Neanderthals and Denisovans are extinct groups of hominins that separated from each other more than 390,000 years ago1,2. Here we present the genome of ‘Denisova 11’, a bone fragment from Denisova Cave (Russia)3 and show that it comes from an individual who had a Neanderthal mother and a Denisovan father. The father, whose genome bears traces of Neanderthal ancestry, came from a population related to a later Denisovan found in the cave4,5,6. The mother came from a population more closely related to Neanderthals who lived later in Europe2,7 than to an earlier Neanderthal found in Denisova Cave8, suggesting that migrations of Neanderthals between eastern and western Eurasia occurred sometime after 120,000 years ago. The finding of a first-generation Neanderthal–Denisovan offspring among the small number of archaic specimens sequenced to date suggests that mixing between Late Pleistocene hominin groups was common when they met.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Meyer, M. et al. Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins. Nature 531, 504–507 (2016).

  2. 2.

    Prüfer, K. et al. A high-coverage Neandertal genome from Vindija Cave in Croatia. Science 358, 655–658 (2017).

  3. 3.

    Brown, S. et al. Identification of a new hominin bone from Denisova Cave, Siberia using collagen fingerprinting and mitochondrial DNA analysis. Sci. Rep. 6, 23559 (2016).

  4. 4.

    Krause, J. et al. The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. Nature 464, 894–897 (2010).

  5. 5.

    Reich, D. et al. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 468, 1053–1060 (2010).

  6. 6.

    Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan individual. Science 338, 222–226 (2012).

  7. 7.

    Hajdinjak, M. et al. Reconstructing the genetic history of late Neanderthals. Nature 555, 652–656 (2018).

  8. 8.

    Prüfer, K. et al. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505, 43–49 (2014).

  9. 9.

    Higham, T. et al. The timing and spatiotemporal patterning of Neanderthal disappearance. Nature 512, 306–309 (2014).

  10. 10.

    Vandermeersch, B. & Garralda, M. D. in Continuity and Discontinuity in the Peopling of Europe: One Hundred Fifty Years of Neanderthal Study (eds Condemi, S. & Weniger, G.-C.) 113–125 (Springer, Dordrecht, 2011).

  11. 11.

    Sawyer, S. et al. Nuclear and mitochondrial DNA sequences from two Denisovan individuals. Proc. Natl Acad. Sci. USA 112, 15696–15700 (2015).

  12. 12.

    Slon, V. et al. A fourth Denisovan individual. Sci. Adv. 3, e1700186 (2017).

  13. 13.

    Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010).

  14. 14.

    Kuhlwilm, M. et al. Ancient gene flow from early modern humans into Eastern Neanderthals. Nature 530, 429–433 (2016).

  15. 15.

    Posth, C. et al. Deeply divergent archaic mitochondrial genome provides lower time boundary for African gene flow into Neanderthals. Nat. Commun. 8, 16046 (2017).

  16. 16.

    Skoglund, P. & Jakobsson, M. Archaic human ancestry in East Asia. Proc. Natl Acad. Sci. USA 108, 18301–18306 (2011).

  17. 17.

    Reich, D. et al. Denisova admixture and the first modern human dispersals into Southeast Asia and Oceania. Am. J. Hum. Genet. 89, 516–528 (2011).

  18. 18.

    Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–15763 (2013).

  19. 19.

    Korlević, P. et al. Reducing microbial and human contamination in DNA extractions from ancient bones and teeth. Biotechniques 59, 87–93 (2015).

  20. 20.

    Gansauge, M. T. & Meyer, M. Single-stranded DNA library preparation for the sequencing of ancient or damaged DNA. Nat. Protoc. 8, 737–748 (2013).

  21. 21.

    Fu, Q. et al. DNA analysis of an early modern human from Tianyuan Cave, China. Proc. Natl Acad. Sci. USA 110, 2223–2227 (2013).

  22. 22.

    Fu, Q. et al. Genome sequence of a 45,000-year-old modern human from western Siberia. Nature 514, 445–449 (2014).

  23. 23.

    Fu, Q. et al. An early modern human from Romania with a recent Neanderthal ancestor. Nature 524, 216–219 (2015).

  24. 24.

    Yang, M. A. et al. 40,000-year-old individual from Asia provides insight into early population structure in Eurasia. Curr. Biol. 27, 3202–3208 (2017).

  25. 25.

    Seguin-Orlando, A. et al. Genomic structure in Europeans dating back at least 36,200 years. Science 346, 1113–1118 (2014).

  26. 26.

    Fu, Q. et al. The genetic history of Ice Age Europe. Nature 534, 200–205 (2016).

  27. 27.

    Sikora, M. et al. Ancient genomes show social and reproductive behavior of early Upper Paleolithic foragers. Science 358, 659–662 (2017).

  28. 28.

    Mallick, S. et al. The Simons Genome Diversity Project: 300 genomes from 142 diverse populations. Nature 538, 201–206 (2016).

  29. 29.

    Scally, A. & Durbin, R. Revising the human mutation rate: implications for understanding human evolution. Nat. Rev. Genet. 13, 745–753 (2012).

  30. 30.

    Slon, V. et al. Mammalian mitochondrial capture, a tool for rapid screening of DNA preservation in faunal and undiagnostic remains, and its application to Middle Pleistocene specimens from Qesem Cave (Israel). Quat. Int. 398, 210–218 (2016).

  31. 31.

    Kircher, M., Sawyer, S. & Meyer, M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. 40, e3 (2012).

  32. 32.

    Dabney, J. & Meyer, M. Length and GC-biases during sequencing library amplification: a comparison of various polymerase-buffer systems with ancient and modern DNA sequencing libraries. Biotechniques 52, 87–94 (2012).

  33. 33.

    DeAngelis, M. M., Wang, D. G. & Hawkins, T. L. Solid-phase reversible immobilization for the isolation of PCR products. Nucleic Acids Res. 23, 4742–4743 (1995).

  34. 34.

    Slon, V. et al. Neandertal and Denisovan DNA from Pleistocene sediments. Science 356, 605–608 (2017).

  35. 35.

    Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. https://doi.org/10.1101/pdb.prot5448 (2010).

  36. 36.

    Renaud, G., Stenzel, U. & Kelso, J. leeHom: adaptor trimming and merging for Illumina sequencing reads. Nucleic Acids Res. 42, e141 (2014).

  37. 37.

    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

  38. 38.

    Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595 (2010).

Download references


We thank B. Schellbach and A. Weihmann for DNA sequencing; G. Renaud and U. Stenzel for data processing; F. Brock for the computed tomography scans; R. Barr, P. Korlević and C. Zickert for graphics; and M. Slatkin and L. Vigilant for comments on the manuscript. This work was funded by the Max Planck Society; the Max Planck Foundation (grant 31-12LMP Pääbo to S.Pä.); the European Research Council (grant agreements 694707 to S.Pä., 324139 (PalaeoChron) to T.H. and 715069 (FINDER) to K.D.); and the Russian Science Foundation (project no. 14-50-00036 to M.B.K., M.V.S. and A.P.D.).

Reviewer information

Nature thanks D. Lambert, R. Nielsen and C. Stringer for their contribution to the peer review of this work.

Author information

Author notes

  1. These authors contributed equally: Viviane Slon, Fabrizio Mafessoni, Benjamin Vernot


  1. Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany

    • Viviane Slon
    • , Fabrizio Mafessoni
    • , Benjamin Vernot
    • , Cesare de Filippo
    • , Steffi Grote
    • , Mateja Hajdinjak
    • , Stéphane Peyrégne
    • , Sarah Nagel
    • , Janet Kelso
    • , Matthias Meyer
    • , Kay Prüfer
    •  & Svante Pääbo
  2. Department of Anthropology, University of Toronto, Toronto, Ontario, Canada

    • Bence Viola
  3. Institute of Archaeology and Ethnography, Russian Academy of Sciences, Novosibirsk, Russia

    • Bence Viola
    • , Maxim B. Kozlikin
    • , Michael V. Shunkov
    •  & Anatoly P. Derevianko
  4. Max Planck Institute for the Science of Human History, Jena, Germany

    • Samantha Brown
    •  & Katerina Douka
  5. Oxford Radiocarbon Accelerator Unit, RLAHA, University of Oxford, Oxford, UK

    • Katerina Douka
    •  & Tom Higham
  6. Novosibirsk State University, Novosibirsk, Russia

    • Michael V. Shunkov


  1. Search for Viviane Slon in:

  2. Search for Fabrizio Mafessoni in:

  3. Search for Benjamin Vernot in:

  4. Search for Cesare de Filippo in:

  5. Search for Steffi Grote in:

  6. Search for Bence Viola in:

  7. Search for Mateja Hajdinjak in:

  8. Search for Stéphane Peyrégne in:

  9. Search for Sarah Nagel in:

  10. Search for Samantha Brown in:

  11. Search for Katerina Douka in:

  12. Search for Tom Higham in:

  13. Search for Maxim B. Kozlikin in:

  14. Search for Michael V. Shunkov in:

  15. Search for Anatoly P. Derevianko in:

  16. Search for Janet Kelso in:

  17. Search for Matthias Meyer in:

  18. Search for Kay Prüfer in:

  19. Search for Svante Pääbo in:


V.S. and S.N. performed the laboratory work; V.S., F.M., B.Ve., C.d.F., S.G., M.H., S.Pe., J.K., M.M., K.P. and S.Pä. analysed the genetic data; B.Vi. carried out the morphological analysis; S.B., K.D., T.H., M.B.K., M.V.S. and A.P.D. discovered Denisova 11 and provided archaeological data; V.S., K.P. and S.Pä. wrote the manuscript with input from all authors.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Viviane Slon or Svante Pääbo.

Extended data figures and tables

  1. Extended Data Fig. 1 Comparison between cortical thickness of long bones from modern humans, Neanderthals and Denisova 11.

    Maximum cortical thickness of femora, tibiae, humeri, radii and ulnae from humans from the Bronze Age and two Neanderthals compared to the minimum thickness of Denisova 11 (dashed line).

  2. Extended Data Fig. 2 Comparison of the genome of Denisova 11 and simulated genomes.

    Percentage of sites at which Denisova 11 and genomes simulated under the demographic model described in Supplementary Information 6 carry two Neanderthal alleles (NN, blue), two Denisovan alleles (DD, red) or one allele of each type (ND, purple). a, Percentages calculated for two random DNA fragments from Denisova 11 and from simulated F1, F2, Neanderthal (NF0) or Denisovan (DF0) genomes. b, Proportions of sites for the simulated genotypes, before sampling two fragments.

  3. Extended Data Fig. 3 Neanderthal and Denisovan allele proportions from Denisova 11 in 1-Mb windows.

    The y axis shows −log(P) of the deviation of Neanderthal and Denisovan allele counts from the genome-wide average (χ2 test of goodness-of-fit; see Supplementary Information 7). The colour shows the proportion of alleles matching the Neanderthal state (%N) within each 1-Mb window (100-kb steps, n = 26,414 windows).

  4. Extended Data Table 1 DNA extracts and DNA libraries prepared from the Denisova 11 specimen

Supplementary information

  1. Supplementary Information

    This file contains Supplementary Information sections 1-8, including Supplementary Text, Figures and Tables and Supplementary References. See contents page for details.

  2. Reporting Summary

About this article

Publication history







By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.