Spontaneous emission of matter waves from a tunable open quantum system

Abstract

The decay of an excited atom undergoing spontaneous photon emission into the fluctuating quantum-electrodynamic vacuum is an emblematic  example of the dynamics of an open quantum system. Recent experiments have demonstrated that the gapped photon dispersion in periodic structures, which prevents photons in certain frequency ranges from propagating, can give rise to unusual spontaneous-decay behaviour, including the formation of dissipative bound states1,2,3. So far, these effects have been restricted to the optical domain. Here we demonstrate similar behaviour in a system of artificial emitters, realized using ultracold atoms in an optical lattice, which decay by emitting matter-wave, rather than optical, radiation into free space. By controlling vacuum coupling and the excitation energy, we directly observe exponential and partly reversible non-Markovian dynamics and detect a tunable bound state that contains evanescent matter waves. Our system provides a flexible platform for simulating open-system quantum electrodynamics and for studying dissipative many-body physics with ultracold atoms4,5,6.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Realization of matter-wave emitters.
Fig. 2: Markovian regime.
Fig. 3: Non-Markovian dynamics and bound-state formation.

References

  1. 1.

    Hoeppe, U. et al. Direct observation of non-Markovian radiation dynamics in 3D bulk photonic crystals. Phys. Rev. Lett. 108, 043603 (2012).

    ADS  Article  PubMed  CAS  Google Scholar 

  2. 2.

    Hood, J. D. et al. Atom–atom interactions around the band edge of a photonic crystal waveguide. Proc. Natl Acad. Sci. USA 113, 10507–10512 (2016).

    ADS  Article  PubMed  CAS  Google Scholar 

  3. 3.

    Liu, Y. & Houck, A. A. Quantum electrodynamics near a photonic bandgap. Nat. Phys. 13, 48–52 (2017).

    Article  CAS  Google Scholar 

  4. 4.

    de Vega, I., Porras, D. & Cirac, J. I. Matter-wave emission in optical lattices: single particle and collective effects. Phys. Rev. Lett. 101, 260404 (2008).

    Article  PubMed  CAS  Google Scholar 

  5. 5.

    Navarrete-Benlloch, C., de Vega, I., Porras, D. & Cirac, J. I. Simulating quantum-optical phenomena with cold atoms in optical lattices. New J. Phys. 13, 023024 (2011).

    ADS  Article  CAS  Google Scholar 

  6. 6.

    Stewart, M., Krinner, L., Pazmiño, A. & Schneble, D. Analysis of non-Markovian coupling of a lattice-trapped atom to free space. Phys. Rev. A 95, 013626 (2017).

    ADS  Article  Google Scholar 

  7. 7.

    Weisskopf, V. & Wigner, E. Berechnung der natürlichen Linienbreite auf Grund der Diracschen Lichttheorie. Z. Phys. 63, 54–73 (1930).

    ADS  Article  MATH  CAS  Google Scholar 

  8. 8.

    Milonni, P. W. The Quantum Vacuum: An Introduction to Quantum Electrodynamics (Academic Press, San Diego, 1994).

    Google Scholar 

  9. 9.

    Meystre, P. & Sargent, M. III Elements of Quantum Optics (Springer, Berlin, 2007).

    Google Scholar 

  10. 10.

    Rivas, A., Huelga, S. F. & Plenio, M. B. Quantum non-Markovianity: characterization, quantification and detection. Rep. Prog. Phys. 77, 094001 (2014).

    ADS  MathSciNet  Article  PubMed  Google Scholar 

  11. 11.

    Rotter, I. & Bird, J. P. A review of progress in the physics of open quantum systems: theory and experiment. Rep. Prog. Phys. 78, 114001 (2015).

    ADS  Article  PubMed  CAS  Google Scholar 

  12. 12.

    Breuer, H.-P., Laine, E.-M., Piilo, J. & Vacchini, B. Non-Markovian dynamics in open quantum systems. Rev. Mod. Phys. 88, 021002 (2016).

    ADS  Article  Google Scholar 

  13. 13.

    de Vega, I. & Alonso, D. Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89, 015001 (2017).

    ADS  MathSciNet  Article  Google Scholar 

  14. 14.

    Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).

    Article  Google Scholar 

  15. 15.

    Kleppner, D. Inhibited spontaneous emission. Phys. Rev. Lett. 47, 233–236 (1981).

    ADS  Article  CAS  Google Scholar 

  16. 16.

    Miller, R. et al. Trapped atoms in cavity QED: coupling quantized light and matter. J. Phys. B 38, S551–S565 (2005).

    Article  CAS  Google Scholar 

  17. 17.

    Walther, H., Varcoe, B. T. H., Englert, B.-G. & Becker, T. Cavity quantum electrodynamics. Rep. Prog. Phys. 69, 1325–1382 (2006).

    ADS  Article  Google Scholar 

  18. 18.

    Haroche, S. & Raimond, J.-M. Exploring the Quantum: Atoms, Cavities, and Photons (Oxford Univ. Press, Oxford, 2006).

    Google Scholar 

  19. 19.

    John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987).

    ADS  Article  PubMed  CAS  Google Scholar 

  20. 20.

    Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    ADS  Article  PubMed  CAS  Google Scholar 

  21. 21.

    Lambropoulos, P., Nikolopoulos, G. M., Nielsen, T. R. & Bay, S. Fundamental quantum optics in structured reservoirs. Rep. Prog. Phys. 63, 455–503 (2000).

    ADS  Article  CAS  Google Scholar 

  22. 22.

    Tocci, M. D., Scalora, M., Bloemer, M. J., Dowling, J. P. & Bowden, C. M. Measurement of spontaneous-emission enhancement near the one-dimensional photonic band edge of semiconductor heterostructures. Phys. Rev. A 53, 2799–2803 (1996).

    ADS  Article  PubMed  CAS  Google Scholar 

  23. 23.

    Lodahl, P. et al. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature 430, 654–657 (2004).

    ADS  Article  PubMed  CAS  Google Scholar 

  24. 24.

    Liu, Q. et al. Observation of Lamb shift and modified spontaneous emission dynamics in the YBO3: Eu3+ inverse opal. Opt. Lett. 35, 2898–2900 (2010).

    ADS  Article  PubMed  CAS  Google Scholar 

  25. 25.

    Bykov, V. P. Spontaneous emission from a medium with a band spectrum. Sov. J. Quantum Electron. 4, 861–871 (1975).

    ADS  Article  Google Scholar 

  26. 26.

    John, S. & Wang, J. Quantum electrodynamics near a photonic band gap: photon bound states and dressed atoms. Phys. Rev. Lett. 64, 2418–2421 (1990).

    ADS  Article  PubMed  CAS  Google Scholar 

  27. 27.

    Douglas, J. S., Habibian, H., Hung, C.-L., Gorshkov, A. V., Kimble, H. J. & Chang, D. E. Quantum many-body models with cold atoms coupled to photonic crystals. Nat. Photon. 9, 326–331 (2015).

    ADS  Article  CAS  Google Scholar 

  28. 28.

    Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954).

    ADS  Article  MATH  CAS  Google Scholar 

  29. 29.

    Rzążerewski, K., Lewenstein, M. & Eberly, J. H. Threshold effects in strong-field photodetachment. J. Phys. B 15, L661–L667 (1982).

    ADS  Article  Google Scholar 

  30. 30.

    Lewenstein, M. & Rzążewski, K. Quantum anti-Zeno effect. Phys. Rev. A 61, 022105 (2000).

    ADS  Article  Google Scholar 

  31. 31.

    Bruderer, M., Klein, A. Clark, S. R. & Jaksch, D. Polaron physics in optical lattices. Phys. Rev. A 76, 011605, 2007.

    ADS  Article  CAS  Google Scholar 

  32. 32.

    Gadway, B., Pertot, D., Reimann, R. & Schneble, D. Superfluidity of interacting bosonic mixtures in optical lattices. Phys. Rev. Lett. 105, 045303 (2010).

    ADS  Article  PubMed  CAS  Google Scholar 

  33. 33.

    Rentrop, T. et al. Observation of the phononic Lamb shift with a synthetic vacuum. Phys. Rev. X 6, 041041 (2016).

    Google Scholar 

  34. 34.

    Pertot, D., Greif, D., Albert, S., Gadway, B. & Schneble, D. Versatile transporter apparatus for experiments with optically trapped Bose–Einstein condensates. J. Phys. B 42, 215305 (2009).

    ADS  Article  CAS  Google Scholar 

  35. 35.

    Campbell, G. K. et al. Imaging the Mott insulator shells by using atomic clock shifts. Science 313, 649–652 (2006).

    ADS  Article  PubMed  CAS  Google Scholar 

  36. 36.

    Gadway, B., Pertot, D., Reimann, R., Cohen, M. G. & Schneble, D. Analysis of Kapitza–Dirac diffraction patterns beyond the Raman–Nath regime. Opt. Express 17, 19173–19180 (2009).

    ADS  Article  PubMed  CAS  Google Scholar 

  37. 37.

    Krinner, L., Stewart, M., Pazmiño, A. & Schneble, D. In situ magnetometry for experiments with atomic quantum gases. Rev. Sci. Instrum. 89, 013108 (2018).

    ADS  Article  PubMed  CAS  Google Scholar 

  38. 38.

    Deng, L. et al. Temporal, matter-wave-dispersion Talbot effect. Phys. Rev. Lett. 83, 5407–5411 (1999).

    ADS  Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. G. Cohen for discussions and a critical reading of the manuscript. This work was supported by NSF PHY-1607633. M.S. was supported by a GAANN fellowship by the US Department of Education. A.P. acknowledges partial support from ESPOL-SENESCYT.

Author information

Affiliations

Authors

Contributions

D.S., L.K. and M.S. conceived the experiment. L.K. took the measurements with assistance from A.P. and J.K. L.K. analysed the data with contributions from M.S. Numerical simulations were performed by L.K. D.S. supervised the project. The results were discussed and interpreted by all authors. The manuscript was written by L.K. and D.S. with contributions from A.P., J.K. and M.S.

Corresponding author

Correspondence to Dominik Schneble.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Average spectrum of coupling stationary atoms into the z lattice.

The spectrum was generated from a series of 17 spectra taken over a one-day period, whose fitted centres are shifted to zero. The coupling strength is Ω = 740(10) Hz and the pulse time is 400 μs, with the data points binned into 300-Hz-wide bins. The solid curve is a fit to the data with Ω as a free-fitting parameter and the dashed curve has no free parameters. The effective coupling strength was calculated using the wavefunction overlap between free and trapped species, γ0 = 0.72.

Extended Data Fig. 2 Raw momentum spectrum.

The spectrum shows a detuning-independent, diffuse background of roughly 103 atoms. The spectrum was acquired as described in the main text, Fig. 2 and Methods; colour scale is identical to Fig. 2c.

Extended Data Fig. 3 Raw data used to obtain the energy shift.

a, b, Second moment of k (a) and half-separation squared (b) both subtracted by Δ/(2π). The detuning Δ/(2π) is 1.0 kHz (black disks), 2.0 kHz (red triangles), 4.0 kHz (green squares) and 6.0 kHz (blue circles). Points in brackets correspond to the non-Markovian regime, Ω/Δ > 1.

Extended Data Fig. 4 Simulated decay dynamics for a 1-site and a 3-site model (with the central site initially populated).

a, Dynamics of the two models, as depicted in the insets, for Δ = 2π × 1.9 kHz and Ω = 2π × 0.74 kHz, with ωz = 2π × 0.1 kHz. b, Long-time decay dynamics of the 1-site (black) and 3-site (red) models for Ω = 2π × 0.74 kHz and Δ = 2π × 1.9 kHz, with ωz = 2π × 5 Hz. The dashed red line shows the population of the central, initially populated, site; the dotted red line shows the population of the neighbouring sites. c, Dynamics of the two models for Δ = −2π × 0.1 kHz and Ω = 2π × 3 kHz, with ωz = 2π × 0.1 kHz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krinner, L., Stewart, M., Pazmiño, A. et al. Spontaneous emission of matter waves from a tunable open quantum system. Nature 559, 589–592 (2018). https://doi.org/10.1038/s41586-018-0348-z

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.