Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Space-borne Bose–Einstein condensation for precision interferometry


Owing to the low-gravity conditions in space, space-borne laboratories enable experiments with extended free-fall times. Because Bose–Einstein condensates have an extremely low expansion energy, space-borne atom interferometers based on Bose–Einstein condensation have the potential to have much greater sensitivity to inertial forces than do similar ground-based interferometers. On 23 January 2017, as part of the sounding-rocket mission MAIUS-1, we created Bose–Einstein condensates in space and conducted 110 experiments central to matter-wave interferometry, including laser cooling and trapping of atoms in the presence of the large accelerations experienced during launch. Here we report on experiments conducted during the six minutes of in-space flight in which we studied the phase transition from a thermal ensemble to a Bose–Einstein condensate and the collective dynamics of the resulting condensate. Our results provide insights into conducting cold-atom experiments in space, such as precision interferometry, and pave the way to miniaturizing cold-atom and photon-based quantum information concepts for satellite-based implementation. In addition, space-borne Bose–Einstein condensation opens up the possibility of quantum gas experiments in low-gravity conditions1,2.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Set-up for space-borne Bose–Einstein condensation.
Fig. 2: Schedule for the MAIUS-1 sounding-rocket mission.
Fig. 3: Phase transition to the BEC in space and on the ground, controlled by the final radio frequency of the forced evaporation.
Fig. 4: Excitation of the centre-of-mass motion and oscillations in the shape of a space-borne BEC as a result of its transport away from an atom chip.

Data availability

Source Data for Figs. 3b, c and 4 are available with the online version of the paper.


  1. 1.

    Aguilera, D. N. et al. STE-QUEST—test of the universality of free fall using cold atom interferometry. Class. Quantum Gravity 31, 115010 (2014).

    ADS  Article  Google Scholar 

  2. 2.

    Elliott, E. R., Krutzik, M. C., Williams, J. R., Thompson, R. J. & Aveline, D. C. NASA’s Cold Atom Lab (CAL): system development and ground test status. npj Microgravity 4, 16 (2018).

    Article  Google Scholar 

  3. 3.

    Colella, R., Overhauser, A. W. & Werner, S. A. Observation of gravitationally induced quantum interference. Phys. Rev. Lett. 34, 1472–1474 (1975).

    ADS  CAS  Article  Google Scholar 

  4. 4.

    Misner, C. W., Thorne, K. S. & Wheeler, J. A. Gravitation (Princeton Univ. Press, Princeton, 1973).

    Google Scholar 

  5. 5.

    Berman, P. R. Atom Interferometry Ch. 9 (Academic Press, New York, 1997).

    Google Scholar 

  6. 6.

    Dimopoulos, S., Graham, P. W., Hogan, J. M. & Kasevich, M. A. Testing general relativity with atom interferometry. Phys. Rev. Lett. 98, 111102 (2007).

    ADS  Article  Google Scholar 

  7. 7.

    Cornell, E. A. & Wieman, C. E. Nobel lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments. Rev. Mod. Phys. 74, 875–893 (2002).

    ADS  CAS  Article  Google Scholar 

  8. 8.

    Ketterle, W. Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser. Rev. Mod. Phys. 74, 1131–1151 (2002).

    ADS  CAS  Article  Google Scholar 

  9. 9.

    Chu, S., Bjorkholm, J. E., Ashkin, A., Gordon, J. P. & Hollberg, L. W. Proposal for optically cooling atoms to temperatures of the order of 10−6 K. Opt. Lett. 11, 73–75 (1986).

    ADS  CAS  Article  Google Scholar 

  10. 10.

    Müntinga, H. et al. Interferometry with Bose-Einstein condensates in microgravity. Phys. Rev. Lett. 110, 093602 (2013).

    ADS  Article  Google Scholar 

  11. 11.

    Kovachy, T. et al. Matter wave lensing to picokelvin temperatures. Phys. Rev. Lett. 114, 143004 (2015).

    ADS  Article  Google Scholar 

  12. 12.

    Grosse, J. et al. Design and qualification of an UHV system for operation on sounding rockets. J. Vac. Sci. Technol. A 34, 031606 (2016).

    Article  Google Scholar 

  13. 13.

    Schkolnik, V. et al. A compact and robust diode laser system for atom interferometry on a sounding rocket. Appl. Phys. B 122, 217 (2016).

    ADS  Article  Google Scholar 

  14. 14.

    Kubelka-Lange, A. et al. A three-layer magnetic shielding for the MAIUS-1 mission on a sounding rocket. Rev. Sci. Instrum. 87, 063101 (2016).

    Article  Google Scholar 

  15. 15.

    Hänsel, W., Hommelhoff, P., Hänsch, T. W. & Reichel, J. Bose-Einstein condensation on a microelectronic chip. Nature 413, 498–501 (2001).

    ADS  Article  Google Scholar 

  16. 16.

    Folman, R., Krüger, P., Schmiedmayer, J., Denschlag, J. & Henkel, C. Microscopic atom optics: from wires to an atom chip. Adv. At. Mol. Opt. Phys. 48, 263–356 (2002).

    ADS  CAS  Article  Google Scholar 

  17. 17.

    Fortágh, J. & Zimmermann, C. Magnetic microtraps for ultracold atoms. Rev. Mod. Phys. 79, 235–289 (2007).

    ADS  Article  Google Scholar 

  18. 18.

    van Zoest, T. et al. Bose-Einstein condensation in microgravity. Science 328, 1540–1543 (2010).

    ADS  Article  Google Scholar 

  19. 19.

    Rudolph, J. et al. A high-flux BEC source for mobile atom interferometers. New J. Phys. 17, 065001 (2015).

    ADS  Article  Google Scholar 

  20. 20.

    Barrett, B. et al. Dual matter-wave inertial sensors in weightlessness. Nat. Commun. 7, 13786 (2016).

    ADS  CAS  Article  Google Scholar 

  21. 21.

    Liu, L. et al. In-orbit operation of an atomic clock based on laser-cooled 87Rb atoms. Nat. Commun. 9, 2760 (2018).

    ADS  Article  Google Scholar 

  22. 22.

    Gibney, E. Universe’s coolest lab set to open up quantum world. Nature 557, 151–152 (2018).

    ADS  CAS  Article  Google Scholar 

  23. 23.

    Corgier, R. et al. Fast manipulation of Bose-Einstein condensates with an atom chip. New J. Phys. 20, 055002 (2018).

    Article  Google Scholar 

  24. 24.

    Pethick, C. & Smith, H. Bose-Einstein Condensation in Dilute Gases Ch. 6 (Cambridge Univ. Press, Cambridge, 2002).

    Google Scholar 

  25. 25.

    Stringari, S. Collective excitations of a trapped Bose-condensed gas. Phys. Rev. Lett. 77, 2360–2363 (1996).

    ADS  CAS  Article  Google Scholar 

  26. 26.

    Douch, K., Wu, H., Schubert, C., Müller, J. & dos Santos, F. P. Simulation-based evaluation of a cold atom interferometry gradiometer concept for gravity field recovery. Adv. Space Res. 61, 1307–1323 (2018).

    ADS  Article  Google Scholar 

  27. 27.

    Altschul, B. et al. Quantum tests of the Einstein equivalence principle with the STE-QUEST space mission. Adv. Space Res. 55, 501–524 (2015).

    ADS  Article  Google Scholar 

  28. 28.

    Hogan, J. M. et al. An atomic gravitational wave interferometric sensor in low earth orbit (AGIS-LEO). Gen. Relativ. Gravit. 43, 1953–2009 (2011).

    ADS  MathSciNet  Article  Google Scholar 

  29. 29.

    Armengol, J. M. P. et al. Quantum communications at ESA: towards a space experiment on the ISS. Acta Astronaut. 63, 165–178 (2008).

    ADS  Article  Google Scholar 

  30. 30.

    Ren, J.-G. et al. Ground-to-satellite quantum teleportation. Nature 549, 70–73 (2017).

    ADS  CAS  Article  Google Scholar 

  31. 31.

    Liao, S.-K. et al. Satellite-to-ground quantum key distribution. Nature 549, 43–47 (2017).

    ADS  CAS  Article  Google Scholar 

  32. 32.

    Yin, J. et al. Satellite-based entanglement distribution over 1200 kilometers. Science 356, 1140–1144 (2017).

    CAS  Article  Google Scholar 

  33. 33.

    Yin, J. et al. Satellite-to-ground entanglement-based quantum key distribution. Phys. Rev. Lett. 119, 200501 (2017).

    ADS  Article  Google Scholar 

  34. 34.

    Reinaudi, G., Lahaye, T., Wang, Z. & Guéry-Odelin, D. Strong saturation absorption imaging of dense clouds of ultracold atoms. Opt. Lett. 32, 3143–3145 (2007).

    ADS  CAS  Article  Google Scholar 

Download references


This work is supported by the DLR Space Administration with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) under grant numbers DLR 50WM1131-1137, 50WM0940 and 50WM1240. W.P.S. thanks Texas A&M University for a Faculty Fellowship at the Hagler Institute for Advanced Study at Texas A&M University and Texas A&M AgriLife for support for this work. The research of the IQST is financed partially by the Ministry of Science, Research and Arts Baden-Württemberg. N.G. acknowledges funding from Niedersächsisches Vorab through the Quantum- and Nano-Metrology (QUANOMET) initiative within the project QT3. W.H. acknowledges funding from Niedersächsisches Vorab through the project Foundations of Physics and Metrology project. R.C. is a recipient of DAAD (Procope action and mobility scholarship) and a member of the IP@Leibniz programme, which is supported by LU Hanover. S.T.S. is grateful for non-monetary support from DLR MORABA before, during and after the MAIUS-1 launch. We thank E. Kajari and M. Eckardt for the chip model code and A. Roura and W. Zeller for their input. We thank C. Spindeldreier and H. Blume from IMS Hanover for FPGA software development. We acknowledge the contributions of PTB Brunswick and LNQE Hanover towards fabricating the atom chip. We thank ESRANGE Kiruna and DLR MORABA Oberpfaffenhofen for assistance during the test and launch campaign.

Reviewer information

Nature thanks L. Liu and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information




D.B., M.D.L., S.T.S., H.A., A.N.D., J.G., O.H., H.M., V.S., T.W., A.We., B.W., T.F., D.L., M.P., M.E., A.K., H.D., A.K.-L. and M.K. designed, built and tested the apparatus. D.B., M.D.L., H.A., A.N.D., J.G., O.H., H.M., V.S., T.W., A.We. and B.W., with S.T.S. as scientific lead, planned and executed the campaign. D.B., M.D.L. and S.T.S. evaluated the data. N.G., R.C., E.C., S.A., W.H. and D.B. carried out the simulations. E.M.R., W.P.S., M.D.L., D.B. and N.G. wrote the manuscript, with contributions from all authors. C.B., W.E., C.L., A.P., W.P.S., K.S., R.W., A.Wi. and P.W. are the co-principal investigators of the project, and E.M.R. its principal investigator.

Corresponding author

Correspondence to Ernst M. Rasel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Becker, D., Lachmann, M.D., Seidel, S.T. et al. Space-borne Bose–Einstein condensation for precision interferometry. Nature 562, 391–395 (2018).

Download citation


  • Bose-Einstein Condensation (BEC)
  • Matter Wave Interferometry
  • Thermal Ensemble
  • Atom Chip
  • Final Radio Frequency

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing