A two per cent Hubble constant measurement from standard sirens within five years



Gravitational-wave detections provide a novel way to determine the Hubble constant1,2,3, which is the current rate of expansion of the Universe. This ‘standard siren’ method, with the absolute distance calibration provided by the general theory of relativity, was used to measure the Hubble constant using the gravitational-wave detection of the binary neutron-star merger, GW170817, by the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo4, combined with optical identification of the host galaxy5,6 NGC 4993. This independent measurement is of particular interest given the discrepancy between the value of the Hubble constant determined using type Ia supernovae via the local distance ladder (73.24 ± 1.74 kilometres per second per megaparsec) and the value determined from cosmic microwave background observations (67.4 ± 0.5 kilometres per second per megaparsec): these values differ7,8 by about 3σ. Local distance ladder observations may achieve a precision of one per cent within five years, but at present there are no indications that further observations will substantially reduce the existing discrepancies9. Here we show that additional gravitational-wave detections by LIGO and Virgo can be expected to constrain the Hubble constant to a precision of approximately two per cent within five years and approximately one per cent within a decade. This is because observing gravitational waves from the merger of two neutron stars, together with the identification of a host galaxy, enables a direct measurement of the Hubble constant independent of the systematics associated with other available methods. In addition to clarifying the discrepancy between existing low-redshift (local ladder) and high-redshift (cosmic microwave background) measurements, a precision measurement of the Hubble constant is of crucial value in elucidating the nature of dark energy10,11.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Projected number of BNS detections and corresponding fractional error for the standard siren H0 measurement.
Fig. 2: Projected fractional error for the standard siren H0 measurement for BNSs and BBHs for future gravitational-wave detector networks.

Data availability

Source Data for Figs. 1, 2 and Extended Data Fig. 1 are provided with the online version of the paper. Other data that support the findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Schutz, B. F. Determining the Hubble constant from gravitational wave observations. Nature 323, 310–311 (1986).

    ADS  Article  Google Scholar 

  2. 2.

    Holz, D. E. & Hughes, S. A. Using gravitational-wave standard sirens. Astrophys. J. 629, 15 (2005).

    ADS  Article  Google Scholar 

  3. 3.

    Dalal, N., Holz, D. E., Hughes, S. A. & Jain, B. Short GRB and binary black hole standard sirens as a probe of dark energy. Phys. Rev. D 74, 063006 (2006).

    ADS  Article  Google Scholar 

  4. 4.

    Abbott, B. P. et al. A gravitational-wave standard siren measurement of the Hubble constant. Nature 551, 85–88 (2017).

    ADS  Article  Google Scholar 

  5. 5.

    Coulter, D. A. et al. Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source. Science 358, 1556–1558 (2017).

    CAS  ADS  Article  Google Scholar 

  6. 6.

    Soares-Santos, M. et al. The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. I. Discovery of the optical counterpart using the dark energy camera. Astrophys. J. 848, L16 (2017).

    ADS  Article  Google Scholar 

  7. 7.

    Riess, A. G. et al. A 2.4% determination of the local value of the Hubble constant. Astrophys. J. 826, 56 (2016).

    ADS  Article  Google Scholar 

  8. 8.

    Aghanim, N. et al. Planck 2018 results. VI. Cosmological parameters. Preprint at https://arxiv.org/abs/1807.06209 (2018).

    Article  Google Scholar 

  9. 9.

    Riess, A. G. et al. New parallaxes of galactic Cepheids from spatially scanning the Hubble Space Telescope: implications for the Hubble constant. Astrophys. J. 855, 136 (2018).

  10. 10.

    Hu, W. Dark energy probes in light of the CMB. ASP Conf. Series 339, 215 (2005); preprint at https://arxiv.org/abs/astro-ph/0407158.

  11. 11.

    Di Valentino, E., Holz, D. E., Melchiorri, A. & Renzi, F. The cosmological impact of future constraints on H 0 from gravitational-wave standard sirens. Preprint at https://arxiv.org/abs/1806.07463 (2018).

  12. 12.

    Li, L.-X. & Paczyński, B. Transient events from neutron star mergers. Astrophys. J. 507, L59–L62 (1998).

    ADS  Article  Google Scholar 

  13. 13.

    Metzger, B. D. et al. Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei. Mon. Not. R. Astron. Soc. 406, 2650–2662 (2010).

    ADS  Article  Google Scholar 

  14. 14.

    Fong, W. & Berger, E. The locations of short gamma-ray bursts as evidence for compact object binary progenitors. Astrophys. J. 776, 18 (2013).

    ADS  Article  Google Scholar 

  15. 15.

    Hirata, C. M., Holz, D. E. & Cutler, C. Reducing the weak lensing noise for the gravitational wave Hubble diagram using the non-Gaussianity of the magnification distribution. Phys. Rev. D 81, 124046 (2010).

    ADS  Article  Google Scholar 

  16. 16.

    Nissanke, S. et al. Determining the Hubble constant from gravitational wave observations of merging compact binaries. Preprint at https://arxiv.org/abs/1307.2638 (2013).

  17. 17.

    Abbott, B. P. et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017).

    CAS  ADS  Article  Google Scholar 

  18. 18.

    Abbott, B. P. et al. GW170104: observation of a 50-solar-mass binary black hole coalescence at redshift 0.2. Phys. Rev. Lett. 118, 221101 (2017).

    CAS  ADS  Article  Google Scholar 

  19. 19.

    Dominik, M. et al. Double compact objects III: gravitational-wave detection rates. Astrophys. J. 806, 263 (2015).

    ADS  Article  Google Scholar 

  20. 20.

    Belczynski, K. et al. Compact binary merger rates: comparison with LIGO/Virgo upper limits. Astrophys. J. 819, 108 (2016).

    ADS  Article  Google Scholar 

  21. 21.

    Belczynski, K., Holz, D. E., Bulik, T. & O’Shaughnessy, R. The first gravitational-wave source from the isolated evolution of two stars in the 40–100 solar mass range. Nature 534, 512–515 (2016).

    CAS  ADS  Article  Google Scholar 

  22. 22.

    Vitale, S. & Chen, H.-Y. Measuring the Hubble constant with neutron star black hole mergers. Phys. Rev. Lett. 121, 021303 (2018).

    CAS  ADS  Article  Google Scholar 

  23. 23.

    Guidorzi, C. et al. Improved constraints on H 0 from a combined analysis of gravitational-wave and electromagnetic emission from GW170817. Astrophys. J. 851, L36 (2017).

  24. 24.

    Karki, S. et al. The Advanced LIGO photon calibrators. Rev. Sci. Instrum. 87, 114503 (2016).

    CAS  ADS  Article  Google Scholar 

  25. 25.

    Holz, D. E. & Linder, E. V. Safety in numbers: gravitational lensing degradation of the luminosity distance-redshift relation. Astrophys. J. 631, 678–688 (2005).

    ADS  Article  Google Scholar 

  26. 26.

    Abbott, B. P. et al. The rate of binary black hole mergers inferred from advanced LIGO observations surrounding GW150914. Astrophys. J. 833, L1 (2016).

    ADS  Article  Google Scholar 

  27. 27.

    Fishbach, M. & Holz, D. E. Where are LIGO’s big black holes? Astrophys. J. 851, L25 (2017).

    ADS  Article  Google Scholar 

  28. 28.

    Chen, H.-Y. & Holz, D. E. Finding the one: identifying the host galaxies of gravitational-wave sources. Preprint at https://arxiv.org/abs/1612.01471 (2016).

  29. 29.

    Abbott, B. P. et al. Prospects for observing and localizing gravitational-wave transients with advanced LIGO and advanced Virgo. Liv. Rev. Rel. 19, 1 (2016).

    CAS  Article  Google Scholar 

  30. 30.

    Veitch, J. et al. Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library. Phys. Rev. D 91, 042003 (2015).

    ADS  Article  Google Scholar 

  31. 31.

    Carrick, J., Turnbull, S. J., Lavaux, G. & Hudson, M. J. Cosmological parameters from the comparison of peculiar velocities with predictions from the 2M++ density field. Mon. Not. R. Astron. Soc. 450, 317–332 (2015).

    CAS  ADS  Article  Google Scholar 

  32. 32.

    Scolnic, D. M. et al. The complete light-curve sample of spectroscopically confirmed type Ia supernovae from Pan-STARRS1 and cosmological constraints from the combined Pantheon sample. Astrophys. J. 859, 101 (2018).

  33. 33.

    Del Pozzo, W. Inference of cosmological parameters from gravitational waves: applications to second generation interferometers. Phys. Rev. D 86, 043011 (2012).

    ADS  Article  Google Scholar 

  34. 34.

    Fosalba, P., Crocce, M., Gaztañaga, E. & Castander, F. J. The MICE grand challenge lightcone simulation—I. Dark matter clustering. Mon. Not. R. Astron. Soc. 448, 2987–3000 (2015).

    CAS  ADS  Article  Google Scholar 

  35. 35.

    Crocce, M., Castander, F. J., Gaztañaga, E., Fosalba, P. & Carretero, J. The MICE Grand Challenge lightcone simulation—II. Halo and galaxy catalogues. Mon. Not. R. Astron. Soc. 453, 1513–1530 (2015).

    CAS  ADS  Article  Google Scholar 

  36. 36.

    Fosalba, P., Gaztañaga, E., Castander, F. J. & Crocce, M. The MICE Grand Challenge light-cone simulation—III. Galaxy lensing mocks from all-sky lensing maps. Mon. Not. R. Astron. Soc. 447, 1319–1332 (2015).

    CAS  ADS  Article  Google Scholar 

  37. 37.

    Carretero, J. et al. CosmoHub and SciPIC: massive cosmological data analysis, distribution and generation using a Big Data platform. In Proc. 2017 European Physical Society Conference on High Energy Physics 488 (EPS-HEP, 2017).

    Google Scholar 

  38. 38.

    Schechter, P. An analytic expression for the luminosity function for galaxies. Astrophys. J. 203, 297–306 (1976).

    ADS  Article  Google Scholar 

  39. 39.

    Norberg, P. et al. The 2dF Galaxy Redshift Survey: the bJ-band galaxy luminosity function and survey selection function. Mon. Not. R. Astron. Soc. 336, 907–931 (2002).

    ADS  Article  Google Scholar 

  40. 40.

    Liske, J., Lemon, D. J., Driver, S. P., Cross, N. J. G. & Couch, W. J. The Millennium Galaxy Catalogue: 16 ≤ BMGC < 24 galaxy counts and the calibration of the local galaxy luminosity function. Mon. Not. R. Astron. Soc. 344, 307–324 (2003).

    ADS  Article  Google Scholar 

  41. 41.

    González, R. E., Lares, M., Lambas, D. G. & Valotto, C. The faint-end of the galaxy luminosity function in groups. Astron. Astrophys. 445, 51–58 (2006).

    ADS  Article  Google Scholar 

  42. 42.

    Kourkchi, E. & Tully, R. B. Galaxy groups within 3500 km s−1. Astrophys. J. 843, 16 (2017).

    ADS  Article  Google Scholar 

  43. 43.

    Chen, H.-Y. et al. Distance measures in gravitational-wave astrophysics and cosmology. Preprint at https://arxiv.org/abs/1709.08079 (2017).

  44. 44.

    Abbott, B. P. et al. Multi-messenger observations of a binary neutron star merger. Astrophys. J. 848, 12 (2017).

    ADS  Article  Google Scholar 

  45. 45.

    Schutz, B. F. Networks of gravitational wave detectors and three figures of merit. Class. Quant. Gravity 28, 125023 (2011).

    ADS  Article  Google Scholar 

  46. 46.

    Ade, P. A. R. et al. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016).

Download references


We acknowledge discussions with L. Blackburn, R. Essick, W. Farr and J. Gair. We were supported in part by NSF CAREER grant PHY-1151836 and NSF grant PHY-1708081. We were also supported by the Kavli Institute for Cosmological Physics at the University of Chicago through NSF grant PHY-1125897 and an endowment from the Kavli Foundation. We acknowledge the University of Chicago Research Computing Center for support of this work. H.-Y.C. was supported in part by the Black Hole Initiative at Harvard University, through a grant from the John Templeton Foundation. M.F. was supported by the NSF Graduate Research Fellowship Program under grant DGE-1746045.

Author contributions

H.-Y.C. led the project, conducted the simulations and led the analysis. M.F. provided the mathematical derivations and contributed to the analysis and results. D.E.H. conceived the project, supervised the research, and contributed to the analysis and results. All authors contributed to the draft preparation.

Author information



Corresponding author

Correspondence to Hsin-Yu Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 H0 uncertainty for BNS systems with identified counterparts and redshifts.

Each point is the H0 uncertainty \({\sigma }_{{H}_{0}}\) from a simulated detection with the Advanced HLV network operating at design sensitivity, as a function of the 90% localization volume. The colours correspond to the median of the GW distance measurement. The lower limit to the precision of individual measurements of about 3 km s−1 Mpc−1 is due to the ‘sweet spot’ between peculiar velocities and distance uncertainties, as discussed in the text. We find that, in general, closer events have smaller localization volumes and lead to better constraints on H0, although the closest events yield slightly worse constraints because of their larger fractional peculiar velocity uncertainties. Source data

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Fishbach, M. & Holz, D.E. A two per cent Hubble constant measurement from standard sirens within five years. Nature 562, 545–547 (2018). https://doi.org/10.1038/s41586-018-0606-0

Download citation


  • Standard SIR
  • Hubble Constant
  • Host Galaxy
  • BNS Mergers
  • Binary Black Hole (BBHs)

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.