Stellar populations dominated by massive stars in dusty starburst galaxies across cosmic time

Abstract

All measurements of cosmic star formation must assume an initial distribution of stellar masses—the stellar initial mass function—in order to extrapolate from the star-formation rate measured for typically rare, massive stars (of more than eight solar masses) to the total star-formation rate across the full stellar mass spectrum1. The shape of the stellar initial mass function in various galaxy populations underpins our understanding of the formation and evolution of galaxies across cosmic time2. Classical determinations of the stellar initial mass function in local galaxies are traditionally made at ultraviolet, optical and near-infrared wavelengths, which cannot be probed in dust-obscured galaxies2,3, especially distant starbursts, whose apparent star-formation rates are hundreds to thousands of times higher than in the Milky Way, selected at submillimetre (rest-frame far-infrared) wavelengths4,5. The 13C/18O isotope abundance ratio in the cold molecular gas—which can be probed via the rotational transitions of the 13CO and C18O isotopologues—is a very sensitive index of the stellar initial mass function, with its determination immune to the pernicious effects of dust. Here we report observations of 13CO and C18O emission for a sample of four dust-enshrouded starbursts at redshifts of approximately two to three, and find unambiguous evidence for a top-heavy stellar initial mass function in all of them. A low 13CO/C18O ratio for all our targets—alongside a well tested, detailed chemical evolution model benchmarked on the Milky Way6—implies that there are considerably more massive stars in starburst events than in ordinary star-forming spiral galaxies. This can bring these extraordinary starbursts closer to the ‘main sequence’ of star-forming galaxies7, although such main-sequence galaxies may not be immune to changes in initial stellar mass function, depending on their star-formation densities.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: I(13CO)/I(C18O) as a function of LIR, corrected for gravitational amplification when appropriate.
Fig. 2: Theoretical 13C and 18O isotopic abundance ratios in the ISM for different evolutionary tracks, predicted using various IMFs.

References

  1. 1.

    Kennicutt, R. C. Jr. Star formation in galaxies along the Hubble sequence. Annu. Rev. Astron. Astrophys. 36, 189–231 (1998).

    ADS  Article  CAS  Google Scholar 

  2. 2.

    Bastian, N., Covey, K. R. & Meyer, M. R. A universal stellar initial mass function? A critical look at variations. Annu. Rev. Astron. Astrophys. 48, 339–389 (2010).

    ADS  Article  Google Scholar 

  3. 3.

    Kroupa, P. et al. The Stellar and Sub-Stellar Initial Mass Function of Simple and Composite Populations Ch. 4, 115–242 (Springer, Dordrecht, 2013).

    Google Scholar 

  4. 4.

    Smail, I., Ivison, R. J. & Blain, A. W. A deep sub-millimeter survey of lensing clusters: a new window on galaxy formation and evolution. Astrophys. J. 490, L5–L8 (1997).

    ADS  Article  Google Scholar 

  5. 5.

    Hughes, D. H. et al. High-redshift star formation in the Hubble Deep Field revealed by a submillimetre-wavelength survey. Nature 394, 241–247 (1998).

    ADS  Article  CAS  Google Scholar 

  6. 6.

    Romano, D., Matteucci, F., Zhang, Z.-Y., Papadopoulos, P. P. & Ivison, R. J. The evolution of CNO isotopes: a new window on cosmic star formation history and the stellar IMF in the age of ALMA. Mon. Not. R. Astron. Soc. 470, 401–415 (2017).

    ADS  Article  Google Scholar 

  7. 7.

    Noeske, K. G. et al. Star formation in AEGIS field galaxies since z=1.1: the dominance of gradually declining star formation, and the main sequence of star-forming galaxies. Astrophys. J. 660, L43–L46 (2007).

    ADS  Article  CAS  Google Scholar 

  8. 8.

    Wilson, T. L. & Matteucci, F. Abundances in the interstellar medium. Astron. Astrophys. Rev. 4, 1–33 (1992).

    ADS  Article  CAS  Google Scholar 

  9. 9.

    Romano, D., Karakas, A. I., Tosi, M. & Matteucci, F. Quantifying the uncertainties of chemical evolution studies. II. Stellar yields. Astron. Astrophys. 522, A32 (2010).

    ADS  Article  CAS  Google Scholar 

  10. 10.

    Pagel, B. E. J. Nucleosynthesis and Chemical Evolution of Galaxies (Cambridge Univ. Press, Cambridge, 2009).

    Google Scholar 

  11. 11.

    Henkel, C. et al. Carbon and oxygen isotope ratios in starburst galaxies: new data from NGC 253 and Mrk 231 and their implications. Astron. Astrophys. 565, A3 (2014).

    Article  CAS  Google Scholar 

  12. 12.

    Sliwa, K., Wilson, C. D., Aalto, S., Privon, G. C. & Extreme, C. O. Isotopic abundances in the ULIRG IRAS 13120–5453: an extremely young starburst or top-heavy initial mass function. Astrophys. J. 840, L11 (2017).

    ADS  Article  CAS  Google Scholar 

  13. 13.

    Danielson, A. L. R. et al. 13CO and C18O emission from a dense gas disc at z = 2.3: abundance variations, cosmic rays and the initial conditions for star formation. Mon. Not. R. Astron. Soc. 436, 2793–2809 (2013).

    ADS  Article  CAS  Google Scholar 

  14. 14.

    Barnes, P. J. et al. The three-mm ultimate Mopra Milky Way Survey. I. Survey overview, initial data releases, and first results. Astrophys. J. 812, 6 (2015).

    ADS  Article  CAS  Google Scholar 

  15. 15.

    Jiménez-Donaire, M. J. et al. 13CO/C18O gradients across the disks of nearby spiral galaxies. Astrophys. J. 836, L29 (2017).

    ADS  Article  Google Scholar 

  16. 16.

    Ballero, S. K., Matteucci, F., Origlia, L. & Rich, R. M. Formation and evolution of the Galactic bulge: constraints from stellar abundances. Astron. Astrophys. 467, 123–136 (2007).

    ADS  Article  CAS  Google Scholar 

  17. 17.

    Dabringhausen, J., Kroupa, P. & Baumgardt, H. A top-heavy stellar initial mass function in starbursts as an explanation for the high mass-to-light ratios of ultra-compact dwarf galaxies. Mon. Not. R. Astron. Soc. 394, 1529–1543 (2009).

    ADS  Article  CAS  Google Scholar 

  18. 18.

    Dabringhausen, J., Kroupa, P., Pflamm-Altenburg, J. & Mieske, S. Low-mass X-ray binaries indicate a top-heavy stellar initial mass function in ultracompact dwarf galaxies. Astrophys. J. 747, 72 (2012).

    ADS  Article  Google Scholar 

  19. 19.

    Peacock, M. B. et al. Further constraints on variations in the initial mass function from low-mass X-ray binary populations. Astrophys. J. 841, 28 (2017).

    ADS  Article  CAS  Google Scholar 

  20. 20.

    Schneider, F. R. N. et al. An excess of massive stars in the local 30 Doradus starburst. J. Sci. 359, 69–71 (2018).

    ADS  Article  CAS  Google Scholar 

  21. 21.

    Banerjee, S. & Kroupa, P. On the true shape of the upper end of the stellar initial mass function. The case of R136. Astron. Astrophys. 547, A23 (2012).

    ADS  Article  Google Scholar 

  22. 22.

    Kalari, V. M., Carraro, G., Evans, C. J. & Rubio, M. The Magellanic Bridge cluster NGC 796: deep optical AO imaging reveals the stellar content and initial mass function of a massive open cluster. Astrophys. J. 857, 132 (2018).

    ADS  Article  Google Scholar 

  23. 23.

    Lee, J. C. et al. Comparison of Hα and UV star formation rates in the local volume: systematic discrepancies for dwarf galaxies. Astrophys. J. 706, 599–613 (2009).

    ADS  Article  CAS  Google Scholar 

  24. 24.

    Pflamm-Altenburg, J. & Kroupa, P. Clustered star formation as a natural explanation for the Hα cut-off in disk galaxies. Nature 455, 641–643 (2008).

    ADS  Article  PubMed  CAS  Google Scholar 

  25. 25.

    Speagle, J. S., Steinhardt, C. L., Capak, P. L. & Silverman, J. D. A highly consistent framework for the evolution of the star-forming “main sequence” from z ~ 0–6. Astrophys. J. Suppl . Ser. 214, 15 (2014).

    ADS  Article  Google Scholar 

  26. 26.

    Madau, P. et al. High-redshift galaxies in the Hubble deep field: colour selection and star formation history to z ~ 4. Mon. Not. R. Astron. Soc. 283, 1388–1404 (1996).

    ADS  Article  Google Scholar 

  27. 27.

    Pflamm-Altenburg, J. & Kroupa, P. The fundamental gas depletion and stellar-mass buildup times of star-forming galaxies. Astrophys. J. 706, 516–524 (2009).

    ADS  Article  CAS  Google Scholar 

  28. 28.

    Heikkila, A., Johansson, L. E. B. & Olofsson, H. The C18O/C17O ratio in the Large Magellanic Cloud. Astron. Astrophys. 332, 493–502 (1998).

    ADS  Google Scholar 

  29. 29.

    Muraoka, K. et al. ALMA Observations of N83C in the early stage of star formation in the Small Magellanic Cloud. Astrophys. J. 844, 98 (2017).

    ADS  Article  CAS  Google Scholar 

  30. 30.

    Nishimura, Y. et al. Spectral line survey toward a molecular cloud in IC10. Astrophys. J. 829, 94 (2016).

    ADS  Article  Google Scholar 

  31. 31.

    Magain, P., Surdej, J., Swings, J.-P., Borgeest, U. & Kayser, R. Discovery of a quadruply lensed quasar—the ‘clover leaf’ H1413 + 117. Nature 334, 325–327 (1988).

    ADS  Article  Google Scholar 

  32. 32.

    Weiß, A. et al. ALMA redshifts of millimeter-selected galaxies from the SPT Survey: the redshift distribution of dusty star-forming galaxies. Astrophys. J. 767, 88 (2013).

    ADS  Article  CAS  Google Scholar 

  33. 33.

    Negrello, M. et al. The detection of a population of submillimeter-bright, strongly lensed galaxies. J. Sci. 330, 800 (2010).

    ADS  Article  CAS  Google Scholar 

  34. 34.

    Griffin, M. J. et al. The Herschel-SPIRE instrument and its in-flight performance. Astron. Astrophys. 518, L3 (2010).

    ADS  Article  Google Scholar 

  35. 35.

    Solomon, P., Vanden Bout, P., Carilli, C. & Guelin, M. The essential signature of a massive starburst in a distant quasar. Nature 426, 636–638 (2003).

    ADS  Article  PubMed  CAS  Google Scholar 

  36. 36.

    McMullin, J. P., Waters, B., Schiebel, D., Young, W. & Golap, K. in Astronomical Data Analysis Software and Systems XVI (eds Shaw, R. A., Hill, F. & Bell, D. J.) Vol. 376, 127 (Astronomical Society of the Pacific Conference Series, ASP, 2007).

  37. 37.

    Mangum, J. G. & Shirley, Y. L. How to calculate molecular column density. Publ. Astron. Soc. Pacif. 127, 266 (2015).

    ADS  Article  Google Scholar 

  38. 38.

    Frerking, M. A., Langer, W. D. & Wilson, R. W. The relationship between carbon monoxide abundance and visual extinction in interstellar clouds. Astrophys. J. 262, 590–605 (1982).

    ADS  Article  CAS  Google Scholar 

  39. 39.

    Aalto, S., Booth, R. S., Black, J. H. & Johansson, L. E. B. Molecular gas in starburst galaxies: line intensities and physical conditions. Astron. Astrophys. 300, 369 (1995).

    ADS  CAS  Google Scholar 

  40. 40.

    van der Tak, F. F. S., Black, J. H., Schöier, F. L., Jansen, D. J. & van Dishoeck, E. F. A computer program for fast non-LTE analysis of interstellar line spectra. With diagnostic plots to interpret observed line intensity ratios. Astron. Astrophys. 468, 627–635 (2007).

    ADS  Article  Google Scholar 

  41. 41.

    Yang, C. et al. Molecular gas in the Herschel-selected strongly lensed submillimeter galaxies at z ~ 2-4 as probed by multi-J CO lines. Astron. Astrophys. 608, A144 (2017).

    Article  Google Scholar 

  42. 42.

    Simpson, J. M. et al. The SCUBA-2 Cosmology Legacy Survey: multi-wavelength properties of ALMA-identified submillimeter galaxies in UKIDSS UDS. Astrophys. J. 839, 58 (2017).

    ADS  Article  CAS  Google Scholar 

  43. 43.

    Papadopoulos, P. P. et al. Molecular gas heating mechanisms, and star formation feedback in merger/starbursts: NGC 6240 and Arp 193 as case studies. Astrophys. J. 788, 153 (2014).

    ADS  Article  CAS  Google Scholar 

  44. 44.

    Wang, S. X. et al. An ALMA survey of submillimeter galaxies in the extended Chandra deep field-south: the AGN fraction and X-ray properties of submillimeter galaxies. Astrophys. J. 778, 179 (2013).

    ADS  Article  Google Scholar 

  45. 45.

    Spilker, J. S. et al. The rest-frame submillimeter spectrum of high-redshift, dusty, star-forming galaxies. Astrophys. J. 785, 149 (2014).

    ADS  Article  CAS  Google Scholar 

  46. 46.

    Chartas, G., Eracleous, M., Agol, E. & Gallagher, S. C. Chandra observations of the Cloverleaf quasar H1413+117: a unique laboratory for microlensing studies of a LoBAL quasar. Astrophys. J. 606, 78–84 (2004).

    ADS  Article  CAS  Google Scholar 

  47. 47.

    Martín, S., Martn-Pintado, J. & Mauersberger, R. HNCO abundances in galaxies: tracing the evolutionary state of starbursts. Astrophys. J. 694, 610–617 (2009).

    ADS  Article  CAS  Google Scholar 

  48. 48.

    Greve, T. R., Papadopoulos, P. P., Gao, Y. & Radford, S. J. E. Molecular gas in extreme star-forming environments: the starbursts Arp 220 and NGC 6240 as case studies. Astrophys. J. 692, 1432–1446 (2009).

    ADS  Article  CAS  Google Scholar 

  49. 49.

    Zinchenko, I., Henkel, C. & Mao, R. Q. HNCO in massive galactic dense cores. Astron. Astrophys. 361, 1079–1094 (2000).

    ADS  CAS  Google Scholar 

  50. 50.

    Li, J., Wang, J. Z., Gu, Q. S. & Zheng, X. W. Distribution of HNCO 505-404 in massive star-forming regions. Astron. Astrophys. 555, A18 (2013).

    ADS  Article  CAS  Google Scholar 

  51. 51.

    Schöier, F. L., van der Tak, F. F. S., van Dishoeck, E. F. & Black, J. H. An atomic and molecular database for analysis of submillimetre line observations. Astron. Astrophys. 432, 369 (2005).

    ADS  Article  CAS  Google Scholar 

  52. 52.

    Matteucci, F. Chemical Evolution of Galaxies (Springer, Berlin, 2012).

    Google Scholar 

  53. 53.

    Romano, D., Bellazzini, M., Starkenburg, E. & Leaman, R. Chemical enrichment in very low metallicity environments: Boötes I. Mon. Not. R. Astron. Soc. 446, 4220–4231 (2015).

    ADS  Article  CAS  Google Scholar 

  54. 54.

    Tinsley, B. M. Evolution of the stars and gas in galaxies. Fundamentals Cosm. Phys. 5, 287–388 (1980).

    ADS  CAS  Google Scholar 

  55. 55.

    Pagel, B. E. J. Nucleosynthesis and Chemical Evolution of Galaxies (Cambridge Univ. Press, Cambridge, 1997).

    Google Scholar 

  56. 56.

    Matteucci, F. (ed.) The Chemical Evolution of the Galaxy Vol. 253 (Springer, Netherlands, 2001).

  57. 57.

    Kennicutt, R. C. Jr. The global Schmidt law in star-forming galaxies. Astrophys. J. 498, 541–552 (1998).

    ADS  Article  CAS  Google Scholar 

  58. 58.

    Schaller, G., Schaerer, D., Meynet, G. & Maeder, A. New grids of stellar models from 0.8 to 120 solar masses at Z = 0.020 and Z = 0.001. Astron. Astrophys. Suppl. 96, 269–331 (1992).

    ADS  Google Scholar 

  59. 59.

    Matteucci, F. & Greggio, L. Relative roles of type I and II supernovae in the chemical enrichment of the interstellar gas. Astron. Astrophys. 154, 279–287 (1986).

    ADS  CAS  Google Scholar 

  60. 60.

    Henkel, C. & Mauersberger, R. C and O nucleosynthesis in starbursts - the connection between distant mergers, the Galaxy and the solar system. Astron. Astrophys. 274, 730–742 (1993).

    ADS  CAS  Google Scholar 

  61. 61.

    Davis, T. A. Systematic variation of the 12CO/13CO ratio as a function of star formation rate surface density. Mon. Not. R. Astron. Soc. 445, 2378–2384 (2014).

    ADS  Article  CAS  Google Scholar 

  62. 62.

    Henkel, C., Downes, D., Weiß, A., Riechers, D. & Walter, F. Weak 13CO in the Cloverleaf quasar: evidence for a young, early generation starburst. Astron. Astrophys. 516, A111 (2010).

    ADS  Article  CAS  Google Scholar 

  63. 63.

    Hughes, G. L. et al. The evolution of carbon, sulphur and titanium isotopes from high redshift to the local Universe. Mon. Not. R. Astron. Soc. 390, 1710–1718 (2008).

    ADS  CAS  Google Scholar 

  64. 64.

    Nomoto, K., Tominaga, N., Umeda, H., Kobayashi, C. & Maeda, K. Nucleosynthesis yields of core-collapse supernovae and hypernovae, and galactic chemical evolution. Nucl. Phys. A 777, 424–458 (2006).

    ADS  Article  CAS  Google Scholar 

  65. 65.

    Cescutti, G., Matteucci, F., McWilliam, A. & Chiappini, C. The evolution of carbon and oxygen in the bulge and disk of the Milky Way. Astron. Astrophys. 505, 605–612 (2009).

    ADS  Article  CAS  Google Scholar 

  66. 66.

    Carigi, L., Peimbert, M., Esteban, C. & Garca-Rojas, J. Carbon, nitrogen, and oxygen galactic gradients: a solution to the carbon enrichment problem. Astrophys. J. 623, 213–224 (2005).

    ADS  Article  CAS  Google Scholar 

  67. 67.

    Meyer, B. S., Nittler, L. R., Nguyen, A. N. & Messenger, S. Nucleosynthesis and chemical evolution of oxygen. Rev. Mineral. Geochem. 68, 31–53 (2008).

    Article  CAS  Google Scholar 

  68. 68.

    Sage, L. J., Henkel, C. & Mauersberger, R. Extragalactic O-18/O-17 ratios and star formation—high-mass stars preferred in starburst systems? Astron. Astrophys. 249, 31–35 (1991).

    ADS  CAS  Google Scholar 

  69. 69.

    Kobayashi, C., Karakas, A. I. & Umeda, H. The evolution of isotope ratios in the Milky Way Galaxy. Mon. Not. R. Astron. Soc. 414, 3231–3250 (2011).

    ADS  Article  CAS  Google Scholar 

  70. 70.

    Timmes, F. X., Woosley, S. E. & Weaver, T. A. Galactic chemical evolution: hydrogen through zinc. Astrophys. J. Suppl . Ser. 98, 617–658 (1995).

    ADS  Article  CAS  Google Scholar 

  71. 71.

    Dye, S. et al. Herschel-ATLAS: modelling the first strong gravitational lenses. Mon. Not. R. Astron. Soc. 440, 2013–2025 (2014).

    ADS  Article  Google Scholar 

  72. 72.

    Aravena, M. et al. A survey of the cold molecular gas in gravitationally lensed star-forming galaxies at z ≥ 2. Mon. Not. R. Astron. Soc. 457, 4406–4420 (2016).

    ADS  Article  CAS  Google Scholar 

  73. 73.

    Venturini, S. & Solomon, P. M. The molecular disk in the Cloverleaf quasar. Astrophys. J. 590, 740–745 (2003).

    ADS  Article  CAS  Google Scholar 

  74. 74.

    Omont, A. et al. H2O emission in high-z ultra-luminous infrared galaxies. Astron. Astrophys. 551, A115 (2013).

    Article  CAS  Google Scholar 

  75. 75.

    Weiß, A., Henkel, C., Downes, D. & Walter, F. Gas and dust in the Cloverleaf quasar at redshift 2.5. Astron. Astrophys. 409, L41–L45 (2003).

    ADS  Article  Google Scholar 

  76. 76.

    Falgarone, E. et al. Large turbulent reservoirs of cold molecular gas around high-redshift starburst galaxies. Nature 548, 430–433 (2017).

    ADS  Article  PubMed  CAS  Google Scholar 

  77. 77.

    Vieira, J. D. et al. Dusty starburst galaxies in the early Universe as revealed by gravitational lensing. Nature 495, 344–347 (2013).

    ADS  Article  PubMed  CAS  Google Scholar 

  78. 78.

    Ferkinhoff, C. et al. Band-9 ALMA observations of the [N II] 122 μm line and FIR continuum in two high-z galaxies. Astrophys. J. 806, 260 (2015).

    ADS  Article  Google Scholar 

  79. 79.

    Ma, J. et al. Stellar masses and star formation rates of lensed, dusty, star-forming galaxies from the SPT survey. Astrophys. J. 812, 88 (2015).

    ADS  Article  Google Scholar 

  80. 80.

    Negrello, M. et al. Herschel-ATLAS: deep HST/WFC3 imaging of strongly lensed submillimetre galaxies. Mon. Not. R. Astron. Soc. 440, 1999–2012 (2014).

Download references

Acknowledgements

Z.-Y.Z. is grateful to X. Fu, H.-Y. B. Liu, Y. Shirley and P. Barnes for discussions. Z.-Y.Z., R.J.I. and P.P.P. acknowledge support from the European Research Council in the form of the Advanced Investigator Programme, 321302, COSMICISM. F.M. acknowledges financial funds from Trieste University, FRA2016. This research was supported by the Munich Institute for Astro- and Particle Physics (MIAPP) of the DFG cluster of excellence “Origin and Structure of the Universe”. This work also benefited from the International Space Science Institute (ISSI) in Bern, thanks to the funding of the team “The Formation and Evolution of the Galactic Halo” (Principal Investigator D.R.) This paper makes use of the ALMA data. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), MOST and ASIAA (Taiwan), and KASI (South Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ.

Reviewer information

Nature thanks C. Henkel, P. Kroupa and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Affiliations

Authors

Contributions

Z.-Y.Z. is the Principal Investigator of the ALMA observing project. Z.-Y.Z. reduced the data and wrote the initial manuscript. R.J.I. and P.P.P. provided ideas to initialize the project and helped write the manuscript. Z.-Y.Z. and P.P.P. worked on molecular line modeling of isotopologue ratios and chemical/thermal effects on the abundances. D.R. and F.M. ran the chemical evolution models and provided theoretical interpretation of the data. All authors discussed and commented on the manuscript.

Corresponding author

Correspondence to R. J. Ivison.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Velocity-integrated flux maps (moment 0) of 13CO and C18O for SDP 17b.

Black contours show the high-resolution 250-GHz continuum image, obtained from the ALMA archive76, with levels of 3σ, 10σ and 50σ (σ = 0.6 × 10−1 mJy beam−1). Dashed red circles show the adopted apertures for extracting spectra. a, b, Images of 13CO and C18O for the J = 3 → 2 transition. White contours show the 95-GHz continuum, with levels of 3σ, 5σ and 10σ (σ = 1.7 × 10−2 mJy beam−1). c, d, Images of 13CO and C18O for the J = 4 → 3 transition. White contours show the 133-GHz continuum, with levels of 3σ, 5σ and 10σ (σ = 2.3 × 10−2 mJy beam−1). The corresponding synthesis beams (white for 13CO and C18O, and black for the 250-GHz continuum) are plotted in the bottom left.

Extended Data Fig. 2 Velocity-integrated flux maps (moment 0) of 13CO and C18O J = 5 → 4 for SPT 0103−45 and the J = 3 → 2 transition in SPT 0125−47.

Black contours show the high-resolution 336-GHz continuum image, obtained from the ALMA archive77, with levels of 3σ, 10σ and 30σ (σ = 2.3 × 10−2 mJy beam−1). Dashed red circles show the adopted apertures for extracting spectra. a, b, Images of 13CO and C18O J = 5 → 4 for SPT 0103−45. Blue contours show the narrow 12CO J = 4 → 3 emission, with levels of 3σ, 10σ and 30σ (σ = 0.14 Jy beam−1 km s−1). White contours show the 135-GHz continuum, with levels of 3σ, 10σ and 30σ (σ = 2 × 10−2 mJy beam−1). c, d, Images of 13CO and C18O for the J = 3 → 2 transition in SPT 0125−47. White contours show the 94-GHz continuum, with levels of 3σ, 5σ and 10σ (σ = 2.2 × 10−2 mJy beam−1). The corresponding synthesis beams (white for 13CO and C18O, and black for the 336-GHz continuum) are plotted in the bottom left.

Extended Data Fig. 3 Velocity-integrated flux maps (moment 0) of 13CO and C18O for the J = 3 → 2 transition in the Cloverleaf quasar.

a, Image of the 13CO J = 3 → 2 transition. b, Image of the C18O J = 3 → 2 transition. Black contours show the high-resolution 690-GHz continuum image, obtained from the ALMA archive78, with levels of 3σ, 5σ and 10σ (σ = 0.8 mJy beam−1). Dashed red circles show the adopted apertures for extracting spectra. White contours show the 92-GHz continuum, with levels of 3σ, 5σ and 10σ (σ = 2 × 10−2 mJy beam−1). The corresponding synthesis beams (white for 13CO and C18O, and black for the 690-GHz continuum) are plotted in the bottom left.

Extended Data Fig. 4 ALMA spectra of the observed 12CO, 13CO and C18O transitions.

a, ALMA spectra of 12CO in SPT 0125−47 and SPT 0103−45. Yellow shading shows the velocity range adopted from 12CO in the analysis. b, ALMA spectra of 13CO and C18O for all targets. All spectra are in black. Red lines show Gaussian fits to the observed lines. Velocities are labelled relative to their 12CO or 13CO transitions.

Extended Data Fig. 5 I(13CO)/I(C18O) and I(12CO)/I(13CO) line ratios as a function of optical depth of 13CO, under LTE conditions.

a, I(13CO)/I(C18O) line ratio as a function of optical depth of 13CO. b, I(12CO)/I(13CO) line ratio as a function of optical depth of 13CO. Both ratios assume LTE conditions. We assume the abundance ratios of 13CO/C18O and 12CO/13CO are 7 and 70, respectively, which are representative values found in the Milky Way. This shows that the I(13CO)/I(C18O) line ratio approaches unity (blue line) only when the optical depth of C18O is greater than or equal to 1 (and the corresponding optical depth τ13CO = 7). The bottom scale bar shows the corresponding \({N}_{{{\rm{H}}}_{2}}\), assuming a CO/H2 abundance78  of 8.5 × 10−5. r and R are the intrinsic abundance ratio and measured line brigntness ratio, respectively.

Extended Data Fig. 6 Optical depths, I(13CO)/I(C18O) and I(12CO)/I(13CO) line ratios as a function of H2 column density, under non-LTE conditions.

a, Optical depths of 12CO, 13CO and C18O, for the = 3 → 2 transition; b, I(13CO)/I(C18O) line ratio, and c, I(12CO)/I(13CO) line ratio as a function of H2 column density, \({N}_{{{\rm{H}}}_{2}}\), and 13CO column density in various physical conditions, for non-LTE models calculated with RADEX40. For all models, we set the abundance ratios of 12CO, 13CO and C18O to be Galactic: 12CO/13CO = 70 and 13CO/C18O = 7, which are representative values of the Milky Way disk. Different line styles show the gas conditions of H2 volume densities, \({n}_{{{\rm{H}}}_{2}}\) = 103 cm−3, 104 cm−3 and 105 cm−3. The Tkin value for all models is set to 30 K, which is a typical dust temperature for the submillimetre galaxy population, and the lowest Tkin that H2 gas can reach for such intensive starburst conditions, due to cosmic ray heating43. In b and c, we also overlay the line ratios (in thick green lines) with the LTE assumption for comparison. All three panels show that for Galactic abundances the line ratio of 13CO/C18O can approach unity only when the 13CO column density is higher than 1019–1020 cm−2 (that is, H2 column density \({N}_{{{\rm{H}}}_{2}}\) > 1025–1026 cm−2).

Extended Data Fig. 7 I(HNCO)/I(C18O) line ratio and normalized I(HNCO)/I(C18O) ratio as a function of H2 volume density.

a, I(HNCO)/I(C18O) line ratio as a function of H2 volume density. b, I(HNCO)/I(C18O) line ratio as a function of H2 volume density, normalized with I(HNCO J = 5 → 4)/I(C18J = 1 → 0). Both ratios are calculated using RADEX40, in which we assume the same abundances as measured in Arp 22047. We assume Tkin = 30 K as the representative kinetic temperature of the H2 gas.

Extended Data Table 1 Target properties
Extended Data Table 2 ALMA observational information
Extended Data Table 3 Observed targets, lines, frequencies, linewidths and fluxes

Source Data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Romano, D., Ivison, R.J. et al. Stellar populations dominated by massive stars in dusty starburst galaxies across cosmic time. Nature 558, 260–263 (2018). https://doi.org/10.1038/s41586-018-0196-x

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.