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            Abstract
MYC is an oncogenic transcription factor that binds globally to active promoters and promotes transcriptional elongation by RNA polymerase II (RNAPII)1,2. Deregulated expression of the paralogous protein MYCN drives the development of neuronal and neuroendocrine tumours and is often associated with a particularly poor prognosis3. Here we show that, similar to MYC, activation of MYCN in human neuroblastoma cells induces escape of RNAPII from promoters. If the release of RNAPII from transcriptional pause sites (pause release) fails, MYCN recruits BRCA1 to promoter-proximal regions. Recruitment of BRCA1 prevents MYCN-dependent accumulation of stalled RNAPII and enhances transcriptional activation by MYCN. Mechanistically, BRCA1 stabilizes mRNA decapping complexes and enables MYCN to suppress R-loop formation in promoter-proximal regions. Recruitment of BRCA1 requires the ubiquitin-specific protease USP11, which binds specifically to MYCN when MYCN is dephosphorylated at Thr58. USP11, BRCA1 and MYCN stabilize each other on chromatin, preventing proteasomal turnover of MYCN. Because BRCA1 is highly expressed in neuronal progenitor cells during early development4 and MYC is less efficient than MYCN in recruiting BRCA1, our findings indicate that a cell-lineage-specific stress response enables MYCN-driven tumours to cope with deregulated RNAPII function.
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                    Fig. 1: Effects of MYCN on gene expression and RNAPII function.


Fig. 2: Status of BRCA1 in MYCN-amplified neuroblastoma cells and its MYCN-dependent recruitment to chromatin.


Fig. 3: BRCA1 is required for MYCN-dependent elongation by RNAPII.


Fig. 4: MYCN, USP11 and BRCA1 stabilize each other on chromatin.
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Extended data figures and tables

Extended Data Fig. 1 Characterization of SH-EP MYCN–ER cells.
a, Top, heat map showing the 400 most-differentially expressed genes between 498 low- and high-grade neuroblastomas (GSE62564). MYCN amplification status of the tumours and survival of the patients is indicated by the horizontal bars on top and the right panel illustrates gene expression changes after MYCN–ER activation (3 h 4-OHT), in SH-EP cells, of the same genes. Bottom, correlation between relative gene expression in tumours and changes in response to MYCN–ER activation. FC, fold change; NB, neuroblastoma. b, Box plots showing expression of 294 MYCN–ER-activated genes (SH-EP MYCN–ER, false-discovery rate (FDR) < 0.01 and log2((fold change in expression of 4-OHT compared to ethanol) > 0 in n = 3 biological replicates) in neuroblastomas of the indicated tumour stage with or without MYCN amplification (GSE62564). The number of tumour samples is indicated at the bottom and P values were calculated using a two-tailed Wilcoxon rank-sum test. c, Expression of selected gene sets from gene set enrichment analysis in SH-EP cells after MYCN–ER activation (3 h 4-OHT, n = 3) and in 65 MYCN-amplified versus 116 non-amplified stage 4 neuroblastomas (GSE62564). P values were calculated using a Kolmogorov–Smirnov test with 1,000 permutations and corrected for multiple testing using Benjamini–Hochberg procedure (FDR)49. NES, normalized enrichment score. d, Box plot illustrating MYCN binding to promoters (−30 to +300 bp relative to TSS) of 914 MYCN-activated and 615 repressed genes (n = 3). As control, a randomly selected group of 1,000 non-regulated expressed genes was chosen. e, Box plot illustrating mRNA levels in gene groups described above (activated, repressed and non-regulated; n = 3). f, Box plot showing the exon/intron ratio for 27,369 genes in 4sU-seq data (n = 6) compared to RNA-sequencing data (n = 6). b, d–f, In the box plots, the central line reflects the median and the borders of the boxes show the interquartile range of the plotted data. The whiskers extend to 1.5× the interquartile range and outliers are shown as dots.


Extended Data Fig. 2 Effects of MYCN on RNAPII function.
a, Metagene plots of total RNAPII (top) and RNAPII(pSer2) (bottom) in SH-EP MYCN–ER cells after 4-OHT treatment (3 h) for 14,488 expressed genes (n = 4). Data are mean ± s.e.m. b, Empirical cumulative distribution function of RNAPII travelling ratio after MYCN–ER activation (4-OHT) of 14,488 expressed genes (n = 4). c, Two-dimensional kernel density plot of total RNAPII occupancy at the TSS of 14,945 expressed genes in SH-EP MYCN–ER cells treated with ethanol (top) or after activation of MYCN (bottom). Samples are normalized either to sequencing depth or using a mouse spike-in (n = 1). r, Pearson’s correlation coefficient. d, Metagene plots of total RNAPII (top) and RNAPII(pSer2) (bottom) in SH-EP MYCN–ER cells after 4-OHT treatment (3 h; n = 4) of 1,000 non-regulated genes. Data are mean ± s.e.m.


Extended Data Fig. 3 Characterization of BRCA1 function in neuroblastoma.
a, Schematic overview of the shRNA screen in SH-EP MYCN–ER cells. Samples were analysed in duplicates after 14 days of cell culture. b, Waterfall plot (left) visualizing the depletion of the six screened shRNAs targeting BRCA1 in SH-EP MYCN–ER cells with activated MYCN (Z-score for the log2(fold change in expression of 4-OHT compared to start)). From all 12,931 individual shRNA, only the 1,000 shRNAs that were most strongly depleted in the screen following 4-OHT treatment are shown. Z-scores for the depletion of all individual shRNAs were calculated on the basis of the population mean and s.d. of the log2(fold change in expression) of all screened shRNAs (n = 2). Box plot (right) comparing depletion of all shRNAs targeting BRCA1 in SH-EP MYCN–ER cells upon activation of MYCN. The median and the lower and upper quartiles are shown, of the log2(fold change in expression of 4-OHT compared to start and ethanol compared to start) for n = 6 independent shRNAs targeting BRCA1 mRNA. Whiskers extend to 1.5× interquartile range above and below the upper and lower quartiles, respectively. c, Immunoblot (left) of BRCA1 in SH-EP MYCN–ER and in MYCN-amplified IMR5 and SMS-KAN cells showing the knockdown of BRCA1 by two shRNAs. Note the high BRCA1 levels in MYCN-amplified neuroblastoma cell lines (IMR5 and SMS-KAN) relative to the non-MYCN-amplified cell line (SH-EP). The arrow points to the BRCA1 band, asterisks denote unspecific bands. Vinculin was used as loading control. For all gel source data, see Supplementary Fig. 1. qPCR (right) of BRCA1 mRNA levels in BRCA1-depleted SH-EP MYCN–ER cells. Data are mean of technical triplicates (n = 3). d, Clonogenic assay in SH-EP MYCN–ER cells after shRNA-mediated knockdown of BRCA1 and induction of MYCN for six days. Colonies were stained with crystal violet (n = 3). e, Expression of a gene set of the 99 genes, identified in the shRNA screen, in patients with primary neuroblastoma. Each patient is ranked using a defined gene set of MYCN-amplified tumours52. MYCN amplification status of all 498 patients is indicated on the right. f, BRCA1 gene expression in 498 neuroblastoma samples (GSE62564). Tumours are sorted on the basis of BRCA1 expression. g, Survival of 498 patients with neuroblastoma (GSE62564) stratified by BRCA1 expression. Data were obtained from GEO and the R2 platform was used for grouping tumour samples by scanning mode based on BRCA1 expression. The q value reflects a Bonferroni-corrected P value (log-rank test). h, BRCA1 genomic region around the TSS with average methylation status in high- versus low-risk neuroblastoma.

                          Source data
                        


Extended Data Fig. 4 Cell-cycle progression and DNA replication in SH-EP MYCN–ER cells.
a, Quantification (top) and representative FACS profiles (bottom) documenting cell-cycle distribution of BrdU/propidium iodide (PI)-stained control and BRCA1-deficient cells treated with BRCA1 shRNA 2 (shBRCA1#2) after 6 h of 4-OHT treatment. Propidium iodide staining was used for quantification. Data are mean + s.d. of biological triplicates. b, Same experimental set-up as in a, but after 48 h 4-OHT treatment. c, Percentage of apoptotic cells in control and BRCA1-deficient cells treated with shBRCA1#2 measured in a propidium iodide/annexin V FACS experiment after treatment with 4-OHT for 48 h. Data are mean + s.d. of biological triplicates. P values were calculated using an unpaired, two-tailed t-test. d, Top, fork progression rates during both labels based on the track length under the indicated conditions in control and BRCA1-deficient cells for BRCA1 shRNA 1 (shBRCA1#1). The number of analysed DNA fibres is as follows: scramble shRNA (shSCR): ethanol, n = 130, 4-OHT n = 131; shBRCA1#1: ethanol, n = 161, 4-OHT, n = 139. P values were calculated using a two-tailed, unpaired t-test with additional Welch’s correction. One representative experiment is shown (n = 3). Bottom, schematic of DNA fibre experiment labelled with CldU (red) and IdU (blue). e, Same experimental set-up as in d with shBRCA1#2. The number of DNA fibres is as follows: shSCR: ethanol, n = 95, 4-OHT, n = 69; shBRCA1#2: ethanol, n = 109, 4-OHT, n = 90. P values were calculated using a two-tailed, unpaired t-test with additional Welch’s correction. One representative experiment is shown (n = 3). d, e, Fork progressions are displayed as box plots with the central line reflecting the median; the borders of the boxes show the lower and upper quartile of the plotted data, with 10th–90th-percentile whiskers and outliers are shown as dots. f, Number of γH2A.X (left) and 53BP1 (right) foci per well/number of cells per well, indicating DNA damage in control and BRCA1-deficient cells treated with shBRCA1#2 after 24 h of 4-OHT treatment. Etoposide (Etop; 25 μM) was used as a positive control and added for the final 2 h. Data are mean + s.d. of biological triplicates. P values were calculated using an unpaired, two-tailed t-test. One representative experiment is shown (n = 3).
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Extended Data Fig. 5 Control experiments for BRCA1 recruitment.
a, Venn diagram documenting genome-wide overlap between BRCA1 and MYCN peaks. b, Relative E-box (CACGTG) frequency around BRCA1 peaks in promoter regions (±1 kb relative to the TSS). The curve is smoothed using a sliding window of 50 bp. c, Enriched DNA motifs in 12,161 BRCA1 peaks located in the promoter (±1 kb relative to the TSS) identified by de novo motif search. A region of ±50 bp around the BRCA1 peak summit was analysed and similarity to known motifs was assigned with TOMTOM and the JASPAR vertebrate motif database. E values are calculated with Fisher’s exact test corrected for the number of input sequences, and q values for the comparison to known motifs are FDR-corrected P values calculated with a null model based on sampling motif columns from all of the columns in the set of target motifs42. The top three motifs from DREME analysis are shown (n = 3). d, ChIP of BRCA1 from SH-EP MYCN–ER cells transfected either with a control siRNA (siCTR) or siRNA targeting BRCA1. Selected promoters have both a robust MYCN and an overlapping BRCA1 peak. IgG was used as control. Where indicated, 4-OHT or ethanol was added for 5 h. Data are mean + s.d. of technical triplicates (n = 1). e, ChIP of BRCA1 from SH-EP MYCN–ER cells that stably express either a control shRNA or shRNA targeting BRCA1. IgG was used as control. The experiment was carried out as in d. Data are mean + s.d. of technical triplicates (n = 1). f, ChIP of BRCA1 from SH-EP MYCN–ER cells using two different BRCA1 antibodies. 4-OHT was added for 5 h. Data are mean + s.d. of the enrichment over IgG (of technical triplicates) (n = 1). g, Browser track of the LDHA locus of a BRCA1 and MYCN ChIP–seq experiment documenting BRCA1 binding to the LDHA promoter in SH-EP MYCN–ER cells after MYCN activation (5 h), and in SH-EP cells that express ectopic MYCN or empty vector as control. For ectopically expressing cells, the MYCN browser track is shown. h, Heat map showing occupancy of BRCA1 and MYCN in SH-EP MYCN–ER cells and SH-EP cells that express ectopic MYCN or empty vector as a control. Plot is centred to TSS. i, ChIP of BRCA1 from control SH-EP and from SH-EP MYCN–ER cells treated with either 4-OHT or ethanol (5 h). Data are mean + s.d. of technical triplicates of one representative experiment (n = 2).

                          Source data
                        


Extended Data Fig. 6 BRCA1 recruitment to paused RNAPII.
a, Left, ChIP of BRCA1 at the indicated loci upon treatment of SH-EP MYCN–ER cells with 4-OHT (5 h) and flavopiridol (100 nM, 3 h), where indicated. Data are mean + s.d. of technical triplicates of one representative experiment (n = 2). Right, immunoblot of cells treated as described. Asterisk denotes an unspecific band. Vinculin was used as loading control (n = 1). b, Density plots of BRCA1 occupancy in 6,887 intergenic regions after treatment with either 4-OHT or ethanol (5 h) in DMSO-treated cells (left) and flavopiridol-treated cells (100 nM, 3 h) (right). Data are mean ± s.e.m. (n = 1). c, Left, ChIP of BRCA1 in SH-EP MYCN–ER cells treated with CDK7 inhibitor THZ1 (200 nM, 4 h) or DMSO as control together with 4-OHT or ethanol. Data are mean + s.d. of technical triplicates. Right, immunoblots for RNAPII(pSer5), RNAPII(pSer2) and total RNAPII after treatment as described above. Actin was used as loading control (n = 1). d, Left, ChIP of BRCA1 at the indicated loci in MYCN-amplified IMR-5 neuroblastoma cells that express a doxycycline (DOX)-inducible shRNA targeting MYCN. Where indicated, cells were treated with flavopiridol (200 nM, 4 h) or doxycycline (1 μg ml−1, 48 h). Data are mean + s.d. of technical triplicates of one representative experiment (n = 2). Right, immunoblot of cells treated as described above. Asterisks denote unspecific bands. CDK2 was used as loading control (n = 2).

                          Source data
                        


Extended Data Fig. 7 Effect of BRCA1 on MYCN-dependent RNAPII function.
a, Metagene plots of total RNAPII after 4-OHT treatment (3 h) in control (top) and BRCA1-depleted cells treated with shBRCA1#1 (bottom) on 14,488 expressed genes. Data are mean ± s.e.m. b, Immunoblot of total RNAPII (RBP1) and phosphorylated forms after knockdown of BRCA1 and activation of MYCN. One representative experiment is shown (n = 2). The arrow points to the BRCA1 band, asterisks denote unspecific bands. c, ChIP of NELF-E in control and BRCA1-depleted SH-EP MYCN–ER cells after 4-OHT treatment (4 h). Data are mean + s.d. of technical triplicates of one representative experiment (n = 3 using two different shRNAs). d, Empirical cumulative distribution function of RNAPII travelling ratio after MYCN–ER activation (3 h) in control (top) and BRCA1-depleted (bottom) cells treated with shBRCA1#2 of 14,488 expressed genes. e, Metagene plots (of RNAPII(pSer2) in control (top) and BRCA1-depleted (bottom) cells treated with shBRCA1#2 upon treatment as described above for 14,488 expressed genes. Data are mean ± s.e.m. f, Gene set enrichment analysis upon activation of MYCN (5 h) in BRCA1-depleted and control conditions (n = 3). Significantly enriched gene sets are highlighted in black (FDR q < 0.25), MYC-activated gene sets are marked in red and MYC-repressed gene sets are marked in blue. FDR was calculated using a Kolmogorov–Smirnov test with 1,000 permutations using a Benjamini–Hochberg correction for multiple testing. g, Two-dimensional kernel density plot correlating gene expression changes after MYCN–ER activation (5 h) in BRCA1-depleted and control cells. Results are shown for two shRNAs of 19,429 expressed genes. r, Pearson’s correlation coefficient.
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Extended Data Fig. 8 BRCA1 promotes R-loop resolution and mRNA decapping.
a, DRIP using the S9.6 antibody, indicating R-loops at known loci within the ACTB gene. Digestion with RNase H1 was used as control for specificity of the antibody and IgG as control for unspecific chromatin binding. Data are mean + s.d. of technical triplicates of one representative experiment (n = 2). b, DRIP documenting binding of the S9.6 R-loop antibody to the indicated loci upon depletion of BRCA1 and activation of MYCN for 4 h. Data are mean + s.d. of technical triplicates of one representative experiment (n = 4). The panel shows the non-normalized data of Fig. 3d. c, ChIP of senataxin at the indicated loci in SH-EP MYCN–ER cells after 4-OHT treatment (3 h) in control or BRCA1-depleted cells. Data are mean + s.d. of technical triplicates of one representative experiment (n = 2 with 2 different antibodies). d, RNAPII density around the first downstream polyA site in SH-EP MYCN–ER cells after BRCA1 depletion using shBRCA1#2 and MYCN activation for 3 h: 1,713 genes are shown. Data are mean ± s.e.m. One representative experiment is shown (n = 3). e, Heat map of 8,077 TSSs of genes with an RNAPII peak downstream of the start site. Reads originate from GRO–seq, mRNA sequencing and total RNAPII ChIP–seq samples and genes are sorted on the basis of the distance from the TSS to the RNAPII peak.
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Extended Data Fig. 9 Characterization of BRCA1 recruitment and of the interaction of USP11 with MYCN.
a, ChIP of BRCA1 in SH-EP MYCN–ER cells synchronized by a double thymidine block. Cells were released and collected during the indicated cell-cycle phase after 4 h of 4-OHT treatment. IgG was used as control. Data are mean + s.d. of technical triplicates (n = 1). b, Bar plot summarizing the PLAs of MYCN and BRCA1 in G1, S and G2 phases in SH-EP MYCN–ER cells synchronized as described in a and upon 3 h 4-OHT treatment. Data are mean + s.d. of biological triplicates. For each cell-cycle phase, between 74 and 276 cells were counted. P values were calculated using an unpaired, two-tailed t-test (n = 1). c, Representative pictures of the PLA from b showing proximity of MYCN and BRCA1 in G1, S and G2 phases (green dots). Nuclei were stained with Hoechst, cytoskeleton was stained using phalloidin indicated in violet (n = 1). d, Representative FACS profiles of propidium-iodide-stained SH-EP MYCN–ER cells used for the experiment in a (n = 1). e, Immunoblot of anti-MYCN immunoprecipitates from IMR-5 MYCN-amplified neuroblastoma cells. The input corresponds to 0.75% of the amount used for the precipitation. One representative experiment is shown (n = 2). f, Immunoblot of indicated proteins after knockdown of USP11 in SMS-KAN cells and treatment with MG-132 (10 μM, 6 h), where indicated. Vinculin was used as loading control (n = 1). g, Extracted ion chromatogram of MYCN phosphorylation status from SH-EP cells that express ectopic MYCN. Values in parentheses indicate m/z ratio for each peak and the normalized target level (NL) is given for each chromatogram (n = 1). h, Immunoblot of anti-USP11 immunoprecipitates from SH-EP cells that stably express wild-type MYCN (wt), Thr58Ala (TA) or Ser62Ala (SA) mutants of MYCN. Asterisk denotes an unspecific band. One representative experiment is shown (n = 3). i, Immunoblot documenting phosphorylation status of the indicated alleles of MYCN. Actin was used as loading control. One representative experiment is shown (n = 2). j, Left, quantification of a PLA that illustrates complex formation of BRCA1 with MYCN in SH-EP cells that express ectopic MYCN or empty vector as control. Between 749 and 1,854 cells were counted for each condition. P values were calculated with a two-tailed Wilcoxon rank-sum test. In the box plot, the central line reflects the median and the borders of the boxes show the interquartile range of the plotted data. The whiskers extend to 1.5× the interquartile range, and outliers are shown as dots. Right, quantification of the corresponding immunofluorescence (IF) signals of the indicated antibodies (n = 1).

                          Source data
                        


Extended Data Fig. 10 Role of DNA damage and of MYC in recruitment of BRCA1.
a, ChIP of BRCA1 in SH-EP MYCN–ER cells that were pre-treated with ATR inhibitor VE-821 (1 μM, 2 h), 4-OHT or ethanol was added for 4 h. Data are mean + s.d. of technical triplicates of one representative experiment (n = 2). b, Immunoblot of CHK1(pSer345) after treatment with ATR inhibitor VE-821, as described in a. Cells were treated with HU (5 mM) for 4 h as positive control. Asterisk denotes an unspecific band. Vinculin was used as loading control. One representative experiment is shown (n = 2). c, ChIP of BRCA1 in SH-EP MYCN–ER cells at the indicated loci after treatment (9 h) with olaparib (10 μM), talazoparib (1 μM) or DMSO as control. Data are mean + s.d. of technical triplicates of one representative experiment (n = 3). d, Immunoblot of ATM(pSer1981) after treatment with etoposide (5 μM, 3 h). Actin was used as loading control (n = 1). e, Density plots of BRCA1 occupancy after treatment with either 4-OHT or ethanol (5 h) in DMSO (left) and etoposide-treated (right) SH-EP MYCN–ER cells. f, Immunoblots of anti-USP11 immunoprecipitates from either control SH-EP cells or cells transiently transfected with MYC. CDK2 was used as loading control, asterisks denote unspecific bands. The input corresponds to 2% of the amount used for the precipitation. One representative experiment is shown (n = 3). g, Left, ChIP of BRCA1 at the indicated loci in SH-EP MYCN–ER or SH-EP MYC–ER cells treated with 4-OHT (5 h) or ethanol. Data are mean + s.d. of technical triplicates of one representative experiment (n = 2). Right, immunoblot performed with the ER antibody to detect MYCN–ER and MYC–ER in SH-EP, SH-EP MYCN–ER or SH-EP MYC–ER cells treated with 4-OHT or ethanol. CDK2 was used as loading control (n = 2). h, Model illustrating our findings. We propose that BRCA1 is recruited jointly by MYCN and Ser5-phosphorylated RNAPII. BRCA1 recruitment is strongly enhanced by blockade of CDK9, which blocks pause release, and by increasing torsional stress using etoposide, which suggests that it is predominantly a stress response to stalling of RNAPII. BRCA1, in turn, is required to prevent an MYCN-dependent accumulation of stalling RNAPII and R-loop formation via a mRNA-decapping complex. The critical signal in MYCN that enables recruitment of BRCA1 is the dephosphorylation of Thr58, a residue that—when phosphorylated—is recognized by FBXW7 and promotes turnover of MYCN. Dephosphorylation of Thr58 allows binding of USP11, which stabilizes MYCN and BRCA1 on chromatin, which suggests that a kinetic competition between MYCN turnover and dephosphorylation/deubiquitination controls the fate of RNAPII at promoters.
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Supplementary information
Supplementary Figure 1
This figure contains the uncropped images of all immunoblots. We include pictures of the molecular weight standards that were used to cut each gel before incubation with the primary antibody. Because of their similar molecular weight, RNAPII/BRCA1 and MYCN/Tubulin are not blotted from the same membrane. Where indicated, loading control or inputs were reloaded. Molecular weights are indicated if a weight marker lights up with a secondary antibody.


Reporting Summary

Supplementary Table 1
Hits identified in the shRNA screen. This table summarizes the hits from the shRNA screen. Shown in green are shRNAs that were determined as “synthetic lethal” and defined as screening hits (104 shRNAs). For each gene targeted by a “synthetic lethal” shRNA (100 genes), all other recovered shRNAs targeting the same gene are shown in grey.


Supplementary Table 2
A list of all reagents and software used in the study.
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