Revisiting the cold case of cold fusion

Abstract

The 1989 claim of ‘cold fusion’ was publicly heralded as the future of clean energy generation. However, subsequent failures to reproduce the effect heightened scepticism of this claim in the academic community, and effectively led to the disqualification of the subject from further study. Motivated by the possibility that such judgement might have been premature, we embarked on a multi-institution programme to re-evaluate cold fusion to a high standard of scientific rigour. Here we describe our efforts, which have yet to yield any evidence of such an effect. Nonetheless, a by-product of our investigations has been to provide new insights into highly hydrided metals and low-energy nuclear reactions, and we contend that there remains much interesting science to be done in this underexplored parameter space.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Revisiting cold fusion.
Fig. 2: Pressure–composition–temperature diagram for palladium hydride featuring the α-PdHx and β-PdHx phases.
Fig. 3: Detecting excess heat at high temperatures.
Fig. 4: Pulsed plasma apparatus.
Fig. 5: Motivation to explore nuclear fusion at lower energies.

References

  1. 1.

    Fleischmann, M. & Pons, S. Electrochemically induced nuclear fusion of deuterium. J. Electroanal. Chem. Interfacial Electrochem. 261, 301–308 (1989). Article that introduced the possibility of room-temperature fusion during electrolysis with a palladium cathode in a LiOD/D 2 O electrolyte solution, publicly revealed at a press conference at the University of Utah on 23 March 1989.

    CAS  Article  Google Scholar 

  2. 2.

    Cookson, C. Scientists claim nuclear fusion produced in test tube. Financial Times 1 (23 March 1989).

  3. 3.

    Bishop, J. Breakthrough in fusion may be announced. Wall Street J. B1 (23 March 1989).

  4. 4.

    Browne, M. W. Fusion in a jar: chemists’ claim ignites an uproar. New York Times 1 (28 March 1989).

  5. 5.

    Miskelly, G. M. et al. Analysis of the published calorimetric evidence for electrochemical fusion of deuterium in palladium. Science 246, 793–796 (1989).

    CAS  ADS  Article  Google Scholar 

  6. 6.

    Albagli, D. et al. Measurement and analysis of neutron and gamma-ray emission rates, other fusion products, and power in electrochemical cells having Pd cathodes. J. Fusion Energy 9, 133–148 (1990).

    CAS  ADS  Article  Google Scholar 

  7. 7.

    Williams, D. E. et al. Upper bounds on ‘cold fusion’ in electrolytic cells. Nature 342, 375–384 (1989).

    CAS  ADS  Article  Google Scholar 

  8. 8.

    Maddox, J. Farewell (not fond) to cold fusion. Nature 344, 365–366 (1990).

    Google Scholar 

  9. 9.

    USDOE Office of Energy Research, Energy Research Advisory Board. Cold Fusion Research. Report DOE/S-0073 https://doi.org/10.2172/5144772 (USDOE, 1989).

  10. 10.

    Mullins, J. Cold fusion back from the dead. IEEE Spectrum 41, 22–23 (2004).

    Article  Google Scholar 

  11. 11.

    Ritter, S. K. Cold fusion died 25 years ago, but the research lives on. Chem. Eng. News 94, 34–39 (2016).

    Google Scholar 

  12. 12.

    Krivit, S. B. & Marwan, J. A new look at low-energy nuclear reaction research. J. Environ. Monit. 11, 1731–1746 (2009).

    CAS  Article  Google Scholar 

  13. 13.

    Sanderson, K. Cold fusion is back at the American Chemical Society. Nature https://doi.org/10.1038/news070326-12 (2007).

  14. 14.

    Goodstein, D. Whatever happened to cold fusion? Account. Res. 8, 59–75 (2000).

    Article  Google Scholar 

  15. 15.

    Krivit, S. B. in Low-Energy Nuclear Reactions Sourcebook Vol. 998 (eds Marwan, J. & Krivit, S. B.) 3–16 (American Chemical Society, 2008).

  16. 16.

    Brumfiel, G. US review rekindles cold fusion debate. Nature https://www.nature.com/news/2004/041129/full/news041129-11.html (2004).

  17. 17.

    Mohtadi, R. & Orimo, S.-I. The renaissance of hydrides as energy materials. Nat. Rev. Mater. 2, 16091 (2016).

    ADS  Article  Google Scholar 

  18. 18.

    Montoya, J. H. et al. Materials for solar fuels and chemicals. Nat. Mater. 16, 70–81 (2016).

    ADS  Article  Google Scholar 

  19. 19.

    Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    Article  Google Scholar 

  20. 20.

    Stamenkovic, V. R., Strmcnik, D., Lopes, P. P. & Markovic, N. M. Energy and fuels from electrochemical interfaces. Nat. Mater. 16, 57–69 (2016).

    ADS  Article  Google Scholar 

  21. 21.

    Teschner, D. et al. The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science 320, 86–89 (2008).

    CAS  ADS  Article  Google Scholar 

  22. 22.

    Liu, N., Tang, M. L., Hentschel, M., Giessen, H. & Alivisatos, A. P. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat. Mater. 10, 631–636 (2011).

    CAS  ADS  Article  Google Scholar 

  23. 23.

    Li, G. et al. Hydrogen storage in Pd nanocrystals covered with a metal–organic framework. Nat. Mater. 13, 802–806 (2014).

    CAS  ADS  Article  Google Scholar 

  24. 24.

    Li, G. et al. Shape-dependent hydrogen-storage properties in Pd nanocrystals: which does hydrogen prefer, octahedron (111) or cube (100)? J. Am. Chem. Soc. 136, 10222–10225 (2014).

    CAS  Article  Google Scholar 

  25. 25.

    Huke, A. et al. Enhancement of deuteron-fusion reactions in metals and experimental implications. Phys. Rev. C 78, 015803 (2008).

    ADS  Article  Google Scholar 

  26. 26.

    Assenbaum, H. J., Langanke, K. & Rolfs, C. Effects of electron screening on low-energy fusion cross sections. Z. Phys. A 327, 461–468 (1987).

    CAS  ADS  Google Scholar 

  27. 27.

    Laurence, W. L. Cold fusion of hydrogen atoms; a fourth method pulling together. New York Times E7 (30 December 1956).

  28. 28.

    Rafelski, J. & Jones, S. E. Cold nuclear fusion. Sci. Am. 257, 84–89 (1987).

    ADS  Article  Google Scholar 

  29. 29.

    Jones, S. E. et al. Observation of cold nuclear fusion in condensed matter. Nature 338, 737–740 (1989).

    CAS  ADS  Article  Google Scholar 

  30. 30.

    Rolfs, C. E. & Rodney, W. S. Cauldrons in the Cosmos: Nuclear Astrophysics (Univ. Chicago Press, 1988).

    Google Scholar 

  31. 31.

    Miley, G. H., Towner, H. & Ivich, N. Fusion Cross Sections and Reactivities (Illinois Univ., 1974).

    Google Scholar 

  32. 32.

    Raiola, F. et al. Enhanced electron screening in d(d,p)t for deuterated metals. Eur. Phys. J. A 19, 283–287 (2004).

    CAS  ADS  Article  Google Scholar 

  33. 33.

    Bertulani, C. A. & Kajino, T. Frontiers in nuclear astrophysics. Prog. Part. Nucl. Phys. 89, 56–100 (2016).

    CAS  ADS  Article  Google Scholar 

  34. 34.

    Spitaleri, C., Bertulani, C. A., Fortunato, L. & Vitturi, A. The electron screening puzzle and nuclear clustering. Phys. Lett. B 755, 275–278 (2016).

    CAS  ADS  Article  Google Scholar 

  35. 35.

    Czerski, K. et al. Screening and resonance enhancements of the 2H(d, p)3H reaction yield in metallic environments. Europhys. Lett. 113, 22001 (2016).

    ADS  Article  Google Scholar 

  36. 36.

    Coraddu, M., Lissia, M. & Quarati, P. Anomalous enhancements of low-energy fusion rates in plasmas: the role of ion momentum distributions and inhomogeneous screening. Cent. Eur. J. Phys. 7, 527–533 (2009).

    CAS  Google Scholar 

  37. 37.

    US Department of Energy. Report of the Review of Low Energy Nuclear Reactions (USDOE, 2004). Report from a review conducted in 2004 by the US Department of Energy to revisit the question of scientific evidence for low-energy nuclear reactions.

  38. 38.

    Packham, N. J. C., Wolf, K. L., Wass, J. C., Kainthla, R. C. & Bockris, J. O. Production of tritium from D2O electrolysis at a palladium cathode. J. Electroanal. Chem. Interfacial Electrochem. 270, 451–458 (1989).

    CAS  Article  Google Scholar 

  39. 39.

    McKubre, M. C. H. Cold fusion: comments on the state of scientific proof. Curr. Sci. 108, 495–498 (2015). Discussion of early experiments performed to assess the Fleischmann–Pons claim.

    CAS  Google Scholar 

  40. 40.

    Focardi, S., Habel, R. & Piantelli, F. Anomalous heat production in Ni-H systems. Nuovo Cim. A 107, 163–167 (1994).

    ADS  Article  Google Scholar 

  41. 41.

    Claytor, T. N., Jackson, D. D. & Tuggle, D. G. Tritium Production from a Low Voltage Deuterium Discharge on Palladium and Other Metals. https://doi.org/10.2172/102234 (LANL, 1995). Plasma loading method claimed to produce an unexpected amount of tritium from palladium wires.

  42. 42.

    Wicke, E., Brodowsky, H. & Züchner, H. in Hydrogen in Metals II (eds Alefield, G. & Völki, J.) 73–155 (Springer, 1978).

  43. 43.

    Schirber, J. E. & Morosin, B. Lattice constants of β – PdHx and β – PdDx with x near 1.0. Phys. Rev. B 12, 117–118 (1975).

    CAS  ADS  Article  Google Scholar 

  44. 44.

    Fukai, Y. & Ōkuma, N. Evidence of copious vacancy formation in Ni and Pd under a high hydrogen pressure. Jpn. J. Appl. Phys. 32, L1256–L1259 (1993).

    CAS  ADS  Article  Google Scholar 

  45. 45.

    Fukai, Y. & Okuma, N. Formation of superabundant vacancies in Pd hydride under high hydrogen pressures. Phys. Rev. Lett. 73, 1640–1643 (1994).

    CAS  ADS  Article  Google Scholar 

  46. 46.

    Skoskiewicz, T. Superconductivity in the palladium-hydrogen and palladium-nickel-hydrogen systems. Phys. Status Solidi A 11, K123–K126 (1972).

    CAS  ADS  Article  Google Scholar 

  47. 47.

    Miller, R. J. & Satterthwaite, C. B. Electronic model for the reverse isotope effect in superconducting Pd-H(D). Phys. Rev. Lett. 34, 144–148 (1975).

    CAS  ADS  Article  Google Scholar 

  48. 48.

    Harper, J. M. E. Effect of hydrogen concentration on superconductivity and clustering in palladium hydride. Phys. Lett. A 47, 69–70 (1974).

    CAS  ADS  Article  Google Scholar 

  49. 49.

    Pröbst, F., Wagner, F. E. & Karger, M. Magnetic properties of solute 57Fe in β phase palladium hydride. J. Less Common Met. 88, 201–209 (1982).

    Article  Google Scholar 

  50. 50.

    Möller, W., Besenbacher, F. & Bottiger, J. Saturation and isotope mixing during low-temperature implantations of hydrogen into metals. Appl. Phys. A 27, 19–29 (1982).

    ADS  Article  Google Scholar 

  51. 51.

    Fukai, Y. et al. Superabundant vacancy–hydrogen clusters in electrodeposited Ni and Cu. J. Alloys Compd. 356–357, 270–273 (2003).

    Article  Google Scholar 

  52. 52.

    Murray, J. B. et al. Apparatus for combined nanoscale gravimetric, stress, and thermal measurements. Rev. Sci. Instrum. 89, 085106 (2018).

    ADS  Article  Google Scholar 

  53. 53.

    Benck, J. D., Jackson, A., Young, D., Rettenwander, D. & Chiang, Y.-M. Producing high concentrations of hydrogen in palladium via electrochemical insertion from aqueous and solid electrolytes. Chem. Mater. https://doi.org/10.1021/acs.chemmater.9b01243 (2019). Electrochemical insertion of hydrogen into palladium electrodes using aqueous, polymer and ceramic electrolytes at room temperature and ambient pressure to produce PdH x as high as x = 0.96 ± 0.02.

  54. 54.

    Felici, R., Bertalot, L., DeNinno, A., LaBarbera, A. & Violante, V. In situ measurement of the deuterium (hydrogen) charging of a palladium electrode during electrolysis by energy dispersive x-ray diffraction. Rev. Sci. Instrum. 66, 3344–3348 (1995).

    CAS  ADS  Article  Google Scholar 

  55. 55.

    Knies, D. L. et al. In-situ synchrotron energy-dispersive X-ray diffraction study of thin Pd foils with Pd:D and Pd:H concentrations up to 1:1. J. Appl. Phys. 112, 083510 (2012).

    ADS  Article  Google Scholar 

  56. 56.

    Maoka, T. & Enyo, M. Hydrogen absorption by palladium electrode polarized in sulfuric acid solution containing surface active substances—I. The cathodic region. Electrochim. Acta 26, 607–614 (1981).

    CAS  Article  Google Scholar 

  57. 57.

    Sherbo, R. S. et al. Accurate coulometric quantification of hydrogen absorption in palladium nanoparticles and thin films. Chem. Mater. 30, 3963–3970 (2018).

    CAS  ADS  Article  Google Scholar 

  58. 58.

    Benck, J. D., Rettenwander, D., Jackson, A., Young, D. & Chiang, Y.-M. Apparatus for operando X-ray diffraction of fuel electrodes in high temperature solid oxide electrochemical cells. Rev. Sci. Instrum. 90, 023910 (2019).

    ADS  Article  Google Scholar 

  59. 59.

    Lawson, D. R. et al. Use of a coulometric assay technique to study the variables affecting deuterium loading levels within palladium electrodes. Electrochim. Acta 36, 1515–1522 (1991).

    CAS  Article  Google Scholar 

  60. 60.

    Czerwiński, A. C., Kiersztyn, I., Grdeń, M. & Czapla, J. The study of hydrogen sorption in palladium limited volume electrodes (Pd-LVE) I. Acidic solutions. J. Electroanal. Chem. 471, 190–195 (1999).

    Article  Google Scholar 

  61. 61.

    Levi, G. et al. Indication of anomalous heat energy production in a reactor device. Preprint at https://arXiv.org/abs/1305.3913 (2013).

  62. 62.

    Young, D. et al. An operando calorimeter for high temperature electrochemical cells. Preprint at http://arXiv.org/abs/1808.02596 (2018).

  63. 63.

    MacLeod, B. P. et al. High-temperature high-pressure calorimeter for studying gram-scale heterogeneous chemical reactions. Rev. Sci. Instrum. 88, 084101 (2017).

    CAS  ADS  Article  Google Scholar 

  64. 64.

    MacLeod, B. P., Fork, D. K., Lam, B. & Berlinguette, C. P. Calorimetry under non-ideal conditions using system identification. J. Therm. Anal. Calorim. https://doi.org/10.1007/s10973-019-08271-z (2019).

  65. 65.

    Fork, D. K., MacLeod, B. P. & Parlane, F. G. L. Calorimetry System Identification (CSID). https://github.com/calorimetry/CSID (2017).

  66. 66.

    Broggini, C., Bemmerer, D., Caciolli, A. & Trezzi, D. LUNA: status and prospects. Prog. Part. Nucl. Phys. 98, 55–84 (2018).

    CAS  ADS  Article  Google Scholar 

  67. 67.

    Kaczmarski, M. et al. New accelerator facility for measurements of nuclear reactions at energies below 1 keV. Acta Phys. Pol. B 45, 509–518 (2014).

    CAS  ADS  Article  Google Scholar 

  68. 68.

    Schenkel, T. et al. Investigation of light ion fusion reactions with plasma discharges. Preprint at http://arXiv.org/abs/1905.03400 (2019). Observation of D–D reaction yields are about 100-fold higher than expected for bare nuclei in a plasma discharge experiment designed to demonstrate screening effects in light-ion fusion.

  69. 69.

    Best, A. et al. Underground nuclear astrophysics: why and how. Eur. Phys. J. A 52, 72 (2016).

    ADS  Article  Google Scholar 

  70. 70.

    Casey, D. T. et al. Thermonuclear reactions probed at stellar-core conditions with laser-based inertial-confinement fusion. Nat. Phys. 13, 1227–1231 (2017).

    CAS  Article  Google Scholar 

  71. 71.

    Arcones, A. et al. White paper on nuclear astrophysics and low energy nuclear physics. Part 1: Nuclear astrophysics. Prog. Part. Nucl. Phys. 94, 1–67 (2017).

    CAS  ADS  Article  Google Scholar 

  72. 72.

    ITER Organization. ITER Organization 2016 Annual Report. https://www.iter.org/org/team/odg/comm/AnnualReports (ITER, 2017).

  73. 73.

    Fountain, H. A dream of clean energy at a very high price. New York Times D1 (27 March 2017).

  74. 74.

    Sherbo, R. S., Delima, R. S., Chiykowski, V. A., MacLeod, B. P. & Berlinguette, C. P. Complete electron economy by pairing electrolysis with hydrogenation. Nature Catal. 1, 501–507 (2018).

    CAS  Article  Google Scholar 

  75. 75.

    Johnson, N. J. J. et al. Facets and vertices regulate hydrogen uptake and release in palladium nanocrystals. Nat. Mater. 18, 434–458 (2019). In situ X-ray diffraction experiments reveal the rate of hydrogen absorption by palladium nanocrystals increases with the number of vertices, and the rate of hydrogen desorption is approximately tenfold faster at (100) facets than at (111) facets.

    ADS  Article  Google Scholar 

  76. 76.

    Palm, K. J., Murray, J. B., Narayan, T. C. & Munday, J. N. Dynamic optical properties of metal hydrides. ACS Photonics 5, 4677–4686 (2018). Use of a strain-compensated microbalance for the in situ determination of gaseous hydrogen loading for various palladium, magnesium, zirconium, titanium and vanadium hydrides.

    CAS  Article  Google Scholar 

  77. 77.

    Koningstein, R. & Fork, D. Energy’s creative destruction. IEEE Spectrum 51, 30–35 (2014).

    Article  Google Scholar 

  78. 78.

    Hemminger, J., Fleming, G. & Ratner, M. Directing Matter and Energy: Five Challenges for Science and the Imagination. https://doi.org/10.2172/935427 (USDOE Basic Energy Sciences Advisory Committee, 2007).

  79. 79.

    Hemminger, J. C., Sarrao, J., Crabtree, G., Flemming, G. & Ratner, M. Challenges at the Frontiers of Matter and Energy: Transformative Opportunities for Discovery Science. https://doi.org/10.2172/1283188 (USDOE Basic Energy Sciences Advisory Committee, 2015).

  80. 80.

    Chadwick, M. B. et al. ENDF/B-VII.0: next generation evaluated nuclear data library for nuclear science and technology. Nucl. Data Sheets 107, 2931–3060 (2006).

    CAS  ADS  Article  Google Scholar 

  81. 81.

    Bosch, H. S. & Hale, G. M. Improved formulas for fusion cross-sections and thermal reactivities. Nucl. Fusion 32, 611–631 (1992).

    CAS  ADS  Article  Google Scholar 

  82. 82.

    Caughlan, G. R. & Fowler, W. A. Thermonuclear reaction rates V. Atom. Data Nucl. Data Tables 40, 283–334 (1988).

    CAS  ADS  Article  Google Scholar 

  83. 83.

    Salpeter, E. E. Electron screening and thermonuclear reactions. Aust. J. Phys. 7, 373–388 (1954).

    CAS  ADS  Article  Google Scholar 

  84. 84.

    Kasagi, J. et al. Strongly enhanced DD fusion reaction in metals observed for keV D+ bombardment. J. Phys. Soc. Jpn 71, 2881–2885 (2002).

    CAS  ADS  Article  Google Scholar 

  85. 85.

    Breunlich, W. H., Kammel, P., Cohen, J. S. & Leon, M. Muon-catalyzed fusion. Annu. Rev. Nucl. Part. Sci. 39, 311–356 (1989).

    CAS  ADS  Article  Google Scholar 

  86. 86.

    Williams, D. R. Sun fact sheet https://nssdc.gsfc.nasa.gov/planetary/factsheet/sunfact.html (2018).

  87. 87.

    Tumino, A. et al. An increase in the 12C + 12C fusion rate from resonances at astrophysical energies. Nature 557, 687–690 (2018); erratum 561, E3 (2018).

    CAS  ADS  Article  Google Scholar 

  88. 88.

    Ichimaru, S. Nuclear fusion in dense plasmas. Rev. Mod. Phys. 65, 255–299 (1993).

    CAS  ADS  Article  Google Scholar 

Download references

Acknowledgements

Students, postdoctoral researchers and staff responsible for advancing and supporting this project are listed as co-signatories in the Supplementary Information. P.A. Schauer, B. Lam, B.P. MacLeod, F.G.L. Parlane and A.K. Brown are gratefully acknowledged for their substantial contributions to the construction of this manuscript. The research supporting this Perspective was conducted with funding from Google LLC. Some aspects of the materials studies conducted at the University of British Columbia (UBC) were partially supported by the Canadian Natural Science and Engineering Research Council (CRD-502052-16) and made use of resources and facilities provided by the Canadian Foundation for Innovation (229288). A portion of the UBC research was conducted at: the 4D LABS shared facilities supported by the Canada Foundation for Innovation, British Columbia Knowledge Development Fund, Western Economic Diversification Canada, and Simon Fraser University; and the Centre for High-Throughput Phenogenomics at UBC, a facility supported by the Canadian Foundation for Innovation, British Columbia Knowledge Development Fund, and the UBC Faculty of Dentistry. Work at Lawrence Berkeley National Laboratory (Berkeley Lab) was performed under the auspices of the US Department of Energy (DE-AC02-05CH11231). Work at the Massachusetts Institute of Technology (MIT) used instrumentation in the Center for Materials Science and Engineering, a MRSEC Shared Experimental Facility supported by the National Science Foundation under award number DMR-14-19807. Some of the work at the University of Maryland (UMD) employed the shared facilities of the Maryland NanoCenter and its FabLab. The views and conclusions of authors expressed herein do not necessarily state or reflect those of the United States or Canadian Governments, or any agencies thereof.

Author information

Affiliations

Authors

Contributions

All authors outlined the manuscript. C.P.B. and M.D.T. wrote the manuscript. All authors reviewed and edited the entire manuscript.

Corresponding authors

Correspondence to Curtis P. Berlinguette or Matthew D. Trevithick.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains a list of co-signatories to this paper.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Berlinguette, C.P., Chiang, Y., Munday, J.N. et al. Revisiting the cold case of cold fusion. Nature 570, 45–51 (2019). https://doi.org/10.1038/s41586-019-1256-6

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing