Structural superlubricity and ultralow friction across the length scales

Article metrics

Abstract

Structural superlubricity, a state of ultralow friction and wear between crystalline surfaces, is a fundamental phenomenon in modern tribology that defines a new approach to lubrication. Early measurements involved nanometre-scale contacts between layered materials, but recent experimental advances have extended its applicability to the micrometre scale. This is an important step towards practical utilization of structural superlubricity in future technological applications, such as durable nano- and micro-electromechanical devices, hard drives, mobile frictionless connectors, and mechanical bearings operating under extreme conditions. Here we provide an overview of the field, including its birth and main achievements, the current state of the art and the challenges to fulfilling its potential.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Timeline of major milestones in structural superlubricity research.
Fig. 2: Nanoscale structural superlubricity.
Fig. 3: Microscale superlubricity.
Fig. 4: Demonstrative applications of structural superlubricity at different length scales.

References

  1. 1.

    Dowson, D. History of Tribology 2nd edn (Professional Engineering Publishing, London, 1998).

  2. 2.

    Urbakh, M., Klafter, J., Gourdon, D. & Israelachvili, J. The nonlinear nature of friction. Nature 430, 525–528 (2004).

  3. 3.

    Bormuth, V., Varga, V., Howard, J. & Schäffer, E. Protein friction limits diffusive and directed movements of kinesin motors on microtubules. Science 325, 870–873 (2009).

  4. 4.

    Klein, J. Repair or replacement — a joint perspective. Science 323, 47–48 (2009).

  5. 5.

    Bhushan, B. Principles and Applications of Tribology 2nd edn (Wiley & Sons, New York, 2013).

  6. 6.

    Holmberg, K., Andersson, P. & Erdemir, A. Global energy consumption due to friction in passenger cars. Tribol. Int. 47, 221–234 (2012).

  7. 7.

    Berman, D., Deshmukh, S. A., Sankaranarayanan, S. K. R. S., Erdemir, A. & Sumant, A. V. Macroscale superlubricity enabled by graphene nanoscroll formation. Science 348, 1118–1122 (2015). Experimental demonstration of large-scale multi-contact structural superlubricity.

  8. 8.

    Granick, S. Motions and relaxations of confined liquids. Science 253, 1374–1379 (1991).

  9. 9.

    Granick, S., Zhu, Y. & Lee, H. Slippery questions about complex fluids flowing past solids. Nat. Mater. 2, 221–227 (2003).

  10. 10.

    Raviv, U. & Klein, J. Fluidity of bound hydration layers. Science 297, 1540–1543 (2002).

  11. 11.

    Briscoe, W. H. et al. Boundary lubrication under water. Nature 444, 191–194 (2006).

  12. 12.

    Lee, S. & Spencer, N. D. Sweet, hairy, soft, and slippery. Science 319, 575–576 (2008).

  13. 13.

    Pawlak, R. et al. Single-molecule tribology: force microscopy manipulation of a porphyrin derivative on a copper surface. ACS Nano 10, 713–722 (2016).

  14. 14.

    Kawai, S. et al. Superlubricity of graphene nanoribbons on gold surfaces. Science 351, 957–961 (2016). Experimental demonstration of nanoscale structural superlubricity in graphene nanoribbons on gold surfaces.

  15. 15.

    Sweeney, J. et al. Control of nanoscale friction on gold in an ionic liquid by a potential-dependent ionic lubricant layer. Phys. Rev. Lett. 109, 155502 (2012).

  16. 16.

    Fajardo, O. Y., Bresme, F., Kornyshev, A. A. & Urbakh, M. Electrotunable lubricity with ionic liquid nanoscale films. Sci. Rep. 5, 7698 (2015).

  17. 17.

    Rapoport, L. et al. Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature 387, 791–793 (1997).

  18. 18.

    Skinner, J., Gane, N. & Tabor, D. Micro-friction of graphite. Nature 232, 195–196 (1971).

  19. 19.

    Mate, C. M., McClelland, G. M., Erlandsson, R. & Chiang, S. Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett. 59, 1942–1945 (1987).

  20. 20.

    Erdemir, A., Eryilmaz, O. L. & Fenske, G. Synthesis of diamondlike carbon films with superlow friction and wear properties. J. Vac. Sci. Technol. A 18, 1987–1992 (2000).

  21. 21.

    Erdemir, A. & Donner, C. Tribology of diamond-like carbon films: recent progress and future prospects. J. Phys. D 39, R311–R327 (2006).

  22. 22.

    Rozman, M. G., Urbakh, M. & Klafter, J. Controlling chaotic frictional forces. Phys. Rev. E 57, 7340–7343 (1998).

  23. 23.

    Socoliuc, A. et al. Atomic-scale control of friction by actuation of nanometer-sized contacts. Science 313, 207–210 (2006).

  24. 24.

    Lantz, M. A., Wiesmann, D. & Gotsmann, B. Dynamic superlubricity and the elimination of wear on the nanoscale. Nat. Nanotechnol. 4, 586–591 (2009).

  25. 25.

    Müser, M. H. Structural lubricity: role of dimension and symmetry. Europhys. Lett. 66, 97–103 (2004). Considerations of elasticity and contact dimension for structural superlubricity.

  26. 26.

    Erdemir, A. & Martin, J.-M. (eds) Superlubricity (Elsevier, Amsterdam, 2007).

  27. 27.

    Shinjo, K. & Hirano, M. Dynamics of friction — superlubric state. Surf. Sci. 283, 473–478 (1993). First computational study of crystalline commensuration effects on kinetic friction reduction and coining of the term ‘superlubricity’.

  28. 28.

    Peyrard, M. & Aubry, S. Critical behaviour at the transition by breaking of analyticity in the discrete Frenkel-Kontorova model. J. Phys. C 16, 1593–1608 (1983). First theoretical prediction of elimination of static friction in incommensurate contacts.

  29. 29.

    Hirano, M., Shinjo, K., Kaneko, R. & Murata, Y. Anisotropy of frictional forces in muscovite mica. Phys. Rev. Lett. 67, 2642–2645 (1991).

  30. 30.

    Prandtl, L. Ein Gedankenmodell zur kinetischen Theorie der festen Körper. Z. Angew. Math. Mech. 8, 85–106 (1928).

  31. 31.

    Tomlinson, G. A. CVI. A molecular theory of friction. Lond. Edinb. Dublin Phil. Mag. J. Sci. 7, 905–939 (1929).

  32. 32.

    Frenkel, Y. & Kontorova, T. On the theory of plastic deformation and twinning. Phys. Z. Sowietunion 13, 1–10 (1938).

  33. 33.

    Bylinskii, A., Gangloff, D., Counts, I. & Vuletic, V. Observation of Aubry-type transition in finite atom chains via friction. Nat. Mater. 15, 717–721 (2016).

  34. 34.

    Sørensen, M. R., Jacobsen, K. W. & Stoltze, P. Simulations of atomic-scale sliding friction. Phys. Rev. B 53, 2101–2113 (1996).

  35. 35.

    Ma, M., Benassi, A., Vanossi, A. & Urbakh, M. Critical length limiting superlow friction. Phys. Rev. Lett. 114, 055501 (2015).

  36. 36.

    Sharp, T. A., Pastewka, L. & Robbins, M. O. Elasticity limits structural superlubricity in large contacts. Phys. Rev. B 93, 121402 (2016).

  37. 37.

    Dietzel, D., Brndiar, J., Štich, I. & Schirmeisen, A. Limitations of structural superlubricity: chemical bonds versus contact size. ACS Nano 11, 7642–7647 (2017).

  38. 38.

    Blatter, G., Feigel’man, M. V., Geshkenbein, V. B., Larkin, A. I. & Vinokur, V. M. Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125–1388 (1994).

  39. 39.

    Martin, J. M., Donnet, C., Le Mogne, T. & Epicier, T. Superlubricity of molybdenum disulphide. Phys. Rev. B 48, 10583–10586 (1993).

  40. 40.

    Sheehan, P. E. & Lieber, C. M. Nanotribology and nanofabrication of MoO3 structures by atomic force microscopy. Science 272, 1158–1161 (1996).

  41. 41.

    Dienwiebel, M. et al. Superlubricity of graphite. Phys. Rev. Lett. 92, 126101 (2004). First experimental demonstration of structural superlubricity at nanoscale layered material contacts.

  42. 42.

    Liu, Z. et al. Observation of microscale superlubricity in graphite. Phys. Rev. Lett. 108, 205503 (2012). First experimental demonstration of structural superlubricity in microscale graphitic contacts.

  43. 43.

    Zhang, R. et al. Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions. Nat. Nanotechnol. 8, 912–916 (2013).

  44. 44.

    Koren, E., Lörtscher, E., Rawlings, C., Knoll, A. W. & Duerig, U. Adhesion and friction in mesoscopic graphite contacts. Science 348, 679–683 (2015). Experimental demonstration of structural superlubricity in mesoscale graphitic contacts.

  45. 45.

    Liu, S.-W. et al. Robust microscale superlubricity under high contact pressure enabled by graphene-coated microsphere. Nat. Commun. 8, 14029 (2017).

  46. 46.

    Consoli, L., Knops, H. J. F. & Fasolino, A. Onset of sliding friction in incommensurate systems. Phys. Rev. Lett. 85, 302–305 (2000).

  47. 47.

    Hod, O. Interlayer commensurability and superlubricity in rigid layered materials. Phys. Rev. B 86, 075444 (2012).

  48. 48.

    Verhoeven, G. S., Dienwiebel, M. & Frenken, J. W. M. Model calculations of superlubricity of graphite. Phys. Rev. B 70, 165418 (2004).

  49. 49.

    Filippov, A. E., Dienwiebel, M., Frenken, J. W. M., Klafter, J. & Urbakh, M. Torque and twist against superlubricity. Phys. Rev. Lett. 100, 046102 (2008). Theoretical and experimental investigation of elimination of structural superlubricity due to contact reorientations.

  50. 50.

    Feng, X., Kwon, S., Park, J. Y. & Salmeron, M. Superlubric sliding of graphene nanoflakes on graphene. ACS Nano 7, 1718–1724 (2013).

  51. 51.

    Dietzel, D., Feldmann, M., Schwarz, U. D., Fuchs, H. & Schirmeisen, A. Scaling laws of structural lubricity. Phys. Rev. Lett. 111, 235502 (2013).

  52. 52.

    Müser, M. H. in Fundamentals of Friction and Wear on the Nanoscale (eds Gnecco, E. & Meyer, E.) 177–199 (Springer, Switzerland, 2007).

  53. 53.

    de Wijn, A. S. (In)commensurability, scaling, and multiplicity of friction in nanocrystals and application to gold nanocrystals on graphite. Phys. Rev. B 86, 085429 (2012).

  54. 54.

    Koren, E. & Duerig, U. Moiré scaling of the sliding force in twisted bilayer graphene. Phys. Rev. B 94, 045401 (2016).

  55. 55.

    Koren, E. & Duerig, U. Superlubricity in quasicrystalline twisted bilayer graphene. Phys. Rev. B 93, 201404 (2016).

  56. 56.

    Mandelli, D., Leven, I., Hod, O. & Urbakh, M. Sliding friction of graphene/hexagonal-boron nitride heterojunctions: a route to robust superlubricity. Sci. Rep. 7, 10851 (2017).

  57. 57.

    Bohlein, T., Mikhael, J. & Bechinger, C. Observation of kinks and antikinks in colloidal monolayers driven across ordered surfaces. Nat. Mater. 11, 126–130 (2012).

  58. 58.

    Vanossi, A., Manini, N. & Tosatti, E. Static and dynamic friction in sliding colloidal monolayers. Proc. Natl Acad. Sci. USA 109, 16429–16433 (2012); correction 109, 20774 (2012).

  59. 59.

    Li, H. et al. Superlubricity between MoS2 monolayers. Adv. Mater. 29, 1701474 (2017).

  60. 60.

    Hod, O. The registry index: a quantitative measure of materials’ interfacial commensurability. ChemPhysChem 14, 2376–2391 (2013).

  61. 61.

    Ward, M. D. Soft crystals in flatland: unraveling epitaxial growth. ACS Nano 10, 6424–6428 (2016).

  62. 62.

    Tersoff, J. Empirical interatomic potential for carbon, with applications to amorphous carbon. Phys. Rev. Lett. 61, 2879–2882 (1988).

  63. 63.

    Brenner, D. W. Tersoff-type potentials for carbon, hydrogen and oxygen. Mater. Res. Soc. Symp. Proc. 141, 59–64 (1988).

  64. 64.

    Kolmogorov, A. N. & Crespi, V. H. Smoothest bearings: interlayer sliding in multiwalled carbon nanotubes. Phys. Rev. Lett. 85, 4727–4730 (2000).

  65. 65.

    Kolmogorov, A. N. & Crespi, V. H. Registry-dependent interlayer potential for graphitic systems. Phys. Rev. B 71, 235415 (2005).

  66. 66.

    Leven, I., Azuri, I., Kronik, L. & Hod, O. Inter-layer potential for hexagonal boron nitride. J. Chem. Phys. 140, 104106 (2014).

  67. 67.

    Leven, I., Guerra, R., Vanossi, A., Tosatti, E. & Hod, O. Multiwalled nanotube faceting unravelled. Nat. Nanotechnol. 11, 1082–1086 (2016).

  68. 68.

    Leven, I., Maaravi, T., Azuri, I., Kronik, L. & Hod, O. Interlayer potential for graphene/h-BN heterostructures. J. Chem. Theory Comput. 12, 2896–2905 (2016).

  69. 69.

    Vanossi, A., Manini, N., Urbakh, M., Zapperi, S. & Tosatti, E. Colloquium: Modeling friction: from nanoscale to mesoscale. Rev. Mod. Phys. 85, 529–552 (2013).

  70. 70.

    Müser, M. H., Wenning, L. & Robbins, M. O. Simple microscopic theory of Amontons’s laws for static friction. Phys. Rev. Lett. 86, 1295–1298 (2001).

  71. 71.

    Lee, C. et al. Frictional characteristics of atomically thin sheets. Science 328, 76–80 (2010).

  72. 72.

    Zheng, X. et al. Robust ultra-low-friction state of graphene via moiré superlattice confinement. Nat. Commun. 7, 13204 (2016).

  73. 73.

    Yang, J. et al. Observation of high-speed microscale superlubricity in graphite. Phys. Rev. Lett. 110, 255504 (2013).

  74. 74.

    Wang, W. et al. Measurement of the cleavage energy of graphite. Nat. Commun. 6, 7853 (2015).

  75. 75.

    Vu, C. C. et al. Observation of normal-force-independent superlubricity in mesoscopic graphite contacts. Phys. Rev. B 94, 081405 (2016).

  76. 76.

    Liu, Z. et al. A graphite nanoeraser. Nanotechnology 22, 265706 (2011).

  77. 77.

    Ma, M. et al. Diffusion through bifurcations in oscillating nano- and microscale contacts: fundamentals and applications. Phys. Rev. X 5, 031020 (2015).

  78. 78.

    van Wijk, M. M., Dienwiebel, M., Frenken, J. W. M. & Fasolino, A. Superlubric to stick-slip sliding of incommensurate graphene flakes on graphite. Phys. Rev. B 88, 235423 (2013).

  79. 79.

    Bonelli, F., Manini, N., Cadelano, E. & Colombo, L. Atomistic simulations of the sliding friction of graphene flakes. Eur. Phys. J. B 70, 449–459 (2009).

  80. 80.

    Reguzzoni, M., Fasolino, A., Molinari, E. & Righi, M. C. Friction by shear deformations in multilayer graphene. J. Phys. Chem. C 116, 21104–21108 (2012).

  81. 81.

    Gao, W. & Tkatchenko, A. Sliding mechanisms in multilayered hexagonal boron nitride and graphene: the effects of directionality, thickness, and sliding constraints. Phys. Rev. Lett. 114, 096101 (2015).

  82. 82.

    Ouyang, W., Ma, M., Zheng, Q. & Urbakh, M. Frictional properties of nanojunctions including atomically thin sheets. Nano Lett. 16, 1878–1883 (2016).

  83. 83.

    Annett, J. & Cross, G. L. W. Self-assembly of graphene ribbons by spontaneous self-tearing and peeling from a substrate. Nature 535, 271–275 (2016).

  84. 84.

    Kim, W. K. & Falk, M. L. Atomic-scale simulations on the sliding of incommensurate surfaces: the breakdown of superlubricity. Phys. Rev. B 80, 235428 (2009).

  85. 85.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

  86. 86.

    Leven, I., Krepel, D., Shemesh, O. & Hod, O. Robust superlubricity in graphene/h-BN heterojunctions. J. Phys. Chem. Lett. 4, 115–120 (2013). Theoretical prediction of robust structural superlubricity in layered material heterojunctions.

  87. 87.

    Ansari, N., Nazari, F. & Illas, F. Role of structural symmetry breaking in the structurally induced robust superlubricity of graphene and h-BN homo- and hetero-junctions. Carbon 96, 911–918 (2016).

  88. 88.

    Song, Y. et al. Robust microscale superlubricity in graphite/hexagonal boron nitride layered heterojunctions. Nat. Mater. 17, 894–899 (2018).

  89. 89.

    de Wijn, A. S., Fasolino, A., Filippov, A. E. & Urbakh, M. Low friction and rotational dynamics of crystalline flakes in solid lubrication. Eur. Phys. Lett. 95, 66002 (2011).

  90. 90.

    Woods, C. R. et al. Macroscopic self-reorientation of interacting two-dimensional crystals. Nat. Commun. 7, 10800 (2016).

  91. 91.

    Zheng, Q. et al. Self-retracting motion of graphite microflakes. Phys. Rev. Lett. 100, 067205 (2008).

  92. 92.

    Cumings, J. & Zettl, A. Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science 289, 602–604 (2000).

  93. 93.

    Zheng, Q. & Jiang, Q. Multiwalled carbon nanotubes as gigahertz oscillators. Phys. Rev. Lett. 88, 045503 (2002).

  94. 94.

    Lee, J.-H. et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344, 286–289 (2014).

  95. 95.

    Wijk, M. M. v., Schuring, A., Katsnelson, M. I. & Fasolino, A. Relaxation of moiré patterns for slightly misaligned identical lattices: graphene on graphite. 2D Mater. 2, 034010 (2015).

  96. 96.

    Klemenz, A. et al. Atomic scale mechanisms of friction reduction and wear protection by graphene. Nano Lett. 14, 7145–7152 (2014).

  97. 97.

    Wang, Y., Guo, J., Zhang, J. & Qin, Y. Ultralow friction regime from the in situ production of a richer fullerene-like nanostructured carbon in sliding contact. RSC Advances 5, 106476–106484 (2015).

  98. 98.

    Deng, Z., Smolyanitsky, A., Li, Q., Feng, X.-Q. & Cannara, R. J. Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale. Nat. Mater. 11, 1032–1037 (2012).

  99. 99.

    Maaravi, T., Leven, I., Azuri, I., Kronik, L. & Hod, O. Interlayer potential for homogeneous graphene and hexagonal boron nitride systems: reparametrization for many-body dispersion effects. J. Phys. Chem. C 121, 22826–22835 (2017).

  100. 100.

    Urbakh, M. Friction: towards macroscale superlubricity. Nat. Nanotechnol. 8, 893–894 (2013).

  101. 101.

    Fennimore, A. M. et al. Rotational actuators based on carbon nanotubes. Nature 424, 408–410 (2003).

  102. 102.

    Sniegowski, J. J. & de Boer, M. P. IC-compatible polysilicon surface micromachining. Annu. Rev. Mater. Sci. 30, 299–333 (2000).

Download references

Acknowledgements

O.H. is grateful to the Israel Science Foundation (grant no. 1586/17), the Lise-Meitner Minerva Center for Computational Quantum Chemistry, the Center for Nanoscience and Nanotechnology at Tel-Aviv University, and The Naomi Foundation for their financial support. E.M. acknowledges support from the Swiss National Science Foundation, the Swiss Nanoscience Institute and COST Action MP1303. Q.Z. acknowledges financial support from NSFC (grant no. 11227202, 1147215), the National Basic Research Program of China (grant nos 2013CB934200 and 2010CB631005), SRFDP (grant no. 20130002110043), and the Cyrus Tang Foundation. M.U. acknowledges financial support from the Israel Science Foundation (grant no. 1141/18), COST Action MP1303, and the Center for Nanoscience and Nanotechnology at Tel-Aviv University. We thank E. Koren and A. Erdemir for sharing high-resolution versions of Fig. 3b and d, respectively.

Reviewer information

Nature thanks A. Erdemir, E. Riedo, A. Schirmeisen, S. Zapperi and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

O.H., E.M., Q.Z. and M.U. conceived the idea of writing this Perspective, devised its general structure, designed the figures, and contributed to the writing.

Correspondence to Oded Hod or Quanshui Zheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.