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            Abstract
Spliceosomal introns are ubiquitous non-coding RNAs that are typically destined for rapid debranching and degradation. Here we describe 34 excised introns in Saccharomyces cerevisiae thatâ€”despite being rapidly degraded in log-phase growthâ€”accumulate as linear RNAs under either saturated-growth conditions or other stresses that cause prolonged inhibition of TORC1, which is a key integrator of growth signalling. Introns that become stabilized remain associated with components of the spliceosome and differ from other spliceosomal introns in having a short distance between their lariat branch point and 3â€² splice site, which is necessary and sufficient for their stabilization. Deletion of these unusual introns is disadvantageous in saturated conditions and causes aberrantly high growth rates in yeast that are chronically challenged with the TORC1 inhibitor rapamycin. The reintroduction of native or engineered stable introns suppresses this aberrant rapamycin response. Thus, excised introns function within the TOR growth-signalling network of S. cerevisiae and, more generally, excised spliceosomal introns can have biological functions.
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                    Fig. 1: Some excised linear introns accumulate in yeast.[image: ]


Fig. 2: Stable introns have short branch pointâ€“3â€²SS distances.[image: ]


Fig. 3: Stable-intron accumulation occurs after prolonged TORC1 inhibition.[image: ]


Fig. 4: Stable introns influence yeast fitness and growth.[image: ]
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                Data availability

              
              Sequencing data and the processed data for each gene and intron are available at the Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) under accession number GSE121765. For gel source data, see Supplementary Fig.Â 1. All other data are available from the corresponding author upon reasonable request.
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Extended data figures and tables

Extended Data Fig. 1 RNA-seq coverage across the branch point and to the 3â€²SS of the ECM33 intron.
The pileup of reads mapping to the 61-nucleotide region centred on the ECM33 branch point, replotted from Fig.Â 1b, is shown (red, top). The position of the branch point (closed circle with flanking dashed lines) is indicated on the intron (thick grey line) and relative to the 3â€² exon (grey box). Bottom, all reads mapping uniquely to this region are shown (thin grey lines). Reads mapping across the exonâ€“exon junction are coloured blue in the region of the excised intron and are shown above the other reads. Mismatched nucleotides within reads are indicated with coloured bars, with the colour of the bar indicating the identity of the mismatch. Terminal untemplated nucleotides have been clipped from reads.


Extended Data Fig. 2 Stable-intron sedimentation and expression constructs for pull-down and mass spectrometry.
a, Co-sedimentation of the ECM33 stable intron with large ribonucleoprotein complexes. Cleared lysate from a saturated yeast culture was fractionated by sedimentation into a 10â€“30% sucrose gradient, and RNA was extracted from each fraction. An RNA blot that resolved 25% of the RNA from each fraction and was probed for the ECM33 intron is shown. Fractions are oriented with increasing sedimentation from left to right. RNA was also extracted from 12.5% of the total lysate before sedimentation, of which 50% was loaded for comparison (left lane). The sedimentation of 40S and 60S complexes is marked on the basis of the location of ribosome subunits. Migration of markers with lengths indicated (in nucleotides) is shown on the left. nÂ =Â 6 biological replicates. b, Behaviour of stable introns ectopically expressed from the URA3 gene. An RNA blot probed for the ECM33 intron after resolving total RNA from cultures expressing the ECM33 intron from the endogenous ECM33 locus (WT, left lanes), cultures from a strain in which the intron had been deleted (ECM33Î”intron, middle lanes) and cultures of this deletion strain ectopically expressing the ECM33 intron spliced from the plasmid-borne URA3 reporter gene (right lanes) is shown. pRS416-ECM33_intron plasmid shown on right; PURA3, URA3 promoter; CEN/ARS (centromere/autonomously replicating sequence), low-copy origin of replication. Interior lanes that were not relevant to this experiment were removed from this image (vertical line). Otherwise, this panel is as in Fig.Â 1c. nÂ =Â 4 biological replicates. c, Behaviour of stable introns with MS2 hairpins inserted to be used as affinity tags for pull-downs. Five different plasmids with a common backbone (right; PTEF1, TEF1 promoter; FLAGâ€“MCP, coding region of Flag-tagged MS2 coat protein) each expressed URA3 with a different variant of the ECM33 intron (variants Aâ€“E, schematized below). These plasmids were each expressed in the strain that lacked an endogenous ECM33 intron (ECM33Î”intron). The RNA blot resolved total RNA from the indicated cultures and was probed for a sequence common to the intron variants; otherwise, as in Fig.Â 1c. The 2Â Ã—Â MS2 hairpin region is 90 nucleotides long, and the expected linear-intron sizes were: A, no intron; B, 330 nucleotides; C, 420 nucleotides; D, 300 nucleotides; and E, 420 nucleotides. nÂ â‰¥Â 2 biological replicates.


Extended Data Fig. 3 Stable introns have oligoadenylate tails.
a, Example of RNA-seq support for intron accumulation and terminal adenylylation. The diagram (top, left) classifies the RNA-seq reads that derive from the possible intron states of ECM33 transcripts (black lines, reads; red dashed lines, intron boundaries). Read counts from log-phase and saturated cultures (normalized for library depth) are listed for each class of reads (top, right). For convenient comparison to intron accumulation, exon reads are only counted if they map within 165 nucleotides of either splice site (thereby encompassing 330 nucleotides, the length of the intron). The alignment (bottom) shows representative reads mapping to the intron 3â€² terminus, aligned below the sequence of the 3â€² intronâ€“exon junction. Many of these reads had untemplated terminal adenosine residues (blue). b, Composition of untemplated tailing nucleotides observed in a saturated culture. Reads that had at least one terminal untemplated nucleotide after trimming the 3â€² adaptor sequence were collected, and the position of this tail was annotated as that of the last templated nucleotide. Counts of reads with tails added at positions 0 to +20 relative to the 5â€²SS, âˆ’10 to +10 relative to the branch point, and âˆ’20 to 0 relative to the 3â€²SS are plotted, binning counts for tails of only adenosines (An, teal) separately from those of all other tails (other, purple). For An tails that map to the 3â€²-terminal nucleotide of introns, the fraction with each indicated length is plotted (right). The relative abundance of An at positions âˆ’2 and âˆ’1 relative to the 3â€²SS was ambiguous because most introns have an adenosine at position âˆ’1 (3â€²SS consensus sequence, YAG), which causes tails of length n at position âˆ’1 to be indistinguishable from tails of length nÂ +Â 1 at position âˆ’2.


Extended Data Fig. 4 RNA-seq profiles of genes with stable introns.
Profiles from the stable-intron-inducing condition (red) and log-phase culture (blue) are shown for the indicated 32 genes with confidently identified stable introns not already depicted in Fig.Â 1. For all but four of these, the profile of the stable-intron-inducing condition is from RNA-seq of the saturated-liquid sample. The four exceptions were not confidently identified in saturated liquid (Extended Data TableÂ 2); for these, the profile of the stable-intron-inducing condition is from either the rapamycin-treated sample (TDA5 and YOS1) or the saturated lawn (RPO26 and RPS8B). Scale bars, 100 nucleotides. Otherwise, this panel is as in Fig.Â 1a.


Extended Data Fig. 5 Stable introns are indistinguishable from other introns in many respects.
a, Similar splicing motifs compared to other introns. Information-content logos of splicing motifs (6-mer 5â€²SS, 8-mer branch point and 3-mer 3â€²SS) for stable introns (bottom) and other introns (top) are plotted. b, Similar length distribution compared to other introns. Cumulative distributions of intron lengths are plotted (PÂ =Â 0.057, two-tailed Kolmogorovâ€“Smirnov test). c, No significantly enriched motifs within stable introns. Stable-intron sequence motifs discovered by MEME53 are plotted, either controlling for k-mer frequencies of non-stable intronsÂ (top) or without controlling (bottom). No significant motifs were discovered in stable introns when kÂ â‰¥Â 6. The motifs discovered without controlling for k-mer frequencies matched the canonical branch point and 5â€²SS motifs (see a). Branch point and 5â€²SS motifs were also the only significantly enriched motifs discovered when kÂ â‰¤Â 5. d, No enriched positional k-mer motifs detected by kpLogo54 in stable introns. The most enriched k-mers at positions relative to 5â€²SS (top), branch point (middle), and 3â€²SS (bottom) are plotted, comparing stable introns to unstable introns. Stacked nucleotides at a position represent the most significant motif starting at that position. The height is scaled relative to the significance of the motif, as determined by the one-sided binomial test statistic (y axes). Black numbers indicate invariant nucleotides occurring >95% of the time at the position. No k-mers were significantly enriched when using a Bonferroni-corrected P of 0.01. e, Support for a role of branch pointâ€“3â€²SS distance in specifying stable-intron formation. The indicated introns were ectopically expressed from the URA3 splicing construct (Extended Data Fig.Â 2b). Results are shown from an RNA blot that resolved total RNA from cultures overexpressing the indicated introns and was probed for the indicated introns (length of excised intron in parentheses). The ECM33 and RPL27B introns were probed sequentially, and then the ACT1, HNT2 and APS3 introns were probed concurrently. ACT1 probe was validated on synthetic transcripts resembling the ACT1 intron, which were produced by in vitro transcription (not shown). Migration of markers with lengths (in nucleotides) indicated is at the left. nÂ â‰¥Â 2 biological replicates. f, Expression of mRNAs from genes containing stable introns. Left, relationship between the expression in log-phase and saturated cultures (expression cutoff, 1 TPM in both samples). Points for genes containing stable introns are indicated (orange), and the point for ECM33 is labelled. Right, comparison of the expression results of genes with stable introns to those of the remaining genes. The cumulative distributions of fold changes in expression (expressed as log2(mRNAÂ in log-phase culture/mRNA in saturated culture)) observed between log-phase and saturated culturesÂ are plotted, which shows no significant difference between stable-intron genes and other genes (PÂ =Â 0.31 two-tailed Kolmogorovâ€“Smirnov test).


Extended Data Fig. 6 Assessing aspects of TORC1 regulation on stable-intron expression.
a, Inability of TORC1-independent inhibition of protein synthesis to prematurely induce stable-intron accumulation. The left lanes show a replicate of Fig.Â 3b, and the right lanes show results after treatment with either low (0.25Â mg lâˆ’1) or high (25Â mg lâˆ’1) concentrations of cycloheximide. As indicated by OD600Â nm at collection, the mild cycloheximide treatment allowed the culture to reach an OD600Â nm of 3.4 after 24Â h, which was equivalent to the OD600Â nm of 10Â h without cycloheximide (Fig.Â 3a). b, Dispensability of TORC1-responsive Tap42 for stable-intron formation. Samples were grown at 25â€‰Â°C owing to temperature sensitivity of the tap42-11 allele. Additionally, owing to slower growth at 25â€‰Â°C, the duration of pre-growth was extended to 5.5Â h before reseeding in medium with (+) or without (âˆ’)Â rapamycin, such that the change in OD600Â nm of the pre-growth sample matched that of wild-type cultures grown at 30â€‰Â°C for 4Â h. Otherwise, this panel is as in Fig.Â 3b. nÂ =Â 2 biological replicates. c, Dispensability of TORC1-sensitive Sch9 for stable-intron formation. Samples were grown in SCâ€“Trp medium to maintain plasmids that expressedÂ either TORC1-sensitive (pSCH9) or TORC1-insensitive (pSCH9DE) Sch9 protein. Because of the slower growth of the sch9Î” pRS414::SCH9 and sch9Î” pRS414::SCH9DE strains (possibly owing to the requisite SCâ€“Trp medium) the duration of pre-growth was extended to 5Â h, such that the change in OD600Â nm of the pre-growth sample matched that of wild-type cultures grown for 4Â h. Otherwise, this panel is as in Fig.Â 3b. nÂ =Â 3 biological replicates. d, Dispensability of Sch9 for stable-intron formation. The left lanes show a replicate of Fig.Â 3b, and the right lanes show the same experiments performed in the sch9Î” strain. nÂ =Â 2 biological replicates (sch9Î” samples). e, Inability of acute deprivation of select nutrients to induce accumulation of stable introns. To prevent contamination of starting cultures with stable introns contributed by inoculum, cultures were seeded at OD600Â nmÂ =Â 0.2 from an overnight culture that was allowed to grow to mid-log phase, collected by vacuum filtration, washed in water and resuspended in fresh medium that lacked the indicated nutrients. Cultures were collected after the indicated times and analysed as in Fig.Â 1c, except the RNA blot was sequentially re-probed for the ECM33, SAC6 and USV1 introns. As indicated by OD600Â nm at collection, the sample deprived of ammonium sulfate (the main source of nitrogen) was still able to reach a high density after 24Â h. nÂ â‰¥Â 2 biological replicates. f, Inability of the general amino acid control response to induce stable introns. Early-log-phase cultures were treated with either 100Â nM rapamycin or 50Â mM 3-aminotriazole for the indicated times. Cultures were grown in SCâ€“His to force inhibition of histidine biosynthesis by 3-aminotriazole. Cultures treated with 3-aminotriazole for 24 h did not reach a density sufficient to induce stable-intron accumulation by approaching saturated growth. g, Stable-intron accumulation despite inability to induce the general amino acid control pathway. The left lanes show a replicate of Fig.Â 3b, and the middle and right lanes show the same experiments performed in gcn2Î” and gcn4Î” strains, respectively.


Extended Data Fig. 7 The influence of hyperactive TORC1 on stable-intron formation.
a, The left and right panels are biological replicates comparing ECM33 and SAC6 intron levels in a strain with hyperactive TORC1 (TORC1*) to those in a strain-background control (cdc28-4). Growth conditions were as described for these strains31. Overexpression of Sfp1 was induced 1Â h before treatment with rapamycin (or no treatment). Owing to the decreased growth rate of these strains in the requisite conditions, samples with and without rapamycin were collected after 6Â h of treatment rather than after 4Â h of treatment. Numbers below the ECM33 and SAC6 intron blots indicate the level of each intron normalized to the level in the cdc28-4 rapamycin-treated samples, after first normalizing all lanes to the 5.8S rRNA loading control (set to 1). b, Accumulation of the ECM33 intron in rapamycin-treated, saturated-lawn and saturated-liquid cultures, detected using RNA-seq. Results showing accumulation of this intron in saturated-liquid culture but not log-phase culture are from a different biological replicate than that shown in Fig.Â 1a, b; otherwise, this panel is as in Fig.Â 1a. Rapamycin results are re-plotted from Fig.Â 3d (4Â h). c, Overlap between stable introns identified in saturated-liquid, saturated-lawn and rapamycin-treated cultures.


Extended Data Fig. 8 Evidence for spliceosome sequestration and control of ribosome production by stable introns.
a, No evidence for compensatory stable-intron expression after genomic deletion of five stable introns. The scatter plot shows the relationship between intron accumulation in rapamycin-treated, wild-type culture and in rapamycin-treated, EUHSR culture, focusing on the 25 stable introns detected afterÂ rapamycin treatment (Extended Data Table 2). The dashed line is placed at xÂ =Â y. Stable introns are indicated (closed orange circles). Points for introns deleted from the EUHSR genome (ECM33, UBC4, HNT1, SAC6 and RFA2) are labelled. All introns were pseudocounted at 0.5Â TPM. b, Aggregate stable-intron accumulation approaching that of spliceosomal RNAs. Levels of stable introns and spliceosomal RNAs (labelled closed blue circles) are plotted, comparing levels in log-phase, wild-type culture to those in rapamycin-treated, wild-type culture. The aggregate stable-intron abundance (closed orange circle, stable intron total) is also plotted. Much of the apparent accumulation observed in log-phase culture was attributable to reads from a few highly transcribed stable-intron genes (for example, RPS29A, which has an intron:mRNA TPM ratio of 107:2,030 in log phase compared to 289:319 in saturated culture). Otherwise, as in a. c, Reduced expression of mRNA of ribosomal protein genes (RPGs) when overexpressing a stable intron in rapamycin-treated EUHSR culture. The cumulative distributions of fold changes in mRNA expression (expressed as log2(mRNAÂ in EUHSR expressing ECM33 intron/mRNA in EUHSR expressing ACT1Â intron)) observed between an EUHSR culture with stable-intron (ECM33) ectopic expression and an EUHSR culture with control-intron (ACT1) ectopic expression are plotted. The distribution of changes for mRNAs of RPGs (green) differed from that ofÂ other genes (black), with generally lower expression of RPGs in the culture that overexpresses the stable intron (PÂ =Â 8.8Â Ã—Â 10âˆ’32, one-tailed Kolmogorovâ€“Smirnov test; expression cutoff, 1Â TPM in both samples). d, Less efficient splicingâ€”as detected by increased intron retentionâ€”when overexpressing a stable intron in rapamycin-treated, EUHSR culture. When analysing the dataset in c, 103 genes had significantly more intron retention when ectopically expressing the stable intron compared to when expressing the control intron (MISO, Bayes factorÂ >Â 100). The Venn diagram shows the overlap between these genes with increased intron retention and intron-containing RPGs (PÂ =Â 3.9Â Ã—Â 10âˆ’22, hypergeometric test).


Extended Data Table 1 Proteins associated with stable intronsFull size table


Extended Data Table 2 Stable introns of S. cerevisiaeFull size table
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