Acting on non-communicable diseases in low- and middle-income tropical countries

Abstract

The classical portrayal of poor health in tropical countries is one of infections and parasites, contrasting with wealthy Western countries, where unhealthy diet and behaviours cause non-communicable diseases (NCDs) such as heart disease and cancer. Using international mortality data, we show that most NCDs cause more deaths at every age in low- and middle-income tropical countries than in high-income Western countries. Causes of NCDs in low- and middle-income countries include poor nutrition and living environment, infections, insufficient taxation and regulation of tobacco and alcohol, and under-resourced and inaccessible healthcare. We identify a comprehensive set of actions across health, social, economic and environmental sectors that could confront NCDs in low- and middle-income tropical countries and reduce global health inequalities.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: NCD mortality in low- and middle-income tropical countries and high-income Western countries.
Fig. 2: Comparison between low- and middle-income tropical regions and the high-income Western region of age-standardized death rates from NCDs in 2016.
Fig. 3: Age-standardized cardiovascular disease death rates in low- and middle-income tropical regions and the high-income Western region in 2016.
Fig. 4: Age-standardized site-specific cancer death rates in tropical regions and the high-income Western region in 2016.
Fig. 5: Age-standardized cardiovascular disease death rate, mean BMI, mean systolic and diastolic blood pressure, mean serum total cholesterol and diabetes prevalence in low- and middle-income tropical and the high-income Western region.

References

  1. 1.

    Wagner, K. H. & Brath, H. A global view on the development of non communicable diseases. Prev. Med. 54, S38–S41 (2012).

    Article  PubMed  Google Scholar 

  2. 2.

    McKeown, T. The Origins of Human Disease (Blackwell, Oxford, 1988).

    Google Scholar 

  3. 3.

    Omran, A. R. The epidemiologic transition. A theory of the epidemiology of population change. Milbank Mem. Fund Q. 49, 509–538 (1971).

    Article  PubMed  CAS  Google Scholar 

  4. 4.

    Nugent, R. A chronology of global assistance funding for NCD. Glob. Heart 11, 371–374 (2016).

    Article  PubMed  Google Scholar 

  5. 5.

    Di Cesare, M. et al. Inequalities in non-communicable diseases and effective responses. Lancet 381, 585–597 (2013).A synthesis of data on global and within-country inequalities in NCDs and their causes, showing that the burden of ill health from most NCDs is higher in poor countries, poor communities and poor people.

    Article  PubMed  Google Scholar 

  6. 6.

    Lopez, A. D., Mathers, C. D., Ezzati, M., Jamison, D. T. & Murray, C. J. Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 367, 1747–1757 (2006).

    Article  PubMed  Google Scholar 

  7. 7.

    World Health Organization (WHO). Global Status Report on Noncommunicable Diseases 2010. http://www.who.int/nmh/publications/ncd_report2010/en/ (WHO, 2011).

  8. 8.

    Bray, F., Jemal, A., Grey, N., Ferlay, J. & Forman, D. Global cancer transitions according to the Human Development Index (2008-2030): a population-based study. Lancet Oncol. 13, 790–801 (2012).

    Article  PubMed  Google Scholar 

  9. 9.

    Kwan, G. F. et al. Endemic cardiovascular diseases of the poorest billion. Circulation 133, 2561–2575 (2016).

    Article  PubMed  CAS  Google Scholar 

  10. 10.

    Ahmad, O. et al. Age Standardization of Rates: a New WHO Standard. http://www.who.int/healthinfo/paper31.pdf (World Health Organization, 2001).

  11. 11.

    Moriyama, I. M. & Gover, M. Heart diseases and allied causes of death in relation to age changes in the population. Public Health Rep. 63, 537–545 (1948). An elegant and pioneering analysis of trends over time in medical causes of death that shows the diversity of trends in deaths from different NCDs.

    Article  PubMed  CAS  Google Scholar 

  12. 12.

    Preston, S. H. & Nelson, V. E. Structure and change in causes of death: an international summary. Popul. Stud. 28, 19–51 (1974).

    Article  CAS  Google Scholar 

  13. 13.

    Omran, A. R. A century of epidemiologic transition in the United States. Prev. Med. 6, 30–51 (1977).

    Article  PubMed  CAS  Google Scholar 

  14. 14.

    Mayosi, B. M. in Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine. 10th edn (eds Mann, D. L., Zipes, D. P., Libby, P. & Bonow, R. O.) (Elsevier Saunders, Philadelphia 2015).

  15. 15.

    Gordis, L. The virtual disappearance of rheumatic fever in the United States: lessons in the rise and fall of disease. T. Duckett Jones memorial lecture. Circulation 72, 1155–1162 (1985).

    Article  PubMed  CAS  Google Scholar 

  16. 16.

    Ezzati, M. et al. Contributions of risk factors and medical care to cardiovascular mortality trends. Nat. Rev. Cardiol. 12, 508–530 (2015).

    Article  PubMed  PubMed Central  MathSciNet  Google Scholar 

  17. 17.

    Karthikeyan, G. & Mayosi, B. M. Is primary prevention of rheumatic fever the missing link in the control of rheumatic heart disease in Africa? Circulation 120, 709–713 (2009).

    Article  PubMed  Google Scholar 

  18. 18.

    Shaper, A. G. Cardiovascular disease in the tropics. II. Endomyocardial fibrosis. BMJ 3, 743–746 (1972).

    Article  PubMed  CAS  Google Scholar 

  19. 19.

    Ogoina, D. & Onyemelukwe, G. C. The role of infections in the emergence of non-communicable diseases (NCDs): compelling needs for novel strategies in the developing world. J. Infect. Public Health 2, 14–29 (2009).

    Article  PubMed  Google Scholar 

  20. 20.

    Global Burden of Metabolic Risk Factors for Chronic Diseases Collaboration. Cardiovascular disease, chronic kidney disease, and diabetes mortality burden of cardiometabolic risk factors from 1980 to 2010: a comparative risk assessment. Lancet Diabetes Endocrinol. 2, 634–647 (2014).

    Article  Google Scholar 

  21. 21.

    Gladwin, M. T. Cardiovascular complications and risk of death in sickle-cell disease. Lancet 387, 2565–2574 (2016).

    Article  PubMed  Google Scholar 

  22. 22.

    Woolsey, T. D. & Moriyama, I. M. Statistical studies of heart diseases; important factors in heart disease mortality trends. Public Health Rep. 63, 1247–1273 (1948).

    Article  PubMed  CAS  Google Scholar 

  23. 23.

    Shaper, A. G. Cardiovascular studies in the Samburu tribe of Northern Kenya. Am. Heart J. 63, 437–442 (1962).

    Article  PubMed  CAS  Google Scholar 

  24. 24.

    Shaper, A. G. Cardiovascular disease in the tropics. IV. Coronary heart disease. BMJ 4, 32–35 (1972).One of a series of four articles that presented carefully collected high-quality data on cardiovascular diseases in low-income tropical countries, especially in Africa, and demonstrated the complexity of their aetiology.

    Article  PubMed  CAS  Google Scholar 

  25. 25.

    Kennelly, B. M., Truswell, A. S. & Schrire, V. A clinical and electrocardiographic study of Kung Bushmen. S. Afr. Med. J. 46, 1093–1097 (1972).

    PubMed  CAS  Google Scholar 

  26. 26.

    Kaplan, H. et al. Coronary atherosclerosis in indigenous South American Tsimane: a cross-sectional cohort study. Lancet 389, 1730–1739 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Shaper, A. G. Problems and prospects in tropical cardiology. Scott. Med. J. 12, 393–400 (1967).

    Article  PubMed  CAS  Google Scholar 

  28. 28.

    Wild, C. P. The role of cancer research in noncommunicable disease control. J. Natl. Cancer Inst. 104, 1051–1058 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Danaei, G., Vander Hoorn, S., Lopez, A. D., Murray, C. J. & Ezzati, M. Causes of cancer in the world: comparative risk assessment of nine behavioural and environmental risk factors. Lancet 366, 1784–1793 (2005).

    Article  PubMed  Google Scholar 

  30. 30.

    Ezzati, M. & Riboli, E. Can noncommunicable diseases be prevented? Lessons from studies of populations and individuals. Science 337, 1482–1487 (2012).

    ADS  Article  PubMed  CAS  Google Scholar 

  31. 31.

    Blackadar, C. B. Historical review of the causes of cancer. World J. Clin. Oncol. 7, 54–86 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Allemani, C. et al. Global surveillance of cancer survival 1995-2009: analysis of individual data for 25,676,887 patients from 279 population-based registries in 67 countries (CONCORD-2). Lancet 385, 977–1010 (2015).

    Article  PubMed  Google Scholar 

  33. 33.

    Plummer, M. et al. Global burden of cancers attributable to infections in 2012: a synthetic analysis. Lancet Glob. Health 4, e609–e616 (2016).

    Article  PubMed  Google Scholar 

  34. 34.

    Marshall, B. J. & Warren, J. R. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1, 1311–1315 (1984).The seminal study that established the role of Helicobacter pylori as a cause of lesions that precede stomach cancer, and earned Marshall and Warren the Nobel Prize in Physiology and Medicine.

    Article  PubMed  CAS  Google Scholar 

  35. 35.

    Gersten, O. & Wilmoth, J. R. The cancer transition in Japan since 1951. Demogr. Res. 7, 271–306 (2002).

    Article  Google Scholar 

  36. 36.

    Wingo, P. A. et al. Long-term trends in cancer mortality in the United States, 1930-1998. Cancer 97, 3133–3275 (2003).

    Article  PubMed  Google Scholar 

  37. 37.

    Howson, C. P., Hiyama, T. & Wynder, E. L. The decline in gastric cancer: epidemiology of an unplanned triumph. Epidemiol. Rev. 8, 1–27 (1986).

    Article  PubMed  CAS  Google Scholar 

  38. 38.

    Vaccarella, S., Lortet-Tieulent, J., Plummer, M., Franceschi, S. & Bray, F. Worldwide trends in cervical cancer incidence: impact of screening against changes in disease risk factors. Eur. J. Cancer 49, 3262–3273 (2013).

    Article  PubMed  Google Scholar 

  39. 39.

    Ferro, A. et al. Worldwide trends in gastric cancer mortality (1980-2011), with predictions to 2015, and incidence by subtype. Eur. J. Cancer 50, 1330–1344 (2014).

    Article  PubMed  Google Scholar 

  40. 40.

    Bruni, L. et al. Global estimates of human papillomavirus vaccination coverage by region and income level: a pooled analysis. Lancet Glob. Health 4, e453–e463 (2016).

    Article  PubMed  Google Scholar 

  41. 41.

    Xia, J., Jiang, S. C. & Peng, H. J. Association between liver fluke infection and hepatobiliary pathological changes: a systematic review and meta-analysis. PLoS One 10, e0132673 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. 42.

    World Health Organization (WHO). Global Hepatitis Report 2017. (http://www.who.int/hepatitis/publications/global-hepatitis-report2017/en/ (WHO, 2017).

  43. 43.

    Pearson-Stuttard, J. et al. Worldwide burden of cancer attributable to diabetes and high body-mass index: a comparative risk assessment. Lancet Diabetes Endocrinol. 6, e6–e15 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 387, 1513–1530 (2016).

    Article  Google Scholar 

  45. 45.

    NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 390, 2627–2642 (2017).An analysis of trends in underweight, overweight and obesity for all of the world’s countries using the largest-ever collection anthropometric measurement from nearly 130 million people over four decades.

    Article  Google Scholar 

  46. 46.

    Ezzati, M. & Riboli, E. Behavioral and dietary risk factors for noncommunicable diseases. N. Engl. J. Med. 369, 954–964 (2013).

    Article  PubMed  CAS  Google Scholar 

  47. 47.

    Boseley, S. Threats, bullying, lawsuits: tobacco industry’s dirty war for the African market. The Guardian https://www.theguardian.com/world/2017/jul/12/big-tobacco-dirty-war-africa-market (12 July 2017).

  48. 48.

    World Health Organization (WHO). Global Status Report on Alcohol and Health 2014 (WHO, 2014).

  49. 49.

    Gelband, H. et al. Costs, affordability, and feasibility of an essential package of cancer control interventions in low-income and middle-income countries: key messages from Disease Control Priorities, 3rd edition. Lancet 387, 2133–2144 (2016).

    Article  PubMed  Google Scholar 

  50. 50.

    Weatherall, D. J. & Clegg, J. B. Inherited haemoglobin disorders: an increasing global health problem. Bull. World Health Organ. 79, 704–712 (2001).

    PubMed  PubMed Central  CAS  Google Scholar 

  51. 51.

    Piel, F. B. et al. Global distribution of the sickle cell gene and geographical confirmation of the malaria hypothesis. Nat. Commun. 1, 104 (2010).A careful analysis that confirmed the role of historical malaria geography as the determinant of the geographical distribution of sickle cell disease.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. 52.

    Grosse, S. D. et al. Sickle cell disease in Africa: a neglected cause of early childhood mortality. Am. J. Prev. Med. 41, S398–S405 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    McGinley, K. F., Tay, K. J. & Moul, J. W. Prostate cancer in men of African origin. Nat. Rev. Urol. 13, 99–107 (2016).

    Article  PubMed  CAS  Google Scholar 

  54. 54.

    Haiman, C. A. et al. Genome-wide association study of prostate cancer in men of African ancestry identifies a susceptibility locus at 17q21. Nat. Genet. 43, 570–573 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. 55.

    Popkin, B. M. Global nutrition dynamics: the world is shifting rapidly toward a diet linked with noncommunicable diseases. Am. J. Clin. Nutr. 84, 289–298 (2006).

    PubMed  CAS  Article  Google Scholar 

  56. 56.

    Reddy, K. S. & Yusuf, S. Emerging epidemic of cardiovascular disease in developing countries. Circulation 97, 596–601 (1998).

    Article  PubMed  CAS  Google Scholar 

  57. 57.

    World Health Organization (WHO). Global Report on Urban Health: Equitable Healthier Cities for Sustainable Development. Report No. 9241565276 (World Health Organization, Geneva, 2016).

  58. 58.

    Yusuf, S., Reddy, S., Ôunpuu, S. & Anand, S. Global burden of cardiovascular diseases: part I: general considerations, the epidemiologic transition, risk factors, and impact of urbanization. Circulation 104, 2746–2753 (2001).

    Article  PubMed  CAS  Google Scholar 

  59. 59.

    Micha, R. et al. Global, regional and national consumption of major food groups in 1990 and 2010: a systematic analysis including 266 country-specific nutrition surveys worldwide. BMJ Open 5, e008705 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Danaei, G. et al. The global cardiovascular risk transition: associations of four metabolic risk factors with national income, urbanization, and Western diet in 1980 and 2008. Circulation 127, 1493–1502 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  61. 61.

    NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19.1 million participants. Lancet 389, 37–55 (2017).An analysis of four decades of trends in systolic and diastolic blood pressure for all of the world’s countries that showed that low-income countries have some of the highest blood pressure levels in the world, and vice versa.

    Article  Google Scholar 

  62. 62.

    NCD Risk Factor Collaboration (NCD-RisC). Contributions of mean and shape of blood pressure distribution to worldwide trends and variations in raised blood pressure: a pooled analysis of 1018 population-based measurement studies with 88.6 million participants. Int. J. Epidemiol. 47, 872–883i (2018).

  63. 63.

    Farzadfar, F. et al. National, regional, and global trends in serum total cholesterol since 1980: systematic analysis of health examination surveys and epidemiological studies with 321 country-years and 3.0 million participants. Lancet 377, 578–586 (2011).

    Article  PubMed  Google Scholar 

  64. 64.

    Barker, D. J., Winter, P. D., Osmond, C., Margetts, B. & Simmonds, S. J. Weight in infancy and death from ischaemic heart disease. Lancet 2, 577–580 (1989).

    Article  PubMed  CAS  Google Scholar 

  65. 65.

    Victora, C. G. et al. Maternal and child undernutrition: consequences for adult health and human capital. Lancet 371, 340–357 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. 66.

    Ravelli, G. P., Stein, Z. A. & Susser, M. W. Obesity in young men after famine exposure in utero and early infancy. N. Engl. J. Med. 295, 349–353 (1976).One of the first studies to show the role of fetal and early life undernutrition as a cause of NCDs and NCD risk factors in adult life.

    Article  PubMed  CAS  Google Scholar 

  67. 67.

    Hales, C. N. & Barker, D. J. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 35, 595–601 (1992).

    Article  PubMed  CAS  Google Scholar 

  68. 68.

    Bhargava, S. K. et al. Relation of serial changes in childhood body-mass index to impaired glucose tolerance in young adulthood. N. Engl. J. Med. 350, 865–875 (2004).

    Article  PubMed  PubMed Central  MathSciNet  CAS  Google Scholar 

  69. 69.

    Tanner, J. M. Growth as a mirror of the condition of society: secular trends and class distinctions. Acta Paediatr. Jpn. 29, 96–103 (1987).

    Article  PubMed  CAS  Google Scholar 

  70. 70.

    Tanner, J. M. A History of the Study of Human Growth (Cambridge University Press, Cambridge, 1981).

    Google Scholar 

  71. 71.

    Fogel, R. W. Changes in the Physiology of Aging during the Twentieth Century. NBER Working Paper 11233 (National Bureau of Economic Research, 2005).

  72. 72.

    NCD Risk Factor Collaboration (NCD-RisC). A century of trends in adult human height. eLife 5, e13410 (2016).The first analysis of trends in height in adulthood for all of the countries in the world, that showed the massive worldwide variation in height gain over a period of a century.

    Article  Google Scholar 

  73. 73.

    Stevens, G. A. et al. Trends in mild, moderate, and severe stunting and underweight, and progress towards MDG 1 in 141 developing countries: a systematic analysis of population representative data. Lancet 380, 824–834 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Byrne, A. L., Marais, B. J., Mitnick, C. D., Lecca, L. & Marks, G. B. Tuberculosis and chronic respiratory disease: a systematic review. Int. J. Inf. Dis. 32, 138–146 (2015).

    Article  Google Scholar 

  75. 75.

    Colley, D. G., Bustinduy, A. L., Secor, W. E. & King, C. H. Human schistosomiasis. Lancet 383, 2253–2264 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Roivainen, M. et al. Infections, inflammation, and the risk of coronary heart disease. Circulation 101, 252–257 (2000).

    Article  PubMed  CAS  Google Scholar 

  77. 77.

    Black, R. E. et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 382, 427–451 (2013).

    Article  PubMed  Google Scholar 

  78. 78.

    Gakidou, E. et al. Improving child survival through environmental and nutritional interventions: the importance of targeting interventions toward the poor. J. Am. Med. Assoc. 298, 1876–1887 (2007).

    Article  CAS  Google Scholar 

  79. 79.

    Shaper, A. G. Cardiovascular disease in the tropics. I. Rheumatic heart. BMJ 3, 683–686 (1972).

    Article  PubMed  CAS  Google Scholar 

  80. 80.

    Gakidou, E., Nordhagen, S. & Obermeyer, Z. Coverage of cervical cancer screening in 57 countries: low average levels and large inequalities. PLoS Med. 5, e132 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Chow, C. K. et al. Prevalence, awareness, treatment, and control of hypertension in rural and urban communities in high-, middle-, and low-income countries. J. Am. Med. Assoc. 310, 959–968 (2013).

    Article  CAS  Google Scholar 

  82. 82.

    Mills, K. T. et al. Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation 134, 441–450 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Feigin, V. L., Lawes, C. M., Bennett, D. A., Barker-Collo, S. L. & Parag, V. Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet Neurol. 8, 355–369 (2009).

    Article  PubMed  Google Scholar 

  84. 84.

    Academy of Medical Sciences (AMA). Multimorbidity: a Priority for Global Health Research. https://acmedsci.ac.uk/policy/policy-projects/multimorbidity (AMA, 2018).

  85. 85.

    World Health Organization (WHO). Global Health Estimates: Deaths by Cause, Age, Sex and Country, 2000–2016 http://www.who.int/healthinfo/global_burden_disease/estimates/en/ (WHO, 2018).

  86. 86.

    Epstein, M. A. Historical background. Phil. Trans. R. Soc. Lond. B 356, 413–420 (2001).

    Article  CAS  Google Scholar 

  87. 87.

    Bagaitkar, J., Demuth, D. R. & Scott, D. A. Tobacco use increases susceptibility to bacterial infection. Tob. Induc. Dis. 4, 12 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Lin, H. H., Ezzati, M. & Murray, M. Tobacco smoke, indoor air pollution and tuberculosis: a systematic review and meta-analysis. PLoS Med. 4, e20 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. 89.

    Parry, C., Rehm, J., Poznyak, V. & Room, R. Alcohol and infectious diseases: an overlooked causal linkage? Addiction 104, 331–332 (2009).

    Article  PubMed  Google Scholar 

  90. 90.

    Rehm, J., Probst, C., Shield, K. D. & Shuper, P. A. Does alcohol use have a causal effect on HIV incidence and disease progression? A review of the literature and a modeling strategy for quantifying the effect. Popul. Health Metr. 15, 4 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Casqueiro, J., Casqueiro, J. & Alves, C. Infections in patients with diabetes mellitus: A review of pathogenesis. Indian J. Endocrinol. Metab. 16, S27–S36 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Pandrea, I., Happel, K. I., Amedee, A. M., Bagby, G. J. & Nelson, S. Alcohol’s role in HIV transmission and disease progression. Alcohol Res. Health 33, 203–218 (2010).

    PubMed  PubMed Central  Google Scholar 

  93. 93.

    Imtiaz, S. et al. Alcohol consumption as a risk factor for tuberculosis: meta-analyses and burden of disease. Eur. Respir. J. 50, 1700216 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Pan, S. C. et al. Effect of diabetes on tuberculosis control in 13 countries with high tuberculosis: a modelling study. Lancet Diabetes Endocrinol. 3, 323–330 (2015).

    Article  PubMed  Google Scholar 

  95. 95.

    Harries, A. D. et al. The looming epidemic of diabetes-associated tuberculosis: learning lessons from HIV-associated tuberculosis. Int. J. Tuberc. Lung Dis. 15, 1436–1444 (2011).

    Article  PubMed  CAS  Google Scholar 

  96. 96.

    Dye, C. After 2015: infectious diseases in a new era of health and development. Phil. Trans. R. Soc. Lond. B 369, 20130426 (2014).

    Article  Google Scholar 

  97. 97.

    Baris, E. & Ezzati, M. Should interventions to reduce respirable pollutants be linked to tuberculosis control programmes? Br. Med. J. 329, 1090–1093 (2004).

    Article  Google Scholar 

  98. 98.

    Harries, A. D. et al. Diabetes mellitus and tuberculosis: programmatic management issues. Int. J. Tuberc. Lung Dis. 19, 879–886 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. 99.

    Jamison, D. T. et al. Global health 2035: a world converging within a generation. Lancet 382, 1898–1955 (2013).

    Article  PubMed  Google Scholar 

  100. 100.

    Prabhakaran, D. et al. Cardiovascular, respiratory, and related disorders: key messages from Disease Control Priorities, 3rd edition. Lancet 391, 1224–1236 (2018).

    Article  PubMed  Google Scholar 

  101. 101.

    Patel, V. et al. Treatment and prevention of mental disorders in low-income and middle-income countries. Lancet 370, 991–1005 (2007).

    Article  PubMed  Google Scholar 

  102. 102.

    Ruel, M. T. & Alderman, H. Nutrition-sensitive interventions and programmes: how can they help to accelerate progress in improving maternal and child nutrition? Lancet 382, 536–551 (2013).

    Article  PubMed  Google Scholar 

  103. 103.

    Bhutta, Z. A. et al. Evidence-based interventions for improvement of maternal and child nutrition: what can be done and at what cost? Lancet 382, 452–477 (2013).

    Article  PubMed  Google Scholar 

  104. 104.

    Jamison, D. T. et al. Universal health coverage and intersectoral action for health: key messages from Disease Control Priorities, 3rd edition. Lancet 391, 1108–1120 (2018).The overview of the work in the Disease Control Priorities study that identified actions and interventions with potential for large impacts on different diseases, including NCDs.

    Article  PubMed  Google Scholar 

  105. 105.

    Manjomo, R. C. et al. Managing and monitoring chronic non-communicable diseases in a primary health care clinic, Lilongwe, Malawi. Public Health Action 6, 60–65 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Beaglehole, S. Blundell, R. Nugent, F. Piel, M. Parkins and M. Thun for comments and recommendation of background literature.

Reviewer information

Nature thanks F. Assah, P. Byass, B. Singer and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Affiliations

Authors

Contributions

M.E. designed the Review concept and wrote the Review with input from J.P.-S., J.E.B. and C.D.M. J.P.-S. contributed to clinical and epidemiological reviews. J.E.B. and C.D.M. analysed data, and J.E.B. prepared figures.

Corresponding author

Correspondence to Majid Ezzati.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-3.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ezzati, M., Pearson-Stuttard, J., Bennett, J.E. et al. Acting on non-communicable diseases in low- and middle-income tropical countries. Nature 559, 507–516 (2018). https://doi.org/10.1038/s41586-018-0306-9

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.