Article | Published:

Comprehensive measurement of pp-chain solar neutrinos

Naturevolume 562pages505510 (2018) | Download Citation


About 99 per cent of solar energy is produced through sequences of nuclear reactions that convert hydrogen into helium, starting from the fusion of two protons (the pp chain). The neutrinos emitted by five of these reactions represent a unique probe of the Sun’s internal working and, at the same time, offer an intense natural neutrino beam for fundamental physics. Here we report a complete study of the pp chain. We measure the neutrino–electron elastic-scattering rates for neutrinos produced by four reactions of the chain: the initial proton–proton fusion, the electron-capture decay of beryllium-7, the three-body proton–electron–proton (pep) fusion, here measured with the highest precision so far achieved, and the boron-8 beta decay, measured with the lowest energy threshold. We also set a limit on the neutrino flux produced by the 3He–proton fusion (hep). These measurements provide a direct determination of the relative intensity of the two primary terminations of the pp chain (pp-I and pp-II) and an indication that the temperature profile in the Sun is more compatible with solar models that assume high surface metallicity. We also determine the survival probability of solar electron neutrinos at different energies, thus probing simultaneously and with high precision the neutrino flavour-conversion paradigm, both in vacuum and in matter-dominated regimes.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The datasets generated during the current study are freely available in the repository Additional information is available from the Borexino Collaboration spokesperson ( upon reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Atkinson, R. & Houtermans, F. Zur Frage der Aufbaumöglichkeit der Elemente in Sternen. Z. Phys. 54, 656 (1929).

  2. 2.

    von Weizsäcker, C. F. Über Elementumwandlungen im Innern der Sterne I. Phys. Z. 38, 176 (1937).

  3. 3.

    Bethe, H. A. & Critchfield, C. L. The formation of deuterons by proton combination. Phys. Rev. 54, 248 (1938).

  4. 4.

    Bethe, H. Energy production in stars. Phys. Rev. 55, 434 (1939).

  5. 5.

    Bahcall, J. N. How the Sun Shines. (Nobel Media, Stockholm, 2000).

  6. 6.

    Fowler, W. Experimental and theoretical nuclear astrophysics; the quest for the origin of the elements: Nobel prize lecture. Rev. Mod. Phys. 56, 149 (1984).

  7. 7.

    Davis, R. Nobel lecture: a half-century with solar neutrinos. Rev. Mod. Phys. 75, 985 (2003).

  8. 8.

    Abdurashitov, J. et al. Results from SAGE (the Russian-American gallium solar neutrino experiment). Phys. Lett. B 328, 234 (1994).

  9. 9.

    Anselmann, P. et al. Solar neutrinos observed by GALLEX at Gran Sasso. Phys. Lett. B 285, 376 (1992).

  10. 10.

    Hirata, K. et al. Observation of 8B solar neutrinos in the Kamiokande-II detector. Phys. Rev. Lett. 63, 16 (1989).

  11. 11.

    Ahmad, Q. et al. Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory. Phys. Rev. Lett. 89, 011301 (2002).

  12. 12.

    Pontecorvo, B. Neutrino experiments and the problem of conservation of leptonic charge. Zh. Eksp. Teor. Fiz. 53, 1717 (1967).

  13. 13.

    Wolfenstein, L. Neutrino oscillations in matter. Phys. Rev. D 17, 2369 (1978).

  14. 14.

    Mikheyev, S. & Smirnov, A. Resonant amplification of neutrino oscillations in matter and spectroscopy of solar neutrinos. Sov. J. Nucl. Phys. 42, 913 (1985).

  15. 15.

    Bahcall, J. & Davis, R. The evolution of neutrino astronomy. Publ. Astron. Soc. Pacif. 112, 429 (2000).

  16. 16.

    Haxton, W., Hamish Robertson, R. & Serenelli, A. Solar neutrinos: status and prospects. Annu. Rev. Astron. Astrophys. 51, 21 (2013).

  17. 17.

    Bahcall, J. N. Neutrino Astrophysics (Cambridge Univ. Press, Cambridge, 1989).

  18. 18.

    Vinyoles, N. et al. A new generation of standard solar models. Astrophys. J. 835, 202 (2017).

  19. 19.

    Esteban, I. et al. Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity. J. High Energy Phys. 1701, 087 (2017).

  20. 20.

    Arpesella, C. et al. First real time detection of 7Be solar neutrinos by Borexino. Phys. Lett. B 658, 101 (2008).

  21. 21.

    Arpesella, C. et al. Direct measurement of the 7Be solar neutrino flux with 192 days of Borexino data. Phys. Rev. Lett. 101, 091302 (2008).

  22. 22.

    Bellini, G. et al. Precision measurement of the 7Be solar neutrino interaction rate in Borexino. Phys. Rev. Lett. 107, 141302 (2011).

  23. 23.

    Bellini, G. et al. First evidence of pep solar neutrinos by direct detection in Borexino. Phys. Rev. Lett. 108, 051302 (2012).

  24. 24.

    Bellini, G. et al. Measurement of the solar 8B neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the Borexino detector. Phys. Rev. D 82, 033006 (2010).

  25. 25.

    Borexino Collaboration. Neutrinos from the primary proton-proton fusion process in the Sun. Nature 512, 383 (2014).

  26. 26.

    Alimonti, G. et al. The Borexino detector at the Laboratori Nazionali del Gran Sasso. Nucl. Instrum. Meth. A 600, 568 (2009).

  27. 27.

    Bellini, G. et al. Final results of Borexino Phase I on low-energy solar neutrino spectroscopy. Phys. Rev. D 89, 112007 (2014).

  28. 28.

    Back, H. et al. Borexino calibrations: hardware, methods and results. J. Instrum. 7, P10018 (2012).

  29. 29.

    Agostini, M. et al. The Monte Carlo simulation of the Borexino detector. Astropart. Phys. 97, 136 (2018).

  30. 30.

    Bellini, G. et al. Muon and cosmogenic neutron detection in Borexino. J. Instrum. 6, P05005 (2012).

  31. 31.

    Abe, K. et al. Solar neutrino measurements in Super-Kamiokande-IV. Phys. Rev. D 94, 052010 (2016).

  32. 32.

    Aharmim, B. et al. Combined analysis of all three phases of solar neutrino data from the Sudbury Neutrino Observatory. Phys. Rev. C 88, 025501 (2013).

  33. 33.

    Bergström, J. et al. Updated determination of the solar neutrino fluxes from solar neutrino data. J. High Energy Phys. 2016, 132 (2016).

  34. 34.

    Chapman, G. A. in Encyclopedia of Planetary Science and Encyclopedia of Earth Science 748 (Springer, 1997).

  35. 35.

    Fröhlich, C. & Lean, J. The Sun’s total irradiance: cycles, trends and related climate change uncertainties since 1976. Geophys. Res. Lett. 25, 4377 (1998).

  36. 36.

    Bahcall, J. & Pena-Garay, C. A road map to solar neutrino fluxes, neutrino oscillation parameters and tests for new physics. J. High Energy Phys. 2003, 4 (2003).

  37. 37.

    Caldwell, A., Kollar, D., Kroninger, K. BAT—the Bayesian Analysis Toolkit. Comput. Phys. Commun. 180, 2197 (2009).

  38. 38.

    Feng Pen An et al. Measurement of electron antineutrinon oscillation based on 1230 days of operation of the Daya Bay experiment. Phys. Rev. D 95, 072006 (2017).

  39. 39.

    Gando, A. et al. Reactor on-off antineutrino measurement with KamLAND. Phys. Rev. D 88, 033001 (2013).

  40. 40.

    Holmgren, H. & Johnston, R. He3(α,γ)Li7 and He3(α,γ)Be7 reactions. Phys. Rev. 113, 1556 (1959).

  41. 41.

    Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481 (2009).

  42. 42.

    Caffau, E., Ludwig, H. G., Steffen, M., Freytag, B. & Bonifacio, P. Solar chemical abundances determined with a CO5BOLD 3D model atmosphere. Sol. Phys. 268, 255 (2011).

  43. 43.

    Asplund, M., Grevesse, N. & Sauval, A. J. The Solar Chemical Composition. (eds Barnes, T. G. & Bash, F. N.) Astronomical Society of the Pacific Conference Series 336, 25 (ASP, 2005).

  44. 44.

    Grevesse, N. & Sauval, A. J. Standard solar compositon. Space Sci. Rev. 85, 161 (1998).

  45. 45.

    Grevesse, N. & Noels, A. in Origin and Evolution of the Elements (eds Prantzos, N., Vangioni-Flam, E. & Casse, M.) 15 (Cambrige Univ. Press, Cambridge, 1993).

  46. 46.

    Franco, D., Consolati, G. & Trezzi, D. Positronium signature in organic liquid scintillators for neutrino experiments. Phys. Rev. C 83, 015504 (2011).

  47. 47.

    Geant4. A simulation toolkit. (2018).

  48. 48.

    Bahcall, J. N. & Pena-Garay, C. Solar models and solar neutrino oscillations. New J. Phys. 6, 63 (2004).

  49. 49.

    Blennow, M. & Coloma, P. Quantifying the sensitivity of oscillation experiments to the neutrino mass ordering. J. High Energy Phys. 03, 028 (2013).

Download references


The Borexino programme is made possible by funding from INFN (Italy), NSF (USA), BMBF, DFG, HGF and MPG (Germany), RFBR (grants 16-29-13014ofi-m and 17-02-00305A), RSF (grant 17-12-01009) (Russia), and NCN (grant number UMO 2017/26/M/ST2/00915) (Poland). We acknowledge also the computing services of the Bologna INFN-CNAF data centre and LNGS Computing and Network Service (Italy), of Jülich Supercomputing Centre at FZJ (Germany), and of ACK Cyfronet AGH Cracow (Poland). We acknowledge the hospitality and support of the Laboratori Nazionali del Gran Sasso (Italy).

Reviewer information

Nature thanks A. Serenelli and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Author notes

    • D. Bravo

    Present address: Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, Madrid, Spain

    • F. Lombardi

    Present address: Physics Department, University of California, San Diego, CA, USA

    • S. Marcocci

    Present address: Fermi National Accelerator Laboratory (FNAL), Batavia, IL, USA

    • N. Rossi

    Present address: Dipartimento di Fisica, Sapienza Università di Roma e INFN, Rome, Italy

    • Y. Suvorov

    Present address: Dipartimento di Fisica, Università degli Studi Federico II e INFN, Naples, Italy

  1. A list of participants and their affiliations appears at the end of the paper.


  1. Physik-Department and Excellence Cluster Universe, Technische Universität München, Garching, Germany

    • M. Agostini
    • , K. Altenmüller
    • , S. Appel
    • , D. Jeschke
    • , B. Neumair
    • , L. Oberauer
    • , L. Papp
    • , S. Schönert
    •  & F. von Feilitzsch
  2. National Research Centre Kurchatov Institute, Moscow, Russia

    • V. Atroshchenko
    • , E. Litvinovich
    • , G. Lukyanchenko
    • , L. Lukyanchenko
    • , I. Machulin
    • , V. Orekhov
    • , G. Raikov
    • , M. Skorokhvatov
    • , Y. Suvorov
    •  & M. Toropova
  3. Institut für Kernphysik, Forschungszentrum Jülich, Jülich, Germany

    • Z. Bagdasarian
    • , L. Ludhova
    • , Ö. Penek
    •  & M. Redchuk
  4. Dipartimento di Fisica, Università degli Studi e INFN, Milano, Italy

    • D. Basilico
    • , G. Bellini
    • , D. Bravo
    • , B. Caccianiga
    • , S. Caprioli
    • , L. Collica
    • , D. D’Angelo
    • , A. Formozov
    • , M. Giammarchi
    • , P. Lombardi
    • , E. Meroni
    • , L. Miramonti
    • , G. Ranucci
    •  & A. Re
  5. Chemical Engineering Department, Princeton University, Princeton, NJ, USA

    • J. Benziger
  6. Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany

    • D. Bick
    • , C. Hagner
    •  & B. Opitz
  7. INFN, Laboratori Nazionali del Gran Sasso, Assergi, Italy

    • G. Bonfini
    • , M. Carlini
    • , P. Cavalcante
    • , X. F. Ding
    • , F. Gabriele
    • , C. Ghiano
    • , A. Goretti
    • , D. Guffanti
    • , Aldo Ianni
    • , M. Laubenstein
    • , F. Lombardi
    • , S. Marcocci
    • , A. Razeto
    • , R. Roncin
    • , N. Rossi
    • , L. F. F. Stokes
    • , R. Tartaglia
    •  & F. L. Villante
  8. Physics Department, Princeton University, Princeton, NJ, USA

    • F. Calaprice
    • , A. Di Ludovico
    • , C. Galbiati
    •  & Andrea Ianni
  9. Dipartimento di Fisica, Università degli Studi e INFN, Genova, Italy

    • A. Caminata
    • , S. Davini
    • , L. Di Noto
    • , G. Manuzio
    • , M. Pallavicini
    • , G. Testera
    •  & S. Zavatarelli
  10. Physics Department, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA

    • P. Cavalcante
    • , R. B. Vogelaar
    •  & Z. Yokley
  11. Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics, Moscow, Russia

    • A. Chepurnov
    • , A. Formozov
    •  & M. Gromov
  12. Department of Physics and Astronomy, University of Hawaii, Honolulu, HI, USA

    • K. Choi
  13. St Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina, Russia

    • A. Derbin
    • , I. Drachnev
    • , V. Muratova
    • , N. Pilipenko
    • , D. Semenov
    •  & E. Unzhakov
  14. Gran Sasso Science Institute, L’Aquila, Italy

    • X. F. Ding
    • , C. Galbiati
    • , D. Guffanti
    •  & S. Marcocci
  15. Joint Institute for Nuclear Research, Dubna, Russia

    • K. Fomenko
    • , A. Formozov
    • , D. Korablev
    • , O. Smirnov
    • , A. Sotnikov
    • , A. Vishneva
    •  & O. Zaimidoroga
  16. AstroParticule et Cosmologie, Univ. Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cité, Paris, France

    • D. Franco
    • , T. Houdy
    • , D. Kryn
    •  & R. Roncin
  17. Department of Physics, University of Houston, Houston, TX, USA

    • E. Hungerford
    •  & G. Korga
  18. Laboratorio Subterráneo de Canfranc, Canfranc Estacion Huesca, Spain

    • Aldo Ianni
  19. M. Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland

    • A. Jany
    • , M. Misiaszek
    • , M. Wojcik
    •  & G. Zuzel
  20. Kiev Institute for Nuclear Research, Kiev, Ukraine

    • V. Kobychev
  21. National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia

    • E. Litvinovich
    • , I. Machulin
    •  & M. Skorokhvatov
  22. RWTH Aachen University, Aachen, Germany

    • L. Ludhova
    • , Ö. Penek
    •  & M. Redchuk
  23. Institute of Physics and Excellence Cluster PRISMA, Johannes Gutenberg Universität Mainz, Mainz, Germany

    • J. Martyn
    • , A. Porcelli
    • , S. Weinz
    •  & M. Wurm
  24. Department of Physics, Technische Universität Dresden, Dresden, Germany

    • M. Meyer
    • , J. Thurn
    •  & K. Zuber
  25. Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi e INFN, Perugia, Italy

    • F. Ortica
    •  & A. Romani
  26. Amherst Center for Fundamental Interactions and Physics Department, University of Massachusetts, Amherst, MA, USA

    • A. Pocar
  27. Physics and Astronomy Department, University of California Los Angeles (UCLA), Los Angeles, California, USA

    • Y. Suvorov
    •  & H. Wang
  28. Dipartimento di Scienze Fisiche e Chimiche, Università dell’Aquila, L’Aquila, Italy

    • F. L. Villante


  1. The Borexino Collaboration


The Borexino detector was designed, constructed, and commissioned by the Borexino Collaboration over the span of more than 15 years. The Borexino Collaboration sets the science goals. Scintillator purification and handling, source calibration campaigns, photomultiplier tube and electronics operations, signal processing and data acquisition, Monte Carlo simulations of the detector, and data analyses were performed by Borexino members, who also discussed and approved the scientific results. This manuscript was prepared by a subgroup of authors appointed by the Collaboration and subjected to an internal collaboration-wide review process. All authors reviewed and approved the final version of the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to B. Caccianiga.

Extended data figures and tables

  1. Extended Data Fig. 1 The Borexino detector.

    Schematic view of the ‘onion-like’ structure of the Borexino apparatus. From outside to inside: the external water tank; the Stainless Steel Sphere, where about 2,200 photomultiplier tubes (PMTs) are mounted; the outermost nylon vessel, which serves as a barrier against radon; the innermost nylon vessel, which contains 300 t of liquid scintillator, the active detection medium.

  2. Extended Data Fig. 2 Frequentist hypothesis test of MSW-LMA versus vacuum-LMA.

    The probability distribution of the test statistics t is obtained by simulating thousands of sets of Pee values (at the pp, 7Be, pep and 8B energies) in the MSW-LMA hypothesis (red curve on the left) and in the vacuum-LMA hypothesis (blue curve on the right). The dotted black line corresponds to the results of Borexino discussed in the main text.

  3. Extended Data Fig. 3 Frequentist hypothesis test for LZ and HZ.

    The probability distribution of the test statistics t is obtained by simulating thousands of fake sets of 8B–7Be values in the HZ hypothesis (red curve on the left) and in the LZ hypothesis (blue curve on the right). The dotted black line corresponds to the results of Borexino discussed in the main text.

  4. Extended Data Table 1 LER analysis systematics
  5. Extended Data Table 2 HER analysis systematics

About this article

Publication history




Issue Date


Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.