Nanosecond X-ray diffraction of shock-compressed superionic water ice

Abstract

Since Bridgman’s discovery of five solid water (H2O) ice phases1 in 1912, studies on the extraordinary polymorphism of H2O have documented more than seventeen crystalline and several amorphous ice structures2,3, as well as rich metastability and kinetic effects4,5. This unique behaviour is due in part to the geometrical frustration of the weak intermolecular hydrogen bonds and the sizeable quantum motion of the light hydrogen ions (protons). Particularly intriguing is the prediction that H2O becomes superionic6,7,8,9,10,11,12—with liquid-like protons diffusing through the solid lattice of oxygen—when subjected to extreme pressures exceeding 100 gigapascals and high temperatures above 2,000 kelvin. Numerical simulations suggest that the characteristic diffusion of the protons through the empty sites of the oxygen solid lattice (1) gives rise to a surprisingly high ionic conductivity above 100 Siemens per centimetre, that is, almost as high as typical metallic (electronic) conductivity, (2) greatly increases the ice melting temperature7,8,9,10,11,12,13 to several thousand kelvin, and (3) favours new ice structures with a close-packed oxygen lattice13,14,15. Because confining such hot and dense H2O in the laboratory is extremely challenging, experimental data are scarce. Recent optical measurements along the Hugoniot curve (locus of shock states) of water ice VII showed evidence of superionic conduction and thermodynamic signatures for melting16, but did not confirm the microscopic structure of superionic ice. Here we use laser-driven shockwaves to simultaneously compress and heat liquid water samples to 100–400 gigapascals and 2,000–3,000 kelvin. In situ X-ray diffraction measurements show that under these conditions, water solidifies within a few nanoseconds into nanometre-sized ice grains that exhibit unambiguous evidence for the crystalline oxygen lattice of superionic water ice. The X-ray diffraction data also allow us to document the compressibility of ice at these extreme conditions and a temperature- and pressure-induced phase transformation from a body-centred-cubic ice phase (probably ice X) to a novel face-centred-cubic, superionic ice phase, which we name ice XVIII2,17.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Experimental concept (not to scale).
Fig. 2: Determination of the reverberation compression path using one-dimensional Lagrangian radiation hydrodynamic simulations.
Fig. 3: X-ray diffraction data and results.
Fig. 4: Phase diagram of H2O.

References

  1. 1.

    Bridgman, P. W. Water, in the liquid and five solid forms, under pressure. Proc. Am. Acad. Arts Sci. 47, 441–558 (1912).

    Article  Google Scholar 

  2. 2.

    Bartels-Rausch, T. et al. Ice structures, patterns, and processes: a view across the icefields. Rev. Mod. Phys. 84, 885–944 (2012).

    CAS  Article  ADS  Google Scholar 

  3. 3.

    Malenkov, G. Liquid water and ices: understanding the structure and physical properties. J. Phys. Condens. Matter 21, 283101 (2009).

    Article  Google Scholar 

  4. 4.

    Pallares, G. et al. Anomalies in bulk supercooled water at negative pressure. Proc. Natl Acad. Sci. USA 111, 7936–7941 (2014).

    CAS  Article  ADS  Google Scholar 

  5. 5.

    Mishima, O. & Stanley, H. E. The relationship between liquid, supercooled and glassy water. Nature 396, 329–335 (1998).

    CAS  Article  ADS  Google Scholar 

  6. 6.

    Demontis, P., LeSar, R. & Klein, M. L. New high-pressure phases of ice. Phys. Rev. Lett. 60, 2284–2287 (1988).

    CAS  Article  ADS  Google Scholar 

  7. 7.

    Cavazzoni, C. et al. Superionic and metallic states of water and ammonia at giant planet conditions. Science 283, 44–46 (1999).

    CAS  Article  ADS  Google Scholar 

  8. 8.

    Mattsson, T. R. & Desjarlais, M. P. Phase diagram and electrical conductivity of high energy-density water from density functional theory. Phys. Rev. Lett. 97, 017801 (2006).

    Article  ADS  Google Scholar 

  9. 9.

    Schwegler, E., Sharma, M., Gygi, F. & Galli, G. Melting of ice under pressure. Proc. Natl Acad. Sci. USA 105, 14779–14783 (2008).

    CAS  Article  ADS  Google Scholar 

  10. 10.

    French, M., Mattsson, T., Nettelmann, N. & Redmer, R. Equation of state and phase diagram of water at ultrahigh pressures as in planetary interiors. Phys. Rev. B 79, 054107 (2009).

    Article  ADS  Google Scholar 

  11. 11.

    Redmer, R., Mattsson, T. R., Nettelmann, N. & French, M. The phase diagram of water and the magnetic fields of Uranus and Neptune. Icarus 211, 798–803 (2011).

    CAS  Article  ADS  Google Scholar 

  12. 12.

    Hernandez, J.-A. & Caracas, R. Superionic-superionic phase transitions in body-centered cubic H2O ice. Phys. Rev. Lett. 117, 135503 (2016).

    Article  ADS  Google Scholar 

  13. 13.

    Wilson, H. F., Wong, M. L. & Militzer, B. Superionic to superionic phase change in water: consequences for the interiors of Uranus and Neptune. Phys. Rev. Lett. 110, 151102 (2013).

    Article  ADS  Google Scholar 

  14. 14.

    Sun, J., Clark, B. K., Torquato, S. & Car, R. The phase diagram of high-pressure superionic ice. Nat. Commun. 6, 8156 (2015).

    CAS  Article  ADS  Google Scholar 

  15. 15.

    French, M., Desjarlais, M. P. & Redmer, R. Ab initio calculation of thermodynamic potentials and entropies for superionic water. Phys. Rev. E 93, 022140 (2016).

    Article  ADS  Google Scholar 

  16. 16.

    Millot, M. et al. Experimental evidence for superionic water ice using shock compression. Nat. Phys. 14, 297–302 (2018).

    CAS  Article  Google Scholar 

  17. 17.

    del Rosso, L., Celli, M. & Ulivi, L. A new porous water ice stable at atmospheric pressure obtained by emptying a hydrogen filled ice. Nat. Commun. 7, 1–19 (2016).

    CAS  Google Scholar 

  18. 18.

    Rygg, J. R. et al. Powder diffraction from solids in the terapascal regime. Rev. Sci. Instrum. 83, 113904 (2012).

    CAS  Article  ADS  Google Scholar 

  19. 19.

    Coppari, F. et al. Experimental evidence for a phase transition in magnesium oxide at exoplanet pressures. Nat. Geosci. 6, 926–929 (2013).

    CAS  Article  ADS  Google Scholar 

  20. 20.

    Dolan, D. H. & Gupta, Y. M. Nanosecond freezing of water under multiple shock wave compression: optical transmission and imaging measurements. J. Chem. Phys. 121, 9050–9057 (2004).

    CAS  Article  ADS  Google Scholar 

  21. 21.

    Chau, R., Mitchell, A. C., Minich, R. W. & Nellis, W. J. Electrical conductivity of water compressed dynamically to pressures of 70–180 GPa (0.7–1.8 Mbar). J. Chem. Phys. 114, 1361–1365 (2001).

    CAS  Article  ADS  Google Scholar 

  22. 22.

    Dolan, D. H., Knudson, M. D., Hall, C. A. & Deeney, C. A metastable limit for compressed liquid water. Nat. Phys. 3, 339–342 (2007).

    CAS  Article  Google Scholar 

  23. 23.

    Gleason, A. E. et al. Compression freezing kinetics of water to ice VII. Phys. Rev. Lett. 119, 025701 (2017).

    CAS  Article  ADS  Google Scholar 

  24. 24.

    Gleason, A. E. et al. Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2. Nat. Commun. 6, 8191 (2015).

    CAS  Article  ADS  Google Scholar 

  25. 25.

    Shibuta, Y. et al. Heterogeneity in homogeneous nucleation from billion-atom molecular dynamics simulation of solidification of pure metal. Nat. Commun. 8, 10 (2017).

    Article  ADS  Google Scholar 

  26. 26.

    Sugimura, E. et al. Compression of H2O ice to 126 GPa and implications for hydrogen-bond symmetrization: synchrotron X-ray diffraction measurements and density-functional calculations. Phys. Rev. B 77, 214103 (2008).

    Article  ADS  Google Scholar 

  27. 27.

    French, M. & Redmer, R. Construction of a thermodynamic potential for the water ices VII and X. Phys. Rev. B 91, 014308 (2015).

    Article  ADS  Google Scholar 

  28. 28.

    Benoit, M., Bernasconi, M., Focher, P. & Parrinello, M. New high-pressure phase of ice. Phys. Rev. Lett. 76, 2934–2936 (1996).

    CAS  Article  ADS  Google Scholar 

  29. 29.

    Caracas, R. Dynamical instabilities of ice X. Phys. Rev. Lett. 101, 085502 (2008).

    Article  ADS  Google Scholar 

  30. 30.

    Militzer, B. & Wilson, H. F. New phases of water ice predicted at megabar pressures. Phys. Rev. Lett. 105, 195701 (2010).

    Article  ADS  Google Scholar 

  31. 31.

    Hermann, A., Ashcroft, N. W. & Hoffmann, R. High pressure ices. Proc. Natl Acad. Sci. USA 109, 745–750 (2012).

    CAS  Article  ADS  Google Scholar 

  32. 32.

    Nettelmann, N., Helled, R., Fortney, J. J. & Redmer, R. New indication for a dichotomy in the interior structure of Uranus and Neptune from the application of modified shape and rotation data. Planet. Space Sci. 77, 143–151 (2013).

    Article  ADS  Google Scholar 

  33. 33.

    Hemley, R. J. et al. Static compression of H2O-ice to 128 GPa (1.28 Mbar). Nature 330, 737–740 (1987).

    CAS  Article  ADS  Google Scholar 

  34. 34.

    Loubeyre, P., LeToullec, R., Wolanin, E., Hanfland, M. & Hausermann, D. Modulated phases and proton centring in ice observed by X-ray diffraction up to 170 GPa. Nature 397, 503–506 (1999).

    CAS  Article  ADS  Google Scholar 

  35. 35.

    Frank, M. R. M., Fei, Y. & Hu, J. Constraining the equation of state of fluid H2O to 80 GPa using the melting curve, bulk modulus, and thermal expansivity of ice VII. Geochim. Cosmochim. Acta 68, 2781–2790 (2004).

    CAS  Article  ADS  Google Scholar 

  36. 36.

    Sugimura, E. et al. Simultaneous high-pressure and high-temperature volume measurements of ice VII and its thermal equation of state. Phys. Rev. B 82, 134103 (2010).

    Article  ADS  Google Scholar 

  37. 37.

    Sugimura, E. et al. Experimental evidence of superionic conduction in H2O ice. J. Chem. Phys. 137, 194505 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge C. Davis, J. Emig, E. Folsom, R. Posadas Soriano, S. Uhlich, T. Uphaus and W. Unites for target preparation, the Omega Laser Facility management, staff and support crew for shot and diagnostic support and G. W. Collins, F. Datchi, R. Jeanloz and P. F. McMillan for discussions. This work was prepared by LLNL under contract DE-AC52-07NA27344. Omega shots were allocated through the LLE Laboratory Basic Science programme. Partial support was provided by LLNL LDRD programmes 12-SI-007, 14-SI-003 and 19-ERD-031 and the US Department of Energy through the joint FES/NNSA HEDLP programme.

Reviewer information

Nature thanks Stephane Mazevet and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Affiliations

Authors

Contributions

M.M. and F.C. contributed equally to this work, designed and fielded the laser shots, analysed the data and wrote the manuscript. M.M. initiated the project and performed hydrodynamic simulations (with input from D.C.S.). A.C.B. prepared the water targets. J.R.R. was the principal investigator of the Omega laser experimental campaign. S.H. performed molecular dynamics numerical simulations. J.H.E., J.R.R. and F.C. contributed to the development of the diffraction data analysis software. All authors discussed the data analysis and interpretation and commented on the manuscript.

Corresponding authors

Correspondence to Marius Millot or Federica Coppari.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

The Supplementary Information document contains a description of the methods, additional velocimetry and diffraction data and an extended discussion of the results with 24 supplementary figures and 2 tables.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Millot, M., Coppari, F., Rygg, J.R. et al. Nanosecond X-ray diffraction of shock-compressed superionic water ice. Nature 569, 251–255 (2019). https://doi.org/10.1038/s41586-019-1114-6

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing