (2010).

    Article  ADS  Google Scholar 

  65. Oncken, O., Boutelier, D., Dresen, G. & Schemmann, K. Strain accumulation controls failure of a plate boundary zone: linking deformation of the Central Andes and lithosphere mechanics. Geochem. Geophys. Geosyst. 13, Q12007 (2013).

    ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge comments by N. Arndt, A. Sobolev and colleagues from the Geodynamic Modeling Section in GFZ: A. Babeyko, S. Brune and B. Steinberger. We thank W. Behr for comments that prompted us to strengthen the arguments presented in the Article. We are grateful to R. Ernst who provided the LIP dataset and to Z.-X. Li who provided the orogen dataset27. S.V.S. is grateful to R. Stern, who brought to his attention the problems of the origin and evolution of plate tectonics. Deep Carbon Observatory supported S.V.S.’s participation in the Workshop on the Origin and Evolution of Plate Tectonics, Locarno, Switzerland in 2016, where he first presented the hypothesis discussed in the paper.

Reviewer information

Nature thanks Whitney Behr and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

S.V.S. conceived the study, suggested the hypothesis, designed and computed the models and produced the figures. S.V.S. and M.B. interpreted the data and wrote the paper.

Corresponding author

Correspondence to Stephan V. Sobolev.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Strength in the subduction channel.

ac, The subduction channel of the seismic cycle model for the southern Andes19. Shown are the stress distribution (a) and the strain rate distribution (b) during the inter-seismic phase of the seismic cycle, 320 years after the great earthquake, as well as a magnified image of the subduction channel (c). Temperature isolines are shown in degrees Celsius, and the location of the maximum shear stress in the channel is given as a proxy for the brittle–ductile transition. d, Sketch of the stress distribution inside the subduction channel, showing the friction-controlled (brittle) and ductile deformation domains.

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobolev, S.V., Brown, M. Surface erosion events controlled the evolution of plate tectonics on Earth. Nature 570, 52–57 (2019). https://doi.org/10.1038/s41586-019-1258-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-019-1258-4

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing