Comprehensive measurement of pp-chain solar neutrinos

Abstract

About 99 per cent of solar energy is produced through sequences of nuclear reactions that convert hydrogen into helium, starting from the fusion of two protons (the pp chain). The neutrinos emitted by five of these reactions represent a unique probe of the Sun’s internal working and, at the same time, offer an intense natural neutrino beam for fundamental physics. Here we report a complete study of the pp chain. We measure the neutrino–electron elastic-scattering rates for neutrinos produced by four reactions of the chain: the initial proton–proton fusion, the electron-capture decay of beryllium-7, the three-body proton–electron–proton (pep) fusion, here measured with the highest precision so far achieved, and the boron-8 beta decay, measured with the lowest energy threshold. We also set a limit on the neutrino flux produced by the 3He–proton fusion (hep). These measurements provide a direct determination of the relative intensity of the two primary terminations of the pp chain (pp-I and pp-II) and an indication that the temperature profile in the Sun is more compatible with solar models that assume high surface metallicity. We also determine the survival probability of solar electron neutrinos at different energies, thus probing simultaneously and with high precision the neutrino flavour-conversion paradigm, both in vacuum and in matter-dominated regimes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Nuclear fusion sequences and neutrino energy spectrum.
Fig. 2: Results of the fit used to extract the neutrino signal.
Fig. 3: Electron neutrino survival probability Pee as a function of neutrino energy.
Fig. 4: Borexino results and analysis in the Φ(7Be)–Φ(8B) space.

Data availability

The datasets generated during the current study are freely available in the repository https://bxopen.lngs.infn.it/. Additional information is available from the Borexino Collaboration spokesperson (spokesperson-borex@lngs.infn.it) upon reasonable request.

References

  1. 1.

    Atkinson, R. & Houtermans, F. Zur Frage der Aufbaumöglichkeit der Elemente in Sternen. Z. Phys. 54, 656 (1929).

    CAS  ADS  Article  Google Scholar 

  2. 2.

    von Weizsäcker, C. F. Über Elementumwandlungen im Innern der Sterne I. Phys. Z. 38, 176 (1937).

    Google Scholar 

  3. 3.

    Bethe, H. A. & Critchfield, C. L. The formation of deuterons by proton combination. Phys. Rev. 54, 248 (1938).

    CAS  ADS  Article  Google Scholar 

  4. 4.

    Bethe, H. Energy production in stars. Phys. Rev. 55, 434 (1939).

    CAS  ADS  Article  Google Scholar 

  5. 5.

    Bahcall, J. N. How the Sun Shines. https://www.nobelprize.org/nobel_prizes/themes/physics/fusion/ (Nobel Media, Stockholm, 2000).

  6. 6.

    Fowler, W. Experimental and theoretical nuclear astrophysics; the quest for the origin of the elements: Nobel prize lecture. Rev. Mod. Phys. 56, 149 (1984).

    CAS  ADS  Article  Google Scholar 

  7. 7.

    Davis, R. Nobel lecture: a half-century with solar neutrinos. Rev. Mod. Phys. 75, 985 (2003).

    CAS  ADS  Article  Google Scholar 

  8. 8.

    Abdurashitov, J. et al. Results from SAGE (the Russian-American gallium solar neutrino experiment). Phys. Lett. B 328, 234 (1994).

    CAS  ADS  Article  Google Scholar 

  9. 9.

    Anselmann, P. et al. Solar neutrinos observed by GALLEX at Gran Sasso. Phys. Lett. B 285, 376 (1992).

    CAS  ADS  Article  Google Scholar 

  10. 10.

    Hirata, K. et al. Observation of 8B solar neutrinos in the Kamiokande-II detector. Phys. Rev. Lett. 63, 16 (1989).

    CAS  ADS  Article  Google Scholar 

  11. 11.

    Ahmad, Q. et al. Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory. Phys. Rev. Lett. 89, 011301 (2002).

    CAS  ADS  Article  Google Scholar 

  12. 12.

    Pontecorvo, B. Neutrino experiments and the problem of conservation of leptonic charge. Zh. Eksp. Teor. Fiz. 53, 1717 (1967).

    CAS  Google Scholar 

  13. 13.

    Wolfenstein, L. Neutrino oscillations in matter. Phys. Rev. D 17, 2369 (1978).

    CAS  ADS  Article  Google Scholar 

  14. 14.

    Mikheyev, S. & Smirnov, A. Resonant amplification of neutrino oscillations in matter and spectroscopy of solar neutrinos. Sov. J. Nucl. Phys. 42, 913 (1985).

    Google Scholar 

  15. 15.

    Bahcall, J. & Davis, R. The evolution of neutrino astronomy. Publ. Astron. Soc. Pacif. 112, 429 (2000).

    ADS  Article  Google Scholar 

  16. 16.

    Haxton, W., Hamish Robertson, R. & Serenelli, A. Solar neutrinos: status and prospects. Annu. Rev. Astron. Astrophys. 51, 21 (2013).

    CAS  ADS  Article  Google Scholar 

  17. 17.

    Bahcall, J. N. Neutrino Astrophysics (Cambridge Univ. Press, Cambridge, 1989).

    Google Scholar 

  18. 18.

    Vinyoles, N. et al. A new generation of standard solar models. Astrophys. J. 835, 202 (2017).

    ADS  Article  Google Scholar 

  19. 19.

    Esteban, I. et al. Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity. J. High Energy Phys. 1701, 087 (2017).

    ADS  Article  Google Scholar 

  20. 20.

    Arpesella, C. et al. First real time detection of 7Be solar neutrinos by Borexino. Phys. Lett. B 658, 101 (2008).

    CAS  ADS  Article  Google Scholar 

  21. 21.

    Arpesella, C. et al. Direct measurement of the 7Be solar neutrino flux with 192 days of Borexino data. Phys. Rev. Lett. 101, 091302 (2008).

    CAS  ADS  Article  Google Scholar 

  22. 22.

    Bellini, G. et al. Precision measurement of the 7Be solar neutrino interaction rate in Borexino. Phys. Rev. Lett. 107, 141302 (2011).

    CAS  ADS  Article  Google Scholar 

  23. 23.

    Bellini, G. et al. First evidence of pep solar neutrinos by direct detection in Borexino. Phys. Rev. Lett. 108, 051302 (2012).

    CAS  ADS  Article  Google Scholar 

  24. 24.

    Bellini, G. et al. Measurement of the solar 8B neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the Borexino detector. Phys. Rev. D 82, 033006 (2010).

    ADS  Article  Google Scholar 

  25. 25.

    Borexino Collaboration. Neutrinos from the primary proton-proton fusion process in the Sun. Nature 512, 383 (2014).

    ADS  Article  Google Scholar 

  26. 26.

    Alimonti, G. et al. The Borexino detector at the Laboratori Nazionali del Gran Sasso. Nucl. Instrum. Meth. A 600, 568 (2009).

    CAS  ADS  Article  Google Scholar 

  27. 27.

    Bellini, G. et al. Final results of Borexino Phase I on low-energy solar neutrino spectroscopy. Phys. Rev. D 89, 112007 (2014).

    ADS  Article  Google Scholar 

  28. 28.

    Back, H. et al. Borexino calibrations: hardware, methods and results. J. Instrum. 7, P10018 (2012).

    Article  Google Scholar 

  29. 29.

    Agostini, M. et al. The Monte Carlo simulation of the Borexino detector. Astropart. Phys. 97, 136 (2018).

    ADS  Article  Google Scholar 

  30. 30.

    Bellini, G. et al. Muon and cosmogenic neutron detection in Borexino. J. Instrum. 6, P05005 (2012).

    Google Scholar 

  31. 31.

    Abe, K. et al. Solar neutrino measurements in Super-Kamiokande-IV. Phys. Rev. D 94, 052010 (2016).

    ADS  Article  Google Scholar 

  32. 32.

    Aharmim, B. et al. Combined analysis of all three phases of solar neutrino data from the Sudbury Neutrino Observatory. Phys. Rev. C 88, 025501 (2013).

    ADS  Article  Google Scholar 

  33. 33.

    Bergström, J. et al. Updated determination of the solar neutrino fluxes from solar neutrino data. J. High Energy Phys. 2016, 132 (2016).

    Article  Google Scholar 

  34. 34.

    Chapman, G. A. in Encyclopedia of Planetary Science and Encyclopedia of Earth Science 748 (Springer, 1997).

  35. 35.

    Fröhlich, C. & Lean, J. The Sun’s total irradiance: cycles, trends and related climate change uncertainties since 1976. Geophys. Res. Lett. 25, 4377 (1998).

    ADS  Article  Google Scholar 

  36. 36.

    Bahcall, J. & Pena-Garay, C. A road map to solar neutrino fluxes, neutrino oscillation parameters and tests for new physics. J. High Energy Phys. 2003, 4 (2003).

    Article  Google Scholar 

  37. 37.

    Caldwell, A., Kollar, D., Kroninger, K. BAT—the Bayesian Analysis Toolkit. Comput. Phys. Commun. 180, 2197 (2009).

    CAS  ADS  Article  Google Scholar 

  38. 38.

    Feng Pen An et al. Measurement of electron antineutrinon oscillation based on 1230 days of operation of the Daya Bay experiment. Phys. Rev. D 95, 072006 (2017).

    ADS  Article  Google Scholar 

  39. 39.

    Gando, A. et al. Reactor on-off antineutrino measurement with KamLAND. Phys. Rev. D 88, 033001 (2013).

    ADS  Article  Google Scholar 

  40. 40.

    Holmgren, H. & Johnston, R. He3(α,γ)Li7 and He3(α,γ)Be7 reactions. Phys. Rev. 113, 1556 (1959).

    CAS  ADS  Article  Google Scholar 

  41. 41.

    Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481 (2009).

    CAS  ADS  Article  Google Scholar 

  42. 42.

    Caffau, E., Ludwig, H. G., Steffen, M., Freytag, B. & Bonifacio, P. Solar chemical abundances determined with a CO5BOLD 3D model atmosphere. Sol. Phys. 268, 255 (2011).

    CAS  ADS  Article  Google Scholar 

  43. 43.

    Asplund, M., Grevesse, N. & Sauval, A. J. The Solar Chemical Composition. (eds Barnes, T. G. & Bash, F. N.) Astronomical Society of the Pacific Conference Series 336, 25 (ASP, 2005).

  44. 44.

    Grevesse, N. & Sauval, A. J. Standard solar compositon. Space Sci. Rev. 85, 161 (1998).

    CAS  ADS  Article  Google Scholar 

  45. 45.

    Grevesse, N. & Noels, A. in Origin and Evolution of the Elements (eds Prantzos, N., Vangioni-Flam, E. & Casse, M.) 15 (Cambrige Univ. Press, Cambridge, 1993).

  46. 46.

    Franco, D., Consolati, G. & Trezzi, D. Positronium signature in organic liquid scintillators for neutrino experiments. Phys. Rev. C 83, 015504 (2011).

    ADS  Article  Google Scholar 

  47. 47.

    Geant4. A simulation toolkit. https://geant4.web.cern.ch/ (2018).

  48. 48.

    Bahcall, J. N. & Pena-Garay, C. Solar models and solar neutrino oscillations. New J. Phys. 6, 63 (2004).

    ADS  Article  Google Scholar 

  49. 49.

    Blennow, M. & Coloma, P. Quantifying the sensitivity of oscillation experiments to the neutrino mass ordering. J. High Energy Phys. 03, 028 (2013).

    ADS  Google Scholar 

Download references

Acknowledgements

The Borexino programme is made possible by funding from INFN (Italy), NSF (USA), BMBF, DFG, HGF and MPG (Germany), RFBR (grants 16-29-13014ofi-m and 17-02-00305A), RSF (grant 17-12-01009) (Russia), and NCN (grant number UMO 2017/26/M/ST2/00915) (Poland). We acknowledge also the computing services of the Bologna INFN-CNAF data centre and LNGS Computing and Network Service (Italy), of Jülich Supercomputing Centre at FZJ (Germany), and of ACK Cyfronet AGH Cracow (Poland). We acknowledge the hospitality and support of the Laboratori Nazionali del Gran Sasso (Italy).

Reviewer information

Nature thanks A. Serenelli and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Affiliations

Consortia

Contributions

The Borexino detector was designed, constructed, and commissioned by the Borexino Collaboration over the span of more than 15 years. The Borexino Collaboration sets the science goals. Scintillator purification and handling, source calibration campaigns, photomultiplier tube and electronics operations, signal processing and data acquisition, Monte Carlo simulations of the detector, and data analyses were performed by Borexino members, who also discussed and approved the scientific results. This manuscript was prepared by a subgroup of authors appointed by the Collaboration and subjected to an internal collaboration-wide review process. All authors reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to B. Caccianiga.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 The Borexino detector.

Schematic view of the ‘onion-like’ structure of the Borexino apparatus. From outside to inside: the external water tank; the Stainless Steel Sphere, where about 2,200 photomultiplier tubes (PMTs) are mounted; the outermost nylon vessel, which serves as a barrier against radon; the innermost nylon vessel, which contains 300 t of liquid scintillator, the active detection medium.

Extended Data Fig. 2 Frequentist hypothesis test of MSW-LMA versus vacuum-LMA.

The probability distribution of the test statistics t is obtained by simulating thousands of sets of Pee values (at the pp, 7Be, pep and 8B energies) in the MSW-LMA hypothesis (red curve on the left) and in the vacuum-LMA hypothesis (blue curve on the right). The dotted black line corresponds to the results of Borexino discussed in the main text.

Extended Data Fig. 3 Frequentist hypothesis test for LZ and HZ.

The probability distribution of the test statistics t is obtained by simulating thousands of fake sets of 8B–7Be values in the HZ hypothesis (red curve on the left) and in the LZ hypothesis (blue curve on the right). The dotted black line corresponds to the results of Borexino discussed in the main text.

Extended Data Table 1 LER analysis systematics
Extended Data Table 2 HER analysis systematics

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

The Borexino Collaboration., Agostini, M., Altenmüller, K. et al. Comprehensive measurement of pp-chain solar neutrinos. Nature 562, 505–510 (2018). https://doi.org/10.1038/s41586-018-0624-y

Download citation

Keywords

  • Solar Neutrino
  • Neutrino Flux
  • Matter-dominated Regime
  • Borexino
  • Electron Neutrino Survival Probability

Further reading

  • The neutrino magnetic moment portal: cosmology, astrophysics, and direct detection

    • Vedran Brdar
    • , Admir Greljo
    • , Joachim Kopp
    •  & Toby Opferkuch

    Journal of Cosmology and Astroparticle Physics (2021)

  • Particle identification at MeV energies in JUNO

    • H. Rebber
    • , L. Ludhova
    • , B. Wonsak
    •  & Y. Xu

    Journal of Instrumentation (2021)

  • Science and technology in very low energy neutrino physics with Borexino

    • Gianpaolo Bellini
    • , Aldo Ianni
    •  & Gioacchino Ranucci

    Physics Reports (2021)

  • Feasibility and physics potential of detecting 8B solar neutrinos at JUNO

    • Angel Abusleme
    • , Thomas Adam
    • , Shakeel Ahmad
    • , Sebastiano Aiello
    • , Muhammad Akram
    • , Nawab Ali
    • , Fengpeng An
    • , Guangpeng An
    • , Qi An
    • , Giuseppe Andronico
    • , Nikolay Anfimov
    • , Vito Antonelli
    • , Tatiana Antoshkina
    • , Burin Asavapibhop
    • , João Pedro Athayde Marcondes de André
    • , Didier Auguste
    • , Andrej Babic
    • , Wander Baldini
    • , Andrea Barresi
    • , Eric Baussan
    • , Marco Bellato
    • , Antonio Bergnoli
    • , Enrico Bernieri
    • , David Biare
    • , Thilo Birkenfeld
    • , Sylvie Blin
    • , David Blum
    • , Simon Blyth
    • , Anastasia Bolshakova
    • , Mathieu Bongrand
    • , Clément Bordereau
    • , Dominique Breton
    • , Augusto Brigatti
    • , Riccardo Brugnera
    • , Riccardo Bruno
    • , Antonio Budano
    • , Max Buesken
    • , Mario Buscemi
    • , Jose Busto
    • , Ilya Butorov
    • , Anatael Cabrera
    • , Hao Cai
    • , Xiao Cai
    • , Yanke Cai
    • , Zhiyan Cai
    • , Antonio Cammi
    • , Agustin Campeny
    • , Chuanya Cao
    • , Guofu Cao
    • , Jun Cao
    • , Rossella Caruso
    • , Cédric Cerna
    • , Jinfan Chang
    • , Yun Chang
    • , Pingping Chen
    • , Po-An Chen
    • , Shaomin Chen
    • , Shenjian Chen
    • , Xurong Chen
    • , Yi-Wen Chen
    • , Yixue Chen
    • , Yu Chen
    • , Zhang Chen
    • , Jie Cheng
    • , Yaping Cheng
    • , Alexander Chepurnov
    • , Davide Chiesa
    • , Pietro Chimenti
    • , Artem Chukanov
    • , Anna Chuvashova
    • , Gérard Claverie
    • , Catia Clementi
    • , Barbara Clerbaux
    • , Selma Conforti Di Lorenzo
    • , Daniele Corti
    • , Salvatore Costa
    • , Flavio Dal Corso
    • , Christophe De La Taille
    • , Jiawei Deng
    • , Zhi Deng
    • , Ziyan Deng
    • , Wilfried Depnering
    • , Marco Diaz
    • , Xuefeng Ding
    • , Yayun Ding
    • , Bayu Dirgantara
    • , Sergey Dmitrievsky
    • , Tadeas Dohnal
    • , Georgy Donchenko
    • , Jianmeng Dong
    • , Damien Dornic
    • , Evgeny Doroshkevich
    • , Marcos Dracos
    • , Frédéric Druillole
    • , Shuxian Du
    • , Stefano Dusini
    • , Martin Dvorak
    • , Timo Enqvist
    • , Heike Enzmann
    • , Andrea Fabbri
    • , Lukas Fajt
    • , Donghua Fan
    • , Lei Fan
    • , Can Fang
    • , Jian Fang
    • , Marco Fargetta
    • , Anna Fatkina
    • , Dmitry Fedoseev
    • , Vladko Fekete
    • , Li-Cheng Feng
    • , Qichun Feng
    • , Richard Ford
    • , Andrey Formozov
    • , Amélie Fournier
    • , Haonan Gan
    • , Feng Gao
    • , Alberto Garfagnini
    • , Alexandre Göttel
    • , Christoph Genster
    • , Marco Giammarchi
    • , Agnese Giaz
    • , Nunzio Giudice
    • , Franco Giuliani
    • , Maxim Gonchar
    • , Guanghua Gong
    • , Hui Gong
    • , Oleg Gorchakov
    • , Yuri Gornushkin
    • , Marco Grassi
    • , Christian Grewing
    • , Maxim Gromov
    • , Vasily Gromov
    • , Minghao Gu
    • , Xiaofei Gu
    • , Yu Gu
    • , Mengyun Guan
    • , Nunzio Guardone
    • , Maria Gul
    • , Cong Guo
    • , Jingyuan Guo
    • , Wanlei Guo
    • , Xinheng Guo
    • , Yuhang Guo
    • , Paul Hackspacher
    • , Caren Hagner
    • , Ran Han
    • , Yang Han
    • , Miao He
    • , Wei He
    • , Tobias Heinz
    • , Patrick Hellmuth
    • , Yuekun Heng
    • , Rafael Herrera
    • , Daojin Hong
    • , YuenKeung Hor
    • , Shaojing Hou
    • , Yee Hsiung
    • , Bei-Zhen Hu
    • , Hang Hu
    • , Jianrun Hu
    • , Jun Hu
    • , Shouyang Hu
    • , Tao Hu
    • , Zhuojun Hu
    • , Chunhao Huang
    • , Guihong Huang
    • , Hanxiong Huang
    • , Qinhua Huang
    • , Wenhao Huang
    • , Xingtao Huang
    • , Yongbo Huang
    • , Jiaqi Hui
    • , Wenju Huo
    • , Cédric Huss
    • , Safeer Hussain
    • , Antonio Insolia
    • , Ara Ioannisian
    • , Daniel Ioannisyan
    • , Roberto Isocrate
    • , Kuo-Lun Jen
    • , Xiaolu Ji
    • , Xingzhao Ji
    • , Huihui Jia
    • , Junji Jia
    • , Siyu Jian
    • , Di Jiang
    • , Xiaoshan Jiang
    • , Ruyi Jin
    • , Xiaoping Jing
    • , Cécile Jollet
    • , Jari Joutsenvaara
    • , Sirichok Jungthawan
    • , Leonidas Kalousis
    • , Philipp Kampmann
    • , Li Kang
    • , Michael Karagounis
    • , Narine Kazarian
    • , Amir Khan
    • , Waseem Khan
    • , Khanchai Khosonthongkee
    • , Patrick Kinz
    • , Denis Korablev
    • , Konstantin Kouzakov
    • , Alexey Krasnoperov
    • , Svetlana Krokhaleva
    • , Zinovy Krumshteyn
    • , Andre Kruth
    • , Nikolay Kutovskiy
    • , Pasi Kuusiniemi
    • , Tobias Lachenmaier
    • , Cecilia Landini
    • , Sébastien Leblanc
    • , Frederic Lefevre
    • , Liping Lei
    • , Ruiting Lei
    • , Rupert Leitner
    • , Jason Leung
    • , Demin Li
    • , Fei Li
    • , Fule Li
    • , Haitao Li
    • , Huiling Li
    • , Jiaqi Li
    • , Jin Li
    • , Kaijie Li
    • , Mengzhao Li
    • , Nan Li
    • , Nan Li
    • , Qingjiang Li
    • , Ruhui Li
    • , Shanfeng Li
    • , Shuaijie Li
    • , Tao Li
    • , Weidong Li
    • , Weiguo Li
    • , Xiaomei Li
    • , Xiaonan Li
    • , Xinglong Li
    • , Yi Li
    • , Yufeng Li
    • , Zhibing Li
    • , Ziyuan Li
    • , Hao Liang
    • , Hao Liang
    • , Jingjing Liang
    • , Jiajun Liao
    • , Daniel Liebau
    • , Ayut Limphirat
    • , Sukit Limpijumnong
    • , Guey-Lin Lin
    • , Shengxin Lin
    • , Tao Lin
    • , Jiajie Ling
    • , Ivano Lippi
    • , Fang Liu
    • , Haidong Liu
    • , Hongbang Liu
    • , Hongjuan Liu
    • , Hongtao Liu
    • , Hu Liu
    • , Hui Liu
    • , Jianglai Liu
    • , Jinchang Liu
    • , Min Liu
    • , Qian Liu
    • , Qin Liu
    • , Runxuan Liu
    • , Shuangyu Liu
    • , Shubin Liu
    • , Shulin Liu
    • , Xiaowei Liu
    • , Yan Liu
    • , Alexey Lokhov
    • , Paolo Lombardi
    • , Claudio Lombardo
    • , Kai Loo
    • , Chuan Lu
    • , Haoqi Lu
    • , Jingbin Lu
    • , Junguang Lu
    • , Shuxiang Lu
    • , Xiaoxu Lu
    • , Bayarto Lubsandorzhiev
    • , Sultim Lubsandorzhiev
    • , Livia Ludhova
    • , Fengjiao Luo
    • , Guang Luo
    • , Pengwei Luo
    • , Shu Luo
    • , Wuming Luo
    • , Vladimir Lyashuk
    • , Qiumei Ma
    • , Si Ma
    • , Xiaoyan Ma
    • , Xubo Ma
    • , Jihane Maalmi
    • , Yury Malyshkin
    • , Fabio Mantovani
    • , Francesco Manzali
    • , Xin Mao
    • , Yajun Mao
    • , Stefano M. Mari
    • , Filippo Marini
    • , Sadia Marium
    • , Cristina Martellini
    • , Gisele Martin-Chassard
    • , Agnese Martini
    • , Davit Mayilyan
    • , Axel Müller
    • , Ints Mednieks
    • , Yue Meng
    • , Anselmo Meregaglia
    • , Emanuela Meroni
    • , David Meyhöfer
    • , Mauro Mezzetto
    • , Jonathan Miller
    • , Lino Miramonti
    • , Salvatore Monforte
    • , Paolo Montini
    • , Michele Montuschi
    • , Nikolay Morozov
    • , Pavithra Muralidharan
    • , Massimiliano Nastasi
    • , Dmitry V. Naumov
    • , Elena Naumova
    • , Igor Nemchenok
    • , Alexey Nikolaev
    • , Feipeng Ning
    • , Zhe Ning
    • , Hiroshi Nunokawa
    • , Lothar Oberauer
    • , Juan Pedro Ochoa-Ricoux
    • , Alexander Olshevskiy
    • , Domizia Orestano
    • , Fausto Ortica
    • , Hsiao-Ru Pan
    • , Alessandro Paoloni
    • , Nina Parkalian
    • , Sergio Parmeggiano
    • , Teerapat Payupol
    • , Yatian Pei
    • , Nicomede Pelliccia
    • , Anguo Peng
    • , Haiping Peng
    • , Frédéric Perrot
    • , Pierre-Alexandre Petitjean
    • , Fabrizio Petrucci
    • , Luis Felipe Piñeres Rico
    • , Oliver Pilarczyk
    • , Artyom Popov
    • , Pascal Poussot
    • , Wathan Pratumwan
    • , Ezio Previtali
    • , Fazhi Qi
    • , Ming Qi
    • , Sen Qian
    • , Xiaohui Qian
    • , Hao Qiao
    • , Zhonghua Qin
    • , Shoukang Qiu
    • , Muhammad Rajput
    • , Gioacchino Ranucci
    • , Neill Raper
    • , Alessandra Re
    • , Henning Rebber
    • , Abdel Rebii
    • , Bin Ren
    • , Jie Ren
    • , Taras Rezinko
    • , Barbara Ricci
    • , Markus Robens
    • , Mathieu Roche
    • , Narongkiat Rodphai
    • , Aldo Romani
    • , Bedřich Roskovec
    • , Christian Roth
    • , Xiangdong Ruan
    • , Xichao Ruan
    • , Saroj Rujirawat
    • , Arseniy Rybnikov
    • , Andrey Sadovsky
    • , Paolo Saggese
    • , Giuseppe Salamanna
    • , Simone Sanfilippo
    • , Anut Sangka
    • , Nuanwan Sanguansak
    • , Utane Sawangwit
    • , Julia Sawatzki
    • , Fatma Sawy
    • , Michaela Schever
    • , Jacky Schuler
    • , Cédric Schwab
    • , Konstantin Schweizer
    • , Dmitry Selivanov
    • , Alexandr Selyunin
    • , Andrea Serafini
    • , Giulio Settanta
    • , Mariangela Settimo
    • , Muhammad Shahzad
    • , Vladislav Sharov
    • , Gang Shi
    • , Jingyan Shi
    • , Yongjiu Shi
    • , Vitaly Shutov
    • , Andrey Sidorenkov
    • , Fedor Šimkovic
    • , Chiara Sirignano
    • , Jaruchit Siripak
    • , Monica Sisti
    • , Maciej Slupecki
    • , Mikhail Smirnov
    • , Oleg Smirnov
    • , Thiago Sogo-Bezerra
    • , Julanan Songwadhana
    • , Boonrucksar Soonthornthum
    • , Albert Sotnikov
    • , Ondrej Sramek
    • , Warintorn Sreethawong
    • , Achim Stahl
    • , Luca Stanco
    • , Konstantin Stankevich
    • , Dušan Štefánik
    • , Hans Steiger
    • , Jochen Steinmann
    • , Tobias Sterr
    • , Matthias Raphael Stock
    • , Virginia Strati
    • , Alexander Studenikin
    • , Gongxing Sun
    • , Shifeng Sun
    • , Xilei Sun
    • , Yongjie Sun
    • , Yongzhao Sun
    • , Narumon Suwonjandee
    • , Michal Szelezniak
    • , Jian Tang
    • , Qiang Tang
    • , Quan Tang
    • , Xiao Tang
    • , Alexander Tietzsch
    • , Igor Tkachev
    • , Tomas Tmej
    • , Konstantin Treskov
    • , Andrea Triossi
    • , Giancarlo Troni
    • , Wladyslaw Trzaska
    • , Cristina Tuve
    • , Stefan van Waasen
    • , Johannes van den Boom
    • , Guillaume Vanroyen
    • , Nikolaos Vassilopoulos
    • , Vadim Vedin
    • , Giuseppe Verde
    • , Maxim Vialkov
    • , Benoit Viaud
    • , Cristina Volpe
    • , Vit Vorobel
    • , Lucia Votano
    • , Pablo Walker
    • , Caishen Wang
    • , Chung-Hsiang Wang
    • , En Wang
    • , Guoli Wang
    • , Jian Wang
    • , Jun Wang
    • , Kunyu Wang
    • , Lu Wang
    • , Meifen Wang
    • , Meng Wang
    • , Meng Wang
    • , Ruiguang Wang
    • , Siguang Wang
    • , Wei Wang
    • , Wei Wang
    • , Wenshuai Wang
    • , Xi Wang
    • , Xiangyue Wang
    • , Yangfu Wang
    • , Yaoguang Wang
    • , Yi Wang
    • , Yi Wang
    • , Yifang Wang
    • , Yuanqing Wang
    • , Yuman Wang
    • , Zhe Wang
    • , Zheng Wang
    • , Zhimin Wang
    • , Zongyi Wang
    • , Apimook Watcharangkool
    • , Lianghong Wei
    • , Wei Wei
    • , Yadong Wei
    • , Liangjian Wen
    • , Christopher Wiebusch
    • , Steven Chan-Fai Wong
    • , Bjoern Wonsak
    • , Diru Wu
    • , Fangliang Wu
    • , Qun Wu
    • , Wenjie Wu
    • , Zhi Wu
    • , Michael Wurm
    • , Jacques Wurtz
    • , Christian Wysotzki
    • , Yufei Xi
    • , Dongmei Xia
    • , Yuguang Xie
    • , Zhangquan Xie
    • , Zhizhong Xing
    • , Benda Xu
    • , Donglian Xu
    • , Fanrong Xu
    • , Jilei Xu
    • , Jing Xu
    • , Meihang Xu
    • , Yin Xu
    • , Yu Xu
    • , Baojun Yan
    • , Xiongbo Yan
    • , Yupeng Yan
    • , Anbo Yang
    • , Changgen Yang
    • , Huan Yang
    • , Jie Yang
    • , Lei Yang
    • , Xiaoyu Yang
    • , Yifan Yang
    • , Haifeng Yao
    • , Zafar Yasin
    • , Jiaxuan Ye
    • , Mei Ye
    • , Ugur Yegin
    • , Frédéric Yermia
    • , Peihuai Yi
    • , Xiangwei Yin
    • , Zhengyun You
    • , Boxiang Yu
    • , Chiye Yu
    • , Chunxu Yu
    • , Hongzhao Yu
    • , Miao Yu
    • , Xianghui Yu
    • , Zeyuan Yu
    • , Chengzhuo Yuan
    • , Ying Yuan
    • , Zhenxiong Yuan
    • , Ziyi Yuan
    • , Baobiao Yue
    • , Noman Zafar
    • , Andre Zambanini
    • , Pan Zeng
    • , Shan Zeng
    • , Tingxuan Zeng
    • , Yuda Zeng
    • , Liang Zhan
    • , Feiyang Zhang
    • , Guoqing Zhang
    • , Haiqiong Zhang
    • , Honghao Zhang
    • , Jiawen Zhang
    • , Jie Zhang
    • , Jingbo Zhang
    • , Peng Zhang
    • , Qingmin Zhang
    • , Shiqi Zhang
    • , Tao Zhang
    • , Xiaomei Zhang
    • , Xuantong Zhang
    • , Yan Zhang
    • , Yinhong Zhang
    • , Yiyu Zhang
    • , Yongpeng Zhang
    • , Yuanyuan Zhang
    • , Yumei Zhang
    • , Zhenyu Zhang
    • , Zhijian Zhang
    • , Fengyi Zhao
    • , Jie Zhao
    • , Rong Zhao
    • , Shujun Zhao
    • , Tianchi Zhao
    • , Dongqin Zheng
    • , Hua Zheng
    • , Minshan Zheng
    • , Yangheng Zheng
    • , Weirong Zhong
    • , Jing Zhou
    • , Li Zhou
    • , Nan Zhou
    • , Shun Zhou
    • , Xiang Zhou
    • , Jiang Zhu
    • , Kejun Zhu
    • , Honglin Zhuang
    • , Liang Zong
    • , Jiaheng Zou
    •  & (JUNO Collaboration)

    Chinese Physics C (2021)

  • Observing EeV neutrinos through Earth: GZK and the anomalous ANITA events

    • Ibrahim Safa
    • , Alex Pizzuto
    • , Carlos A. Argüelles
    • , Francis Halzen
    • , Raamis Hussain
    • , Ali Kheirandish
    •  & Justin Vandenbroucke

    Journal of Cosmology and Astroparticle Physics (2020)

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing