Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The global influence of localized dynamics in the Southern Ocean

Abstract

The circulation of the Southern Ocean connects ocean basins, links the deep and shallow layers of the ocean, and has a strong influence on global ocean circulation, climate, biogeochemical cycles and the Antarctic Ice Sheet. Processes that act on local and regional scales, which are often mediated by the interaction of the flow with topography, are fundamental in shaping the large-scale, three-dimensional circulation of the Southern Ocean. Recent advances provide insight into the response of the Southern Ocean to future change and the implications for climate, the carbon cycle and sea-level rise.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The Southern Ocean circulation.
Fig. 2: Interaction of the ACC with topography.
Fig. 3: Spatial distribution of mixing along and across isopycnals.
Fig. 4: Processes that control ocean heat flux to the Antarctic margin.

References

  1. 1.

    Deacon, G. E. R. The hydrology of the Southern Ocean. Discov. Rep. 15, 1–124 (1937).

    Google Scholar 

  2. 2.

    Sverdrup, H. U. On vertical circulation in the ocean due to the action of the wind with application to conditions within the Antarctic Circumpolar Current. Discov. Rep. VII, 139–170 (1933).

    Google Scholar 

  3. 3.

    Speer, K., Rintoul, S. R. & Sloyan, B. The diabatic Deacon cell. J. Phys. Oceanogr. 30, 3212–3222 (2000). This study highlights the role of the Southern Ocean in closing the global overturning circulation.

    ADS  MathSciNet  Article  Google Scholar 

  4. 4.

    Marshall, J. & Speer, K. Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci. 5, 171–180 (2012). This paper provides a review of the Southern Ocean overturning circulation and its role in the Earth system.

    ADS  Article  CAS  Google Scholar 

  5. 5.

    Sloyan, B. M. & Rintoul, S. R. The Southern Ocean limb of the global deep overturning circulation. J. Phys. Oceanogr. 31, 143–173 (2001).

    ADS  Article  Google Scholar 

  6. 6.

    Sabine, C. L. et al. The oceanic sink for anthropogenic CO2. Science 305, 367–371 (2004).

    ADS  PubMed  Article  CAS  Google Scholar 

  7. 7.

    Gruber, N. et al. Oceanic sources, sinks, and transport of atmospheric CO2. Glob. Biogeochem. Cycles 23, GB1005 (2009).

    ADS  Article  CAS  Google Scholar 

  8. 8.

    Frölicher, T. L. et al. Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. J. Clim. 28, 862–886 (2015). This study, which is based on numerical model simulations, demonstrates the dominant contribution of the Southern Ocean to the uptake of anthropogenic heat and carbon dioxide.

    ADS  Article  Google Scholar 

  9. 9.

    Hughes, C. W. Nonlinear vorticity balance of the Antarctic Circumpolar Current. J. Geophys. Res. 110, C11008 (2005). This paper provides a lucid explanation of the vorticity balance in the Southern Ocean.

    ADS  Article  Google Scholar 

  10. 10.

    Anderson, D. L. T. & Gill, A. E. Spin-up of a stratified ocean with applications to upwelling. Deep Sea Res. 22, 583–596 (1975).

    Google Scholar 

  11. 11.

    Rintoul, S. R., Hughes, C. & Olbers, D. in Ocean Circulation and Climate (eds Siedler, G. et al.) 271–302 (Academic Press, Cambridge, 2001).

  12. 12.

    Olbers, D., Borowski, D., Völker, C. & Wölff, J.-O. The dynamical balance, transport and circulation of the Antarctic Circumpolar Current. Antarct. Sci. 16, 439–470 (2004).

    ADS  Article  Google Scholar 

  13. 13.

    Rintoul, S. R. & Naveira Garabato, A. C. in Ocean Circulation and Climate 2nd edn (eds Siedler, G. et al.) Ch. 18 (Academic Press, Cambridge, 2013). This review of Southern Ocean dynamics provides additional detail on some of the processes highlighted here.

  14. 14.

    Munk, W. H. & Palmén, E. Note on the dynamics of the Antarctic Circumpolar Current. Tellus 3, 53–55 (1951).

    ADS  Article  Google Scholar 

  15. 15.

    Johnson, G. C. & Bryden, H. On the size of the Antarctic Circumpolar Current. Deep Sea Res. Part A 36, 39–53 (1989).

    ADS  Article  Google Scholar 

  16. 16.

    Hogg, A. McC. An Antarctic Circumpolar Current driven by surface buoyancy forcing. Geophys. Res. Lett. 37, L23601 (2010).

    ADS  Article  Google Scholar 

  17. 17.

    Marshall, J. & Radko, T. Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr. 33, 2341–2354 (2003).

    ADS  Article  Google Scholar 

  18. 18.

    Straub, D. N. On the transport and angular momentum balance of channel models of the Antarctic Circumpolar Current. J. Phys. Oceanogr. 23, 776–782 (1993).

    ADS  Article  Google Scholar 

  19. 19.

    Böning, C. W., Dispert, A., Visbeck, M., Rintoul, S. R. & Schwarzkopf, F. Response of the Antarctic Circumpolar Current to recent climate change. Nat. Geosci. 1, 864–869 (2008).

    ADS  Article  CAS  Google Scholar 

  20. 20.

    Hallberg, R. & Gnanadesikan, A. The role of eddies in determining the structure and response of the wind-driven Southern Hemisphere overturning: results from the modeling eddies in the Southern Ocean (MESO) project. J. Phys. Oceanogr. 36, 2232–2252 (2006).

    ADS  Article  Google Scholar 

  21. 21.

    Farneti, R., Delworth, T. L., Rosati, A. J., Griffies, S. M. & Zeng, F. The role of mesoscale eddies in the rectification of the Southern Ocean response to climate change. J. Phys. Oceanogr. 40, 1539–1557 (2010).

    ADS  Article  Google Scholar 

  22. 22.

    Dufour, C. O. et al. Standing and transient eddies in the response of the Southern Ocean meridional overturning to the Southern Annular Mode. J. Clim. 25, 6958–6974 (2012).

    ADS  Article  Google Scholar 

  23. 23.

    Morrison, A. K. & Hogg, A. McC. On the relationship between Southern Ocean overturning and ACC transport. J. Phys. Oceanogr. 43, 140–148 (2013).

    ADS  Article  Google Scholar 

  24. 24.

    Chelton, D. B., Schlax, M. G., Samelson, R. M. & deSzoeke, R. A. Global observations of large ocean eddies. Geophys. Res. Lett. 34, L15606 (2007).

    ADS  Article  Google Scholar 

  25. 25.

    Sokolov, S. & Rintoul, S. R. On the relationship between fronts of the Antarctic Circumpolar Current and surface chlorophyll concentrations in the Southern Ocean. J. Geophys. Res. Oceans 112, C07030 (2007).

    ADS  Article  CAS  Google Scholar 

  26. 26.

    Masich, J., Chereskin, T. K. & Mazloff, M. Topographic form stress in the Southern Ocean state estimate. J. Geophys. Res. 120, 7919–7933 (2015).

    ADS  Article  Google Scholar 

  27. 27.

    Firing, Y. l., Chereskin, T. K., Watts, D. R. & Mazloff, M. R. Bottom pressure torque and the vorticity balance from observations in Drake Passage. J. Geophys. Res. Oceans 121, 4282–4302 (2016).

    ADS  Article  Google Scholar 

  28. 28.

    Williams, R. G., Wilson, C. & Hughes, C. W. Ocean and atmosphere storm tracks: the role of eddy vorticity forcing. J. Phys. Oceanogr. 37, 2267–2289 (2007).

    ADS  Article  Google Scholar 

  29. 29.

    Thompson, A. F. & Sallée, J. B. Jets and topography: jet transitions and the impact on transport in the Antarctic Circumpolar Current. J. Phys. Oceanogr. 42, 956–972 (2012).

    ADS  Article  Google Scholar 

  30. 30.

    Smith, I. J., Stevens, D. P., Heywood, K. J. & Meredith, M. P. The flow of the Antarctic Circumpolar Current over the North Scotia Ridge. Deep Sea Res. Part I 57, 14–28 (2010).

    Article  Google Scholar 

  31. 31.

    Rintoul, S. R. et al. Antarctic Circumpolar Current transport and barotropic transition at Macquarie Ridge. Geophys. Res. Lett. 41, 7254–7261 (2014).

    ADS  Article  Google Scholar 

  32. 32.

    Thompson, A. F. & Naveira Garabato, A. C. Equilibration of the Antarctic Circumpolar Current by standing meanders. J. Phys. Oceanogr. 44, 1811–1828 (2014). This study shows how changes in the path of the Antarctic Circumpolar Current (‘flexing’ of meanders) can give rise to eddy-mean flow and flow–topography interactions that balance changes in forcing.

    ADS  Article  Google Scholar 

  33. 33.

    Dufour, C. O. et al. Role of mesoscale eddies in cross-frontal transport of heat and biogeochemical tracers in the Southern Ocean. J. Phys. Oceanogr. 45, 3057–3081 (2015).

    ADS  Article  Google Scholar 

  34. 34.

    Naveira Garabato, A. C., Ferrari, R. & Polzin, K. L. Eddy stirring in the Southern Ocean. J. Geophys. Res. 116, C09019 (2011). This paper provides a comprehensive examination of along-isopycnal stirring in the Southern Ocean by eddies.

    ADS  Article  Google Scholar 

  35. 35.

    Chereskin, T. K. et al. Strong bottom currents and cyclogenesis in Drake Passage. Geophys. Res. Lett. 36, L23602 (2009).

    ADS  Article  Google Scholar 

  36. 36.

    Döös, K., Nycander, J. & Coward, A. C. Lagrangian decomposition of the Deacon Cell. J. Geophys. Res. 113, C07028 (2008).

    ADS  Article  Google Scholar 

  37. 37.

    Tamsitt, V. et al. Spiraling pathways of global deep waters to the surface of the Southern Ocean. Nat. Commun. 8, 172 (2017); corrigendum 9, 209 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  38. 38.

    Tamsitt, V., Abernathey, R. P., Mazloff, M. R., Wang, J. & Talley, L. D. Transformation of deep water masses along Lagrangian upwelling pathways in the Southern Ocean. J. Geophys. Res. Oceans 123, 1994–2017 (2018).

    ADS  Article  Google Scholar 

  39. 39.

    Sallée, J. B., Rintoul, S. R. & Wijffels, S. E. Southern ocean thermocline ventilation. J. Phys. Oceanogr. 40, 509–529 (2010).

    ADS  Article  Google Scholar 

  40. 40.

    Sallée, J. B., Matear, R., Rintoul, S. R. & Lenton, A. Surface to interior pathways of anthropogenic CO2 in the southern hemisphere oceans. Nat. Geosci. 5, 579–584 (2012).

    ADS  Article  CAS  Google Scholar 

  41. 41.

    Langlais, C. E. et al. Stationary Rossby waves dominate subduction of anthropogenic carbon in the Southern Ocean. Sci. Rep. 7, 17076 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  42. 42.

    Tulloch, R. et al. Direct estimate of lateral eddy diffusivity upstream of Drake Passage. J. Phys. Oceanogr. 44, 2593–2616 (2014).

    ADS  Article  Google Scholar 

  43. 43.

    Ferrari, R. & Nikurashin, M. Suppression of eddy diffusivity across jets in the Southern Ocean. J. Phys. Oceanogr. 40, 1501–1519 (2010). This study explains how the strong jets of the Antarctic Circumpolar Current suppress eddy stirring across the current.

    ADS  Article  Google Scholar 

  44. 44.

    Garabato Naveira, A. C., Stevens, D. P., Watson, A. J. & Roether, W. Short-circuiting of the oceanic overturning circulation in the Antarctic Circumpolar Current. Nature 447, 194–197 (2007).

    ADS  Article  CAS  Google Scholar 

  45. 45.

    Ledwell, J. R., St. Laurent, L. C., Girton, J. B. & Toole, J. M. Diapycnal mixing in the Antarctic Circumpolar Current. J. Phys. Oceanogr. 41, 241–246 (2011).

    ADS  Article  Google Scholar 

  46. 46.

    Naveira Garabato, A. C., Polzin, K. L., Ferrari, R., Zika, J. D. & Forryan, A. A microscale view of mixing and overturning across the Antarctic Circumpolar Current. J. Phys. Oceanogr. 46, 233–254 (2016).

    ADS  Article  Google Scholar 

  47. 47.

    Waterman, S. N., Naveira Garabato, A. C. & Polzin, K. L. Internal waves and turbulence in the Antarctic Circumpolar Current. J. Phys. Oceanogr. 43, 259–282 (2013).

    ADS  Article  Google Scholar 

  48. 48.

    Sheen, K. L. et al. Rates and mechanisms of turbulent dissipation and mixing in the Southern Ocean: results from the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). J. Geophys. Res. Oceans 118, 2774–2792 (2013).

    ADS  Article  Google Scholar 

  49. 49.

    Nikurashin, M. & Ferrari, R. Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: application to the Southern Ocean. J. Phys. Oceanogr. 40, 2025–2042 (2010).

    ADS  Article  Google Scholar 

  50. 50.

    Laurent, L. St. et al. Turbulence and diapycnal mixing in Drake Passage. J. Phys. Oceanogr. 42, 2143–2152 (2012).

    ADS  Article  Google Scholar 

  51. 51.

    Watson, A. J. et al. Rapid cross-density ocean mixing at mid-depths in the Drake Passage measured by tracer release. Nature 501, 408–411 (2013). Using observations of the spreading of a tracer released in the Southern Ocean, the authors show that diapycnal mixing is rapid where the Antarctic Circumpolar Current interacts with rough topography.

    ADS  PubMed  Article  CAS  Google Scholar 

  52. 52.

    Nikurashin, M. & Ferrari, R. Overturning circulation driven by breaking internal waves in the deep ocean. Geophys. Res. Lett. 40, 3133–3137 (2013).

    ADS  Article  Google Scholar 

  53. 53.

    Talley, L. D. Closure of the global overturning circulation through the Indian, Pacific, and Southern oceans: schematics and transports. Oceanography 26, 80–97 (2013).

    Article  Google Scholar 

  54. 54.

    Sarmiento, J. L., Gruber, N., Brzezinski, M. A. & Dunne, J. P. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427, 56–60 (2004); corrigendum 479, 556 (2011).

    ADS  PubMed  Article  CAS  Google Scholar 

  55. 55.

    Marinov, I., Gnanadesikan, A., Toggweiler, J. R. & Sarmiento, J. L. The Southern Ocean biogeochemical divide. Nature 441, 964–967 (2006).

    ADS  PubMed  Article  CAS  Google Scholar 

  56. 56.

    Sigman, D. M., Hain, M. P. & Haug, G. H. The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature 466, 47–55 (2010).

    ADS  PubMed  Article  CAS  Google Scholar 

  57. 57.

    Mikaloff Fletcher, S. E. et al. Inverse estimates of anthropogenic CO2 uptake, transport, and storage by the ocean. Glob. Biogeochem. Cycles 20, GB2002 (2006).

    ADS  Article  CAS  Google Scholar 

  58. 58.

    Khatiwala, S. et al. Global ocean storage of anthropogenic carbon. Biogeosciences 10, 2169–2191 (2013).

    ADS  Article  CAS  Google Scholar 

  59. 59.

    Armour, K. C., Marshall, J., Scott, J. R., Donohoe, A. & Newsom, E. R. Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nat. Geosci. 9, 549–554 (2016).

    ADS  Article  CAS  Google Scholar 

  60. 60.

    Roemmich, D. J. et al. Unabated planetary warming and its ocean structure since 2006. Nat. Clim. Change. 5, 240–245 (2015).

    ADS  Article  Google Scholar 

  61. 61.

    Gao, L., Rintoul, S. R. & Yu, W. Recent wind-driven changes in Subantarctic Mode Water and its impact on ocean heat storage. Nat. Clim. Change. 8, 58–63 (2018).

    ADS  Article  Google Scholar 

  62. 62.

    Le Quéré, C. et al. Saturation of the southern ocean CO2 sink due to recent climate change. Science 316, 1735–1738 (2007).

    ADS  PubMed  Article  CAS  Google Scholar 

  63. 63.

    Lovenduski, N. S., Gruber, N. & Doney, S. C. Toward a mechanistic understanding of the decadal trends in the Southern Ocean carbon sink. Glob. Biogeochem. Cycles 22, GB3016 (2008).

    ADS  Article  CAS  Google Scholar 

  64. 64.

    Landschützer, P. et al. The reinvigoration of the Southern Ocean carbon sink. Science 349, 1221–1224 (2015).

    ADS  PubMed  Article  CAS  Google Scholar 

  65. 65.

    DeVries, T., Holzer, M. & Primeau, F. Recent increase in oceanic carbon uptake driven by weaker upper-ocean overturning. Nature 542, 215–218 (2017).

    ADS  PubMed  Article  CAS  Google Scholar 

  66. 66.

    Lumpkin, R. & Speer, K. Global ocean meridional overturning. J. Phys. Oceanogr. 37, 2550–2562 (2007).

    ADS  Article  Google Scholar 

  67. 67.

    Abernathey, R. P. et al. Water-mass transformation by sea ice in the upper branch of the Southern Ocean overturning. Nat. Geosci. 9, 596–601 (2016).

    ADS  Article  CAS  Google Scholar 

  68. 68.

    Haumann, F. A., Gruber, N., Münnich, M., Frenger, I. & Kern, S. Sea-ice transport driving Southern Ocean salinity and its recent trends. Nature 537, 89–92 (2016). This study highlights the contribution of fresh-water transport by sea ice to the buoyancy budget and water-mass transformations that are central to the Southern Ocean overturning circulation.

    ADS  PubMed  Article  CAS  Google Scholar 

  69. 69.

    Pellichero, V., Sallée, J.-B., Schmidtko, S., Roquet, F. & Charrassin, J.-B. The ocean mixed layer under Southern Ocean sea-ice: seasonal cycle and forcing. J. Geophys. Res. Oceans 122, 1608–1633 (2017).

    ADS  Article  Google Scholar 

  70. 70.

    Pellichero, V., Sallée, J.-B., Chapman, C. C. & Downes, S. M. The southern ocean meridional overturning in the sea-ice sector is driven by freshwater fluxes. Nat. Commun. 9, 1789 (2018).

    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

  71. 71.

    Holland, P. R. & Kwok, R. Wind-driven trends in Antarctic sea-ice drift. Nat. Geosci. 5, 872–875 (2012).

    ADS  Article  CAS  Google Scholar 

  72. 72.

    Hobbs, W. R. et al. A review of recent changes in Southern Ocean sea ice, their drivers and forcings. Global Planet. Change 143, 228–250 (2016).

    ADS  Article  Google Scholar 

  73. 73.

    Durack, P. J., Wijffels, S. E. & Matear, R. J. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 336, 455–458 (2012).

    ADS  PubMed  Article  CAS  Google Scholar 

  74. 74.

    Bintanja, R., van Oldenborgh, G. J., Drijfhout, S. S., Wouters, B. & Katsman, C. A. Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nat. Geosci. 6, 376–379 (2013).

    ADS  Article  CAS  Google Scholar 

  75. 75.

    Silvano, A. et al. Freshening by glacial meltwater enhances melting of ice shelves and reduces formation of Antarctic Bottom Water. Sci. Adv. 4, eaap9467 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  76. 76.

    Ferreira, D., Marshall, J., Bitz, C. M., Solomon, S. & Plumb, A. Antarctic ocean and sea ice response to ozone depletion: a two-time-scale problem. J. Clim. 28, 1206–1226 (2015).

    ADS  Article  Google Scholar 

  77. 77.

    Shepherd, A., Fricker, H. A. & Farrell, S. L. Trends and connections across the Antarctic cryosphere. Nature 558, https://doi.org/10.1038/s41586-018-0171-6 (2018).

  78. 78.

    Dupont, T. K. & Alley, R. B. Assessment of the importance of ice-shelf buttressing to ice-sheet flow. Geophys. Res. Lett. 32, L04503 (2005).

    ADS  Article  Google Scholar 

  79. 79.

    Pritchard, H. D. et al. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484, 502–505 (2012).

    ADS  PubMed  Article  CAS  Google Scholar 

  80. 80.

    Schmidtko, S., Heywood, K. J., Thompson, A. F. & Aoki, S. Multidecadal warming of Antarctic waters. Science 346, 1227–1231 (2014).

    ADS  PubMed  Article  CAS  Google Scholar 

  81. 81.

    Li, X., Rignot, E., Morlighem, M., Mouginot, J. & Scheuchl, B. Grounding line retreat of Totten Glacier, East Antarctica, 1996 to 2013. Geophys. Res. Lett. 42, 8049–8056 (2015).

    ADS  Article  Google Scholar 

  82. 82.

    Rignot, E., Jacobs, S., Mouginot, J. & Scheuchl, B. Ice-shelf melting around Antarctica. Science 341, 266–270 (2013).

    ADS  PubMed  Article  CAS  Google Scholar 

  83. 83.

    Depoorter, M. A. et al. Calving fluxes and basal melt rates of Antarctic ice shelves. Nature 502, 89–92 (2013).

    ADS  PubMed  Article  CAS  Google Scholar 

  84. 84.

    Rintoul, S. R. et al. Ocean heat drives rapid basal melt of the Totten Ice Shelf. Sci. Adv. 2, e1601610 (2016).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  85. 85.

    Silvano, A., Rintoul, S. R., Peña-Molino, B. & Williams, G. D. Distribution of water masses and meltwater on the continental shelf near the Totten and Moscow University ice shelves. J. Geophys. Res. Oceans 122, 2050–2068 (2017).

    ADS  Article  Google Scholar 

  86. 86.

    Golledge, N. R. et al. The multi-millennial Antarctic commitment to future sea-level rise. Nature 526, 421–425 (2015).

    ADS  PubMed  Article  CAS  Google Scholar 

  87. 87.

    DeConto, R. M. & Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597 (2016).

    ADS  PubMed  Article  CAS  Google Scholar 

  88. 88.

    Spence, P. et al. Localized rapid warming of West Antarctic subsurface waters by remote winds. Nat. Clim. Change. 7, 595–603 (2017).

    ADS  Article  Google Scholar 

  89. 89.

    Stewart, A. L. & Thompson, A. F. Eddy-mediated transport of warm Circumpolar Deep Water across the Antarctic Shelf Break. Geophys. Res. Lett. 42, 432–440 (2015).

    ADS  Article  Google Scholar 

  90. 90.

    Dinniman, M. S., Klinck, J. M. & Smith, W. O. Jr. A model study of Circumpolar Deep Water on the West Antarctic Peninsula and Ross Sea continental shelves. Deep Sea Res. Part II 58, 1508–1523 (2011).

    ADS  Article  CAS  Google Scholar 

  91. 91.

    Khazendar, A. et al. Observed thinning of Totten Glacier is linked to coastal polynya variability. Nat. Commun. 4, 2857 (2013).

    PubMed  Article  CAS  Google Scholar 

  92. 92.

    Dutrieux, P. et al. Strong sensitivity of Pine Island ice-shelf melting to climatic variability. Science 343, 174–178 (2014).

    ADS  PubMed  Article  CAS  Google Scholar 

  93. 93.

    Pauling, A. G., Smith, I. J., Langhorne, P. J. & Bitz, C. M. Time-dependent freshwater input from ice shelves: impacts on Antarctic sea ice and the Southern Ocean in an Earth system model. Geophys. Res. Lett. 44, 10454–10461 (2017).

    ADS  Article  Google Scholar 

  94. 94.

    Hellmer, H. H. Impact of Antarctic ice shelf basal melting on sea ice and deep ocean properties. Geophys. Res. Lett. 31, L10307 (2004).

    ADS  Article  Google Scholar 

  95. 95.

    Gille, S. T. Decadal-scale temperature trends in the Southern Hemisphere ocean. J. Clim. 21, 4749–4765 (2008).

    ADS  Article  Google Scholar 

  96. 96.

    Meijers, A. J. S., Bindoff, N. L. & Rintoul, S. R. Frontal movements and property fluxes: contributions to heat and freshwater trends in the Southern Ocean. J. Geophys. Res. Oceans 116, C08024 (2011).

    ADS  Article  Google Scholar 

  97. 97.

    Hogg, A. McC. et al. Recent trends in the Southern Ocean eddy field. J. Geophys. Res. Oceans 120, 257–267 (2015).

    ADS  Article  Google Scholar 

  98. 98.

    Waugh, D. W., Primeau, F., DeVries, T. & Holzer, M. Recent changes in the ventilation of the southern oceans. Science 339, 568–570 (2012).

    ADS  Article  CAS  Google Scholar 

  99. 99.

    Jacobs, S. S. & Giulivi, C. F. Large multidecadal salinity trends near the Pacific-Antarctic continental margin. J. Clim. 23, 4508–4524 (2010).

    ADS  Article  Google Scholar 

  100. 100.

    Purkey, S. G. & Johnson, G. C. Warming of global abyssal and deep southern ocean waters between the 1990s and 2000s: contributions to global heat and sea level rise budgets. J. Clim. 23, 6336–6351 (2010).

    ADS  Article  Google Scholar 

  101. 101.

    Purkey, S. G. & Johnson, G. C. Global contraction of Antarctic Bottom Water between the 1980s and 2000s. J. Clim. 25, 5830–5844 (2012).

    ADS  Article  Google Scholar 

  102. 102.

    Purkey, S. G. & Johnson, G. C. Antarctic Bottom Water warming and freshening: contributions to sea level rise, ocean freshwater budgets, and global heat gain. J. Clim. 26, 6105–6122 (2013).

    ADS  Article  Google Scholar 

  103. 103.

    van Wijk, E. M. & Rintoul, S. R. Freshening drives contraction of Antarctic Bottom Water in the Australian Antarctic Basin. Geophys. Res. Lett. 41, 1657–1664 (2014).

    ADS  Article  Google Scholar 

  104. 104.

    Thompson, D. W. J. et al. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci. 4, 741–749 (2011).

    ADS  Article  CAS  Google Scholar 

  105. 105.

    Swart, N. C. & Fyfe, J. C. Observed and simulated changes in the Southern Hemisphere surface westerly wind-stress. Geophys. Res. Lett. 39, L16711 (2012).

    ADS  Article  Google Scholar 

  106. 106.

    Ding, Q., Steig, E. J., Battisti, D. S. & Wallace, J. M. Influence of the tropics on the Southern Annular Mode. J. Clim. 25, 6330–6348 (2012).

    ADS  Article  Google Scholar 

  107. 107.

    Meredith, M. P., Naveira Garabato, A. C., Hogg, A. McC. & Farneti, R. Sensitivity of the overturning circulation in the Southern Ocean to decadal changes in wind forcing. J. Clim. 25, 99–110 (2012).

    ADS  Article  Google Scholar 

  108. 108.

    Morrison, A. K., Griffies, S. M., Winton, M., Anderson, W. G. & Sarmiento, J. L. Mechanisms of Southern Ocean heat uptake and transport in a global eddying climate model. J. Clim. 29, 2059–2075 (2016).

    ADS  Article  Google Scholar 

  109. 109.

    Ito, T. et al. Sustained growth of the Southern Ocean carbon storage in a warming climate. Geophys. Res. Lett. 42, 4516–4522 (2015).

    ADS  Article  CAS  Google Scholar 

  110. 110.

    Patara, L., Böning, C. W. B. & Biastoch, A. Variability and trends in Southern Ocean eddy activity in 1/12° ocean model simulations. Geophys. Res. Lett. 43, 4517–4523 (2016).

    ADS  Article  Google Scholar 

  111. 111.

    Rintoul, S. R. Southern Ocean currents and climate. Pap. Proc. R. Soc. Tasman. 133, 41–50 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

A. Silvano, A. Foppert, A. Lenton, M. Nikurashin and E. van Wijk provided comments on the paper. M. Bessel and G. Wells prepared the original version of Fig. 1b. This work is supported in part by the Australian Government Cooperative Research Centre (CRC) programme through the Antarctic Climate and Ecosystems CRC, by the National Environmental Science Program, by the Centre for Southern Hemisphere Oceans Research, a partnership between CSIRO and the Qingdao National Laboratory for Marine Science and Technology, and by the Tinker-Muse Prize for Science and Policy in Antarctica.

Reviewer information

Nature thanks R. Ferrari, N. Gruber and K. Speer for their contribution to the peer review of this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stephen R. Rintoul.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rintoul, S.R. The global influence of localized dynamics in the Southern Ocean. Nature 558, 209–218 (2018). https://doi.org/10.1038/s41586-018-0182-3

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing