Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Battery-operated integrated frequency comb generator

Abstract

Optical frequency combs are broadband sources that offer mutually coherent, equidistant spectral lines with unprecedented precision in frequency and timing for an array of applications1. Frequency combs generated in microresonators through the Kerr nonlinearity require a single-frequency pump laser and have the potential to provide highly compact, scalable and power-efficient devices2,3. Here we demonstrate a device—a laser-integrated Kerr frequency comb generator—that fulfils this potential through use of extremely low-loss silicon nitride waveguides that form both the microresonator and an integrated laser cavity. Our device generates low-noise soliton-mode-locked combs with a repetition rate of 194 gigahertz at wavelengths near 1,550 nanometres using only 98 milliwatts of electrical pump power. The dual-cavity configuration that we use combines the laser and microresonator, demonstrating the flexibility afforded by close integration of these components, and together with the ultra low power consumption should enable production of highly portable and robust frequency and timing references, sensors and signal sources. This chip-based integration of microresonators and lasers should also provide tools with which to investigate the dynamics of comb and soliton generation.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Integrated frequency comb source.
Fig. 2: Characterization of the integrated III–V/Si3N4 laser.
Fig. 3: Generation of mode-locked soliton frequency combs.
Fig. 4: Modular configuration of the integrated comb source.

Data availability

The data that support the findings of this study are available from the corresponding authors on reasonable request.

References

  1. Newbury, N. R. Searching for applications with a fine-tooth comb. Nat. Photon. 5, 186–188 (2011).

    Article  ADS  CAS  Google Scholar 

  2. Del’Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).

    Article  ADS  Google Scholar 

  3. Pasquazi, A. et al. Micro-combs: a novel generation of optical sources. Phys. Rep. 729, 1–81 (2018).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  4. Jung, H., Xiong, C., Fong, K. Y., Zhang, X. & Tang, H. X. Optical frequency comb generation from aluminum nitride microring resonator. Opt. Lett. 38, 2810–2813 (2013).

    Article  ADS  CAS  Google Scholar 

  5. Savchenkov, A. A. et al. Tunable optical frequency comb with a crystalline whispering gallery mode resonator. Phys. Rev. Lett. 101, 093902 (2008).

    Article  ADS  Google Scholar 

  6. Levy, J. S. et al. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nat. Photon. 4, 37–40 (2010).

    Article  ADS  CAS  Google Scholar 

  7. Razzari, L. et al. CMOS-compatible integrated optical hyper-parametric oscillator. Nat. Photon. 4, 41–45 (2010).

    Article  ADS  CAS  Google Scholar 

  8. Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2014).

    Article  ADS  CAS  Google Scholar 

  9. Saha, K. et al. Modelocking and femtosecond pulse generation in chip-based frequency combs. Opt. Express 21, 1335–1343 (2013).

    Article  ADS  CAS  Google Scholar 

  10. Yi, X., Yang, Q.-F., Yang, K. Y., Suh, M.-G. & Vahala, K. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica 2, 1078–1085 (2015).

    Article  CAS  Google Scholar 

  11. Yu, M., Okawachi, Y., Griffith, A. G., Lipson, M. & Gaeta, A. L. Mode-locked mid-infrared frequency combs in a silicon microresonator. Optica 3, 854–860 (2016).

    Article  CAS  Google Scholar 

  12. Xue, X. et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat. Photon. 9, 594–600 (2015).

    Article  ADS  CAS  Google Scholar 

  13. Volet, N. et al. Micro-resonator soliton generated directly with a diode laser. Laser Photonics Rev. 12, 1700307 (2018).

    Article  ADS  Google Scholar 

  14. Suh, M.-G., Yang, Q.-F., Yang, K. Y., Yi, X. & Vahala, K. J. Microresonator soliton dual-comb spectroscopy. Science 354, 600–603 (2016).

    Article  ADS  CAS  Google Scholar 

  15. Dutt, A. et al. On-chip dual-comb source for spectroscopy. Sci. Adv. 4, e1701858 (2018).

    Article  ADS  Google Scholar 

  16. Yu, M. et al. Silicon-chip-based mid-infrared dual-comb spectroscopy. Nat. Commun. 9, 1869 (2018).

    Article  ADS  Google Scholar 

  17. Liang, W. et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun. 6, 7957 (2015).

    Article  CAS  Google Scholar 

  18. Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).

    Article  ADS  CAS  Google Scholar 

  19. Papp, S. B. et al. Microresonator frequency comb optical clock. Optica 1, 10–14 (2014).

    Article  CAS  Google Scholar 

  20. Suh, M.-G. & Vahala, K. J. Soliton microcomb range measurement. Science 359, 884–887 (2018).

    Article  ADS  CAS  Google Scholar 

  21. Trocha, P. et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science 359, 887–891 (2018).

    Article  ADS  CAS  Google Scholar 

  22. Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).

    Article  ADS  CAS  Google Scholar 

  23. Fang, A. W. et al. Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Opt. Express 14, 9203–9210 (2006).

    Article  ADS  CAS  Google Scholar 

  24. Van Campenhout, J. et al. Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit. Opt. Express 15, 6744–6749 (2007).

    Article  ADS  Google Scholar 

  25. Kobayashi, N. et al. Silicon photonic hybrid ring-filter external cavity wavelength tunable lasers. J. Lightwave Technol. 33, 1241–1246 (2015).

    Article  ADS  CAS  Google Scholar 

  26. Lee, J.-H. et al. Demonstration of 12.2% wall plug efficiency in uncooled single mode external-cavity tunable Si/III-V hybrid laser. Opt. Express 23, 12079–12088 (2015).

    Article  ADS  CAS  Google Scholar 

  27. Ji, X. et al. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica 4, 619–624 (2017).

    Article  Google Scholar 

  28. Stern, B., Ji, X., Dutt, A. & Lipson, M. Compact narrow-linewidth integrated laser based on a low-loss silicon nitride ring resonator. Opt. Lett. 42, 4541–4544 (2017).

    Article  ADS  Google Scholar 

  29. Oldenbeuving, R. M. et al. 25 kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity. Laser Phys. Lett. 10, 015804 (2013).

    Article  ADS  Google Scholar 

  30. Liang, W. et al. Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser. Opt. Lett. 35, 2822–2824 (2010).

    Article  ADS  CAS  Google Scholar 

  31. Pasquazi, A. et al. Self-locked optical parametric oscillation in a CMOS compatible microring resonator: a route to robust optical frequency comb generation on a chip. Opt. Express 21, 13333–13341 (2013).

    Article  ADS  Google Scholar 

  32. Johnson, A. R. et al. Microresonator-based comb generation without an external laser source. Opt. Express 22, 1394–1401 (2014).

    Article  ADS  CAS  Google Scholar 

  33. Joshi, C. et al. Thermally controlled comb generation and soliton modelocking in microresonators. Opt. Lett. 41, 2565–2568 (2016).

    Article  ADS  Google Scholar 

  34. Bao, C. et al. Nonlinear conversion efficiency in Kerr frequency comb generation. Opt. Lett. 39, 6126–6129 (2014).

    Article  ADS  Google Scholar 

  35. Yi, X., Yang, Q.-F., Yang, K. Y. & Vahala, K. Active capture and stabilization of temporal solitons in microresonators. Opt. Lett. 41, 2037–2040 (2016).

    Article  ADS  Google Scholar 

  36. Cong, G. W. et al. Power-efficient gray-scale control of silicon thermo-optic phase shifters by pulse width modulation using monolithically integrated MOSFET. In Optical Fiber Communication Conference (2015) M2B.7 (Optical Society of America, 2015).

  37. Peccianti, M. et al. Demonstration of a stable ultrafast laser based on a nonlinear microcavity. Nat. Commun. 3, 765 (2012).

    Article  CAS  Google Scholar 

  38. Hausmann, B. J. M., Bulu, I., Venkataraman, V., Deotare, P. & Lončar, M. Diamond nonlinear photonics. Nat. Photon. 8, 369–374 (2014).

    Article  ADS  CAS  Google Scholar 

  39. Webb, K. E., Erkintalo, M., Coen, S. & Murdoch, S. G. Experimental observation of coherent cavity soliton frequency combs in silica microspheres. Opt. Lett. 41, 4613–4616 (2016).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to S. Miller, C. Joshi, T. Lin, U. Dave and J. Jang for discussions and to M. Yu for help with soliton simulations. We also thank M. C. Shin and O. Jimenez for packaging advice. This work was supported by AFRL programme award number FA8650-17-P-1085; the ARPA-E ENLITENED programme (DE-AR0000843); the Defense Advanced Research Projects Agency (DARPA) under the Microsystems Technology Office Direct On-Chip Digital Optical Synthesizer (DODOS) program (N66001-16-1-4052) and the Modular Optical Aperture Building Blocks (MOABB) programme (HR0011-16-C-0107); the STTR programme (N00014-16-P-30); and the Air Force Office of Scientific Research (AFOSR) (FA9550-15-1-0303). X.J. acknowledges the China Scholarship Council for financial support. This work was performed in part at the Cornell NanoScale Facility, an NNCI member supported by NSF grant ECCS-1542081.

Reviewer information

Nature thanks W. Freude and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

B.S. conceived the work, designed and assembled the devices, performed the measurements, and prepared the manuscript. X.J. fabricated the devices. B.S. and X.J. characterized the microring transmission. Y.O. simulated the soliton combs. M.L. and A.L.G. supervised the project. All authors discussed the results and edited the manuscript.

Corresponding author

Correspondence to Michal Lipson.

Ethics declarations

Competing interests

All authors are listed as inventors in a patent application related to this work, filed by Columbia University.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Comb generation simulation at low optical power.

Shown is the simulated optical spectrum of a soliton comb generated with 700 µW optical pump power (Pin) in the bus waveguide before the microresonator. The microresonator dimensions used in the model are 730 nm × 1,800 nm with a radius of 120 µm, corresponding to a 194 GHz FSR.

Extended Data Fig. 2 Comparison of simulated and measured solitons.

a, Simulation of a single-soliton comb generated with 2 mW optical pump power in the bus waveguide before the microresonator (1.66 mW after the microresonator). The microresonator dimensions used in the model are 730 nm × 1,800 nm with a radius of 120 µm, corresponding to a 194 GHz FSR. b, Optical spectrum of a measured single-soliton comb (from Fig. 3c) with 1.66 mW pump power in the bus waveguide after the microresonator. The sech profile and comb bandwidth qualitatively match those of the simulated comb.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stern, B., Ji, X., Okawachi, Y. et al. Battery-operated integrated frequency comb generator. Nature 562, 401–405 (2018). https://doi.org/10.1038/s41586-018-0598-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-018-0598-9

Keywords

  • Frequency Comb
  • Comb Generation
  • Microresonators
  • Equidistant Spectral Lines
  • Reflective Semiconductor Optical Amplifier (RSOA)

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing