Review Article | Published:

Trends and connections across the Antarctic cryosphere

Naturevolume 558pages223232 (2018) | Download Citation

Abstract

Satellite observations have transformed our understanding of the Antarctic cryosphere. The continent holds the vast majority of Earth’s fresh water, and blankets swathes of the Southern Hemisphere in ice. Reductions in the thickness and extent of floating ice shelves have disturbed inland ice, triggering retreat, acceleration and drawdown of marine-terminating glaciers. The waxing and waning of Antarctic sea ice is one of Earth’s greatest seasonal habitat changes, and although the maximum extent of the sea ice has increased modestly since the 1970s, inter-annual variability is high, and there is evidence of longer-term decline in its extent.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from $8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Parkinson, C. L. Global sea ice coverage from satellite data: annual cycle and 35-yr trends. J. Clim. 27, 9377–9382 (2014). This paper is a recent assessment of multi-decadal trends in global sea ice extent as derived from satellite passive microwave radiometer data, confirming that the losses in ice extent in the Arctic Ocean far exceed gains in the Southern Ocean.

  2. 2.

    Zwally, H. J., Giovinetto, M. B., Beckley, M. A. & Saba, J. L. Antarctic and Greenland Drainage Systems (GSFC Cryospheric Sciences Laboratory, 2012).

  3. 3.

    Shepherd, A. et al. Recent loss of floating ice and the consequent sea level contribution. Geophys. Res. Lett. 37, https://doi.org/10.1029/2010GL042496 (2010).

  4. 4.

    Fretwell, P. et al. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7, 375–393 (2013). This paper presents models of the Antarctic ice sheet and ice shelf thickness, determined from a compilation of airborne and satellite remote sensing, that are widely used across the glaciological community and beyond.

  5. 5.

    Jacobs, S. S., Helmer, H. H., Doake, C. S. M., Jenkins, A. & Frolich, R. M. Melting of ice shelves and the mass balance of Antarctica. J. Glaciol. 38, 375–387 (1992).

  6. 6.

    Massom, R. A. & Stammerjohn, S. E. Antarctic sea ice change and variability—physical and ecological implications. Polar Sci. 4, 149–186 (2010).

  7. 7.

    Worby, A. P. et al. Thickness distribution of Antarctic sea ice. J. Geophys. Res. Oceans 113, https://doi.org/10.1029/2007JC004254 (2008).

  8. 8.

    Zwally, H. J., Parkinson, C. L. & Comiso, J. C. Variability of Antarctic sea ice and changes in carbon dioxide. Science 220, 1005–1012 (1983). As an early application of satellite radar imagery for tracking trends in the extent of sea ice in the Southern Hemisphere, this paper is a seminal study.

  9. 9.

    De Santis, A., Maier, E., Gomez, R. & Gonzalez, I. Antarctica, 1979–2016 sea ice extent: total versus regional trends, anomalies, and correlation with climatological variables. Int. J. Remote Sens. 38, 7566–7584 (2017).

  10. 10.

    The IMBIE Team. Mass balance of the Antarctic ice sheet from 1992 to 2017. Nature 558, https://doi.org/10.1038/s41586-018-0179-y (2008). This large collaborative work presents an updated comparison and synthesis of many individual estimates of Antarctic ice sheet mass balance derived from satellite observations to deliver a single result for use by the wider scientific community.

  11. 11.

    Paolo, F. S., Fricker, H. A. & Padman, L. Volume loss from Antarctic ice shelves is accelerating. Science 348, 327–331 (2015). A multi-mission record (1994 to 2012) of ice-shelf surface height from satellite radar altimetry showed accelerated loss of volume of Antarctica’s ice shelves, with early increases in East Antarctica, probably due to accumulation, and substantial losses in West Antarctica, where some ice shelves thinned by up to 18% over the 18 years.

  12. 12.

    Shepherd, A., Wingham, D. & Rignot, E. Warm ocean is eroding West Antarctic Ice Sheet. Geophys. Res. Lett. 31, 1–4 (2004).

  13. 13.

    Shepherd, A., Wingham, D., Payne, T. & Skvarca, P. Larsen Ice Shelf has progressively thinned. Science 302, 856–859 (2003). This paper describes the first application of satellite measurements for detecting trends in the thickness of Antarctic ice shelves, providing direct observations of contemporary imbalance and evidence that ocean-driven melting is a destabilizing force.

  14. 14.

    Cook, A. J. & Vaughan, D. G. Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years. Cryosphere 4, 77–98 (2010).

  15. 15.

    Scambos, T. A., Bohlander, J. A., Shuman, C. A. & Skvarca, P. Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys. Res. Lett. 31, L18402 (2004).

  16. 16.

    Drewry, D. J. Antarctica: Glaciological and Geophysical Folio (ed. Drewry, D. J.) (Scott Polar Research Institute, University of Cambridge, Cambridge, 1983).

  17. 17.

    Bamber, J. L., Vaughan, D. G. & Joughin, I. Widespread complex flow in the interior of the Antarctic Ice Sheet. Science 287, 1248–1250 (2000). This study was the first to apply the balance-velocity technique to map the continental pattern of ice flow, revealing the intricate nature of the ice sheet glaciers.

  18. 18.

    Scambos, T. A., Dutkiewicz, M. J., Wilson, J. C. & Bindschadler, R. A. Application of image cross-correlation to the measurement of glacier velocity using satellite image data. Remote Sens. Environ. 42, 177–186 (1992).

  19. 19.

    Goldstein, R. M., Engelhardt, H., Kamb, B. & Frolich, R. M. Satellite radar interferometry for monitoring ice sheet motion: application to an Antarctic ice stream. Science 262, 1525–1530 (1993). This ground-breaking study was the first to explain how the innovative technique of satellite radar interferometry could be applied to glaciology, introducing methods for tracking glacier topography and motion, and the location of ice stream grounding lines.

  20. 20.

    Rignot, E., Mouginot, J. & Scheuchl, B. Ice flow of the Antarctic Ice Sheet. Science 333, 1427–1430 (2011).

  21. 21.

    Joughin, I., Rignot, E., Rosanova, C. E., Lucchitta, B. K. & Bohlander, J. Timing of recent accelerations of Pine Island Glacier, Antarctica. Geophys. Res. Lett. 30, https://doi.org/10.1029/2003GL017609 (2003).

  22. 22.

    Rignot, E. Evidence for rapid retreat and mass loss of Thwaites Glacier, West Antarctica. J. Glaciol. 47, 213–222 (2001).

  23. 23.

    Joughin, I., Tulaczyk, S., Bindschadler, R. & Price, S. F. Changes in west Antarctic ice stream velocities: observation and analysis. J. Geophys. Res. Solid Earth 107, https://doi.org/10.1029/2001JB001029 (2002).

  24. 24.

    Rignot, E. et al. Recent ice loss from the Fleming and other glaciers, Wordie Bay, West Antarctic Peninsula. Geophys. Res. Lett. 32, https://doi.org/10.1029/2004GL021947 (2005).

  25. 25.

    Rott, H., Müller, F., Nagler, T. & Floricioiu, D. The imbalance of glaciers after disintegration of Larsen-B ice shelf, Antarctic Peninsula. Cryosphere 5, 125–134 (2011).

  26. 26.

    Hogg, A. E. et al. Increased ice flow in Western Palmer Land linked to ocean melting. Geophys. Res. Lett. 44, 4159–4167 (2017).

  27. 27.

    Stearns, L. A., Smith, B. E. & Hamilton, G. S. Increased flow speed on a large east Antarctic outlet glacier caused by subglacial floods. Nat. Geosci. 1, 827–831 (2008).

  28. 28.

    Li, X., Rignot, E., Morlighem, M., Mouginot, J. & Scheuchl, B. Grounding line retreat of Totten Glacier, East Antarctica, 1996 to 2013. Geophys. Res. Lett. 42, 8049–8056 (2015).

  29. 29.

    Rignot, E. et al. Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nat. Geosci. 1, 106–110 (2008).

  30. 30.

    Zwally, H. J., Brenner, A. C., Major, J. A., Bindschadler, R. A. & Marsh, J. G. Growth of Greenland ice sheet: measurement. Science 246, 1587–1589 (1989).

  31. 31.

    Wingham, D. J., Ridout, A. J., Scharroo, R., Arthern, R. J. & Shum, C. K. Antarctic elevation change from 1992 to 1996. Science 282, 456–458 (1998).

  32. 32.

    Pritchard, H. D., Arthern, R. J., Vaughan, D. G. & Edwards, L. A. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 461, 971–975 (2009).

  33. 33.

    Velicogna, I. & Wahr, J. Measurements of time-variable gravity show mass loss in Antarctica. Science 311, 1754–1756 (2006).

  34. 34.

    Luthcke, S. B. et al. Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution. J. Glaciol. 59, 613–631 (2013).

  35. 35.

    Briggs, K. et al. Charting ice-sheet contributions to global sea-level rise. Eos 97, https://doi.org/10.1029/2016EO055719 (2016).

  36. 36.

    Shepherd, A. et al. A reconciled estimate of ice-sheet mass balance. Science 338, 1183–1189 (2012).

  37. 37.

    Wingham, D. J., Wallis, D. W. & Shepherd, A. Spatial and temporal evolution of Pine Island Glacier thinning, 1995–2006. Geophys. Res. Lett. 36, https://doi.org/10.1029/2009GL039126 (2009).

  38. 38.

    Sutterley, T. C. et al. Mass loss of the Amundsen Sea Embayment of West Antarctica from four independent techniques. Geophys. Res. Lett. 41, 8421–8428 (2014).

  39. 39.

    Shepherd, A., Wingham, D. J., Mansley, J. A. D. & Corr, H. F. J. Inland thinning of Pine Island Glacier, West Antarctica. Science 291, 862–864 (2001).

  40. 40.

    Whillans, I. M., Bolzan, J. & Shabtaie, S. Velocity of ice streams B and C, Antarctica. J. Geophys. Res. 92, 8895–8902 (1987).

  41. 41.

    Retzlaff, R. & Bentley, C. R. Timing of stagnation of ice stream C, West Antarctica, from short- pulse radar studies of buried surface crevasses. J. Glaciol. 39, 553–561 (1993).

  42. 42.

    Shepherd, A., Wingham, D. J. & Mansley, J. A. D. Inland thinning of the Amundsen Sea sector, West Antarctica. Geophys. Res. Lett. 29, https://doi.org/10.1029/2001GL014183 (2002).

  43. 43.

    Mouginot, J., Rignot, E. & Scheuchl, B. Sustained increase in ice discharge from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013. Geophys. Res. Lett. 41, 1576–1584 (2014).

  44. 44.

    Jacobs, S. S., Jenkins, A., Giulivi, C. F. & Dutrieux, P. Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf. Nat. Geosci. 4, 519–523 (2011).

  45. 45.

    Siegert, M. J., Carter, S., Tabacco, I., Popov, S. & Blankenship, D. D. A revised inventory of Antarctic subglacial lakes. Antarct. Sci. 17, 453–460 (2005).

  46. 46.

    Gray, L. et al. Evidence for subglacial water transport in the West Antarctic Ice Sheet through three-dimensional satellite radar interferometry. Geophys. Res. Lett. 32, https://doi.org/10.1029/2004GL021387 (2005). This study was the first to detect the surface expression of water transport beneath the Antarctic ice sheet, a new approach for studying the hydrology of the continent’s subglacial lakes.

  47. 47.

    Wingham, D. J., Siegert, M. J., Shepherd, A. & Muir, A. S. Rapid discharge connects Antarctic subglacial lakes. Nature 440, 1033–1036 (2006).

  48. 48.

    Fricker, H. A., Scambos, T., Bindschadler, R. & Padman, L. An active subglacial water system in West Antarctica mapped from space. Science 315, 1544–1548 (2007).

  49. 49.

    Smith, B. E., Helen, A. F., Ian, R. J. & Tulaczyk, S. An inventory of active subglacial lakes in Antarctica detected by ICESat (2003–2008). J. Glaciol. 55, 573–595 (2009).

  50. 50.

    Bell, R. E. The role of subglacial water in ice-sheet mass balance. Nat. Geosci. 1, 297–304 (2008).

  51. 51.

    Siegfried, M. R. & Fricker, H. Thirteen years of subglacial lake activity in Antarctica from multi-mission satellite altimetry. Ann. Glaciol. https://doi.org/10.1017/aog.2017.36 (2018).

  52. 52.

    Bell, R. E., Studinger, M., Shuman, C. A., Fahnestock, M. A. & Joughin, I. Large subglacial lakes in East Antarctica at the onset of fast-flowing ice streams. Nature 445, 904–907 (2007).

  53. 53.

    Schaffer, J. et al. A global, high-resolution data set of ice sheet topography, cavity geometry, and ocean bathymetry. Earth Syst. Sci. Data 8, 543–557 (2016).

  54. 54.

    Weertman, J. Stability of the junction of an ice sheet and an ice shelf. J. Glaciol. 13, 3–11 (1974).

  55. 55.

    Fahnestock, M. A., Scambos, T. A., Bindschadler, R. A. & Kvaran, G. A millennium of variable ice flow recorded by the Ross ice shelf, Antarctica. J. Glaciol. 46, 652–664 (2000).

  56. 56.

    Domack, E. et al. Stability of the Larsen B ice shelf on the Antarctic Peninsula during the Holocene epoch. Nature 436, 681–685 (2005).

  57. 57.

    Vaughan, D. G. et al. Recent rapid regional climate warming on the Antarctic Peninsula. Clim. Change 60, 243–274 (2003).

  58. 58.

    Griggs, J. A. & Bamber, J. L. Antarctic ice-shelf thickness from satellite radar altimetry. J. Glaciol. 57, 485–498 (2011).

  59. 59.

    Pritchard, H. D. et al. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484, 502–505 (2012).

  60. 60.

    Helsen, M. M. et al. Elevation changes in Antarctica mainly determined by accumulation variability. Science 320, 1626–1629 (2008).

  61. 61.

    Rosanova, C. E., Lucchitta, B. K. & Ferrigno, J. G. Velocities of Thwaites Glacier and smaller glaciers along the Marie Byrd Land coast, West Antarctica. Ann. Glaciol. 27, 47–53 (1998).

  62. 62.

    Rack, W., Doake, C. S. M., Rott, H., Siegel, A. & Skvarca, P. Interferometric analysis of the deformation pattern of the northern Larsen Ice Shelf, Antarctic Peninsula, compared to field measurement and numerical modeling. Ann. Glaciol. 31, 205–210 (2000).

  63. 63.

    Rignot, E. & Jacobs, S. S. Rapid bottom melting widespread near Antarctic Ice Sheet grounding lines. Science 296, 2020–2023 (2002). In reporting satellite-derived estimates of ice shelf basal melting, this study was among the first to assess ice–ocean interactions and to highlight regional variations in ocean forcing.

  64. 64.

    Rignot, E., Jacobs, S., Mouginot, J. & Scheuchl, B. Ice-shelf melting around Antarctica. Science 341, 266–270 (2013).

  65. 65.

    Depoorter, M. A. et al. Calving fluxes and basal melt rates of Antarctic ice shelves. Nature 502, 89–92 (2013).

  66. 66.

    Paolo, F. S. et al. Response of Pacific-sector Antarctic ice shelves to the El Niño/Southern Oscillation. Nat. Geosci. 11, 121–126 (2018).

  67. 67.

    Jacobs, S. S., Hellmer, H. H. & Jenkins, A. Antarctic Ice Sheet melting in the southeast Pacific. Geophys. Res. Lett. 23, 957–960 (1996).

  68. 68.

    Rignot, E. et al. Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf. Geophys. Res. Lett. 31, L18401 (2004).

  69. 69.

    Humbert, A. & Braun, M. The Wilkins Ice Shelf, Antarctica: break-up along failure zones. J. Glaciol. 54, 943–944 (2008).

  70. 70.

    Cooper, A. P. R. Historical observations of Prince Gustav ice shelf. Polar Rec. 33, 285–294 (1997).

  71. 71.

    Skvarca, P. Fast recession of the northern Larsen Ice Shelf monitored by space images. Ann. Glaciol. 17, 317–321 (1993).

  72. 72.

    Doake, C. S. M. & Vaughan, D. G. Rapid disintegration of the Wordie Ice Shelf in response to atmospheric warming. Nature 350, 328–330 (1991).

  73. 73.

    Hogg, A. E. & Gudmundsson, G. H. Impacts of the Larsen-C Ice Shelf calving event. Nat. Clim. Change 7, 540–542 (2017).

  74. 74.

    Pudsey, C. J. & Evans, J. First survey of Antarctic sub-ice shelf sediments reveals mid-Holocene ice shelf retreat. Geology 29, 787–790 (2001).

  75. 75.

    van den Broeke, M. Strong surface melting preceded collapse of Antarctic Peninsula ice shelf. Geophys. Res. Lett. 32, https://doi.org/10.1029/2005GL023247 (2005).

  76. 76.

    Scambos, T., Hulbe, C. & Fahnestock, M. A. Climate-induced ice shelf disintegration in the Antarctic Peninsula. Antarct. Res. Ser. 76, 335–347 (2003).

  77. 77.

    Vieli, A., Payne, A. J., Shepherd, A. & Du, Z. Causes of pre-collapse changes of the Larsen B ice shelf: numerical modelling and assimilation of satellite observations. Earth Planet. Sci. Lett. 259, 297–306 (2007).

  78. 78.

    Liu, Y. et al. Ocean-driven thinning enhances iceberg calving and retreat of Antarctic ice shelves. Proc. Natl Acad. Sci. USA 112, 3263–3268 (2015).

  79. 79.

    Fricker, H. A. & Padman, L. Thirty years of elevation change on Antarctic Peninsula ice shelves from multimission satellite radar altimetry. J. Geophys. Res. Oceans 117, https://doi.org/10.1029/2011JC007126 (2012).

  80. 80.

    Adusumilli, S. et al. Variable basal melt rates of Antarctic Peninsula ice shelves, 1994–2016. Geophys. Res. Lett. https://doi.org/10.1002/2017GL076652 (in the press).

  81. 81.

    Royston, S. & Gudmundsson, G. H. Changes in ice-shelf buttressing following the collapse of Larsen A Ice Shelf, Antarctica, and the resulting impact on tributaries. J. Glaciol. 62, 905–911 (2016).

  82. 82.

    Phillips, H. A. & Laxon, S. W. Tracking of Antarctic tabular icebergs using passive microwave radiometry. Int. J. Remote Sens. 16, 399–405 (1995). By tracking a large tabular iceberg that calved from Larsen C Ice Shelf with passive microwave imagery, this paper demonstrated how satellite imagery can be used to detect the calving of large, tabular icebergs from Antarctica, and to chart their motion as they drift around the continent.

  83. 83.

    Schoof, C. Ice sheet grounding line dynamics: steady states, stability, and hysteresis. J. Geophys. Res. Earth Surf. 112, https://doi.org/10.1029/2006JF000664 (2007).

  84. 84.

    De Angelis, H. & Skvarca, P. Glacier surge after ice shelf collapse. Science 299, 1560–1562 (2003). Although qualitative in nature, this paper was the first to confirm that the disintegration of the Larsen ice shelf triggered increase flow of the grounded ice upstream, by tracking glacial geomorphological features in airborne and satellite imagery.

  85. 85.

    Rignot, E. J. Fast recession of a West Antarctic glacier. Science 281, 549–551 (1998). As the first study to discover unstable retreat of a West Antarctic glacier in satellite data, this is a landmark paper in glaciology that has triggered widespread scientific interest in the Amundsen Sea sector.

  86. 86.

    Park, J. W. et al. Sustained retreat of the Pine Island Glacier. Geophys. Res. Lett. 40, 2137–2142 (2013).

  87. 87.

    Thoma, M., Jenkins, A., Holland, D. & Jacobs, S. Modelling Circumpolar Deep Water intrusions on the Amundsen Sea continental shelf, Antarctica. Geophys. Res. Lett. 35, https://doi.org/10.1029/2008GL034939 (2008).

  88. 88.

    Konrad, H. et al. Uneven onset and pace of ice-dynamical imbalance in the Amundsen Sea Embayment, West Antarctica. Geophys. Res. Lett. 44, 910–918 (2017).

  89. 89.

    Joughin, I., Alley, R. B. & Holland, D. M. Ice-sheet response to oceanic forcing. Science 338, 1172–1176 (2012). This review provides a great introduction to ice–ocean interactions, and how satellite observations have informed our understanding of key processes.

  90. 90.

    Mercer, J. H. West Antarctic ice sheet and CO2 greenhouse effect: a threat of disaster. Nature 271, 321–325 (1978).

  91. 91.

    Anderson, J. B., Shipp, S. S., Lowe, A. L., Wellner, J. S. & Mosola, A. B. The Antarctic Ice Sheet during the Last Glacial Maximum and its subsequent retreat history: a review. Quat. Sci. Rev. 21, 49–70 (2002).

  92. 92.

    Joughin, I., Smith, B. E. & Holland, D. M. Sensitivity of 21st century sea level to ocean-induced thinning of Pine Island Glacier, Antarctica. Geophys. Res. Lett. 37, https://doi.org/10.1029/2010GL044819 (2010).

  93. 93.

    Joughin, I., Smith, B. E. & Medley, B. Marine ice sheet collapse potentially under way for the Thwaites Glacier basin, West Antarctica. Science 344, 735–738 (2014).

  94. 94.

    Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H. & Scheuchl, B. Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophys. Res. Lett. 41, 3502–3509 (2014).

  95. 95.

    Milillo, P. et al. On the short-term grounding zone dynamics of Pine Island Glacier, West Antarctica, observed with COSMO-SkyMed interferometric data. Geophys. Res. Lett. 44, 10436–10444 (2017).

  96. 96.

    Konrad, H. et al. Net retreat of Antarctic glacier grounding lines. Nat. Geosci. 11, 258–262 (2018).

  97. 97.

    Dutrieux, P. et al. Strong sensitivity of Pine Island ice-shelf melting to climatic variability. Science 343, 174–178 (2014).

  98. 98.

    Gloersen, P. et al. Satellite passive microwave observations and analysis of Arctic and Antarctic sea ice, 1978–1987. Ann. Glaciol. 17, 149–154 (1993).

  99. 99.

    Zwally, H. J., Yi, D., Kwok, R. & Zhao, Y. ICESat measurements of sea ice freeboard and estimates of sea ice thickness in the Weddell Sea. J. Geophys. Res. Oceans 113, https://doi.org/10.1029/2007JC004284 (2008). This study was the first to attempt an extensive assessment of Antarctic sea ice thickness based on satellite altimeter measurements of floe freeboard.

  100. 100.

    Kurtz, N. T. & Markus, T. Satellite observations of Antarctic sea ice thickness and volume. J. Geophys. Res. Oceans 117, https://doi.org/10.1029/2012JC008141 (2012).

  101. 101.

    Heil, P., Fowler, C. W. & Lake, S. E. Antarctic sea-ice velocity as derived from SSM/I imagery. Ann. Glaciol. 44, 361–366 (2006).

  102. 102.

    Holland, P. R. & Kwok, R. Wind-driven trends in Antarctic sea-ice drift. Nat. Geosci. 5, 872–875 (2012).

  103. 103.

    Brierley, A. S. & Thomas, D. N. in Advances in Marine Biology Vol. 43, 171–276 (Academic Press, 2002).

  104. 104.

    Massom, R. A. et al. Examining the interaction between multi-year landfast sea ice and the Mertz Glacier Tongue, East Antarctica: another factor in ice sheet stability? J. Geophys. Res. Oceans 115, https://doi.org/10.1029/2009JC006083 (2010).

  105. 105.

    Robel, A. A. Thinning sea ice weakens buttressing force of iceberg mélange and promotes calving. Nat. Commun. 8, 14596 (2017).

  106. 106.

    Miles, B. W. J., Stokes, C. R. & Jamieson, S. S. R. Simultaneous disintegration of outlet glaciers in Porpoise Bay (Wilkes Land), East Antarctica, driven by sea ice break-up. Cryosphere 11, 427–442 (2017).

  107. 107.

    Turner, J., Hosking, J. S., Bracegirdle, T. J., Marshall, G. J. & Phillips, T. Recent changes in Antarctic Sea Ice. Phil. Trans. R. Soc. A 373, https://doi.org/10.1098/rsta.2014.0163 (2015).

  108. 108.

    Armour, K. C. & Bitz, C. M. in US Clivar Variations Vol. 13, 12–19 (2015).

  109. 109.

    Meier, W., Gallaher, D. & Campbell, G. G. New estimates of Arctic and Antarctic sea ice extent during September 1964 from recovered Nimbus I satellite imagery. Cryosphere 7, 699–705 (2013).

  110. 110.

    Gallaher, D. W., Campbell, G. G. & Meier, W. N. Anomalous variability in Antarctic sea ice extents during the 1960s with the use of Nimbus data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7, 881–887 (2014).

  111. 111.

    de la Mare, W. K. Changes in Antarctic sea-ice extent from direct historical observations and whaling records. Clim. Change 92, 461–493 (2009).

  112. 112.

    Massonnet, F., Guemas, V., Fuèkar, N. S. & Doblas-Reyes, F. J. The 2014 high record of Antarctic sea ice extent. Bull. Am. Meteorol. Soc. 96, S163–S167 (2015).

  113. 113.

    Turner, J. et al. Unprecedented springtime retreat of Antarctic sea ice in 2016. Geophys. Res. Lett. 44, 6868–6875 (2017).

  114. 114.

    Stuecker, M. F., Bitz, C. M. & Armour, K. C. Conditions leading to the unprecedented low Antarctic sea ice extent during the 2016 austral spring season. Geophys. Res. Lett. 44, 9008–9019 (2017).

  115. 115.

    Zhang, J. Increasing Antarctic sea ice under warming atmospheric and oceanic conditions. J. Clim. 20, 2515–2529 (2007).

  116. 116.

    Hobbs, W. R. et al. A review of recent changes in Southern Ocean sea ice, their drivers and forcings. Global Planet. Change 143, 228–250 (2016).

  117. 117.

    Kwok, R. & Comiso, J. C. Southern Ocean climate and sea ice anomalies associated with the Southern Oscillation. J. Clim. 15, 487–501 (2002).

  118. 118.

    Stammerjohn, S., Massom, R., Rind, D. & Martinson, D. Regions of rapid sea ice change: an inter-hemispheric seasonal comparison. Geophys. Res. Lett. 39, https://doi.org/10.1029/2012GL050874 (2012).

  119. 119.

    Kwok, R., Comiso, J. C., Lee, T. & Holland, P. R. Linked trends in the South Pacific sea ice edge and Southern Oscillation Index. Geophys. Res. Lett. 43, 10295–10302 (2016).

  120. 120.

    Turner, J. & Comiso, J. Solve Antarctica’s sea-ice puzzle. Nature 547, 275–277 (2017).

  121. 121.

    Gloersen, P. Modulation of hemispheric sea-ice cover by ENSO events. Nature 373, 503–506 (1995).

  122. 122.

    Lefebvre, W., Goosse, H., Timmermann, R. & Fichefet, T. Influence of the Southern Annular Mode on the sea ice–ocean system. J. Geophys. Res. C 109, https://doi.org/10.1029/2004JC002403 (2004).

  123. 123.

    Holland, M. M., Landrum, L., Kostov, Y. & Marshall, J. Sensitivity of Antarctic sea ice to the Southern Annular Mode in coupled climate models. Clim. Dyn. 49, 1813–1831 (2017).

  124. 124.

    Turner, J. et al. Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophys. Res. Lett. 36, https://doi.org/10.1029/2009GL037524 (2009).

  125. 125.

    Bintanja, R., Van Oldenborgh, G. J., Drijfhout, S. S., Wouters, B. & Katsman, C. A. Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nat. Geosci. 6, 376–379 (2013).

  126. 126.

    Pauling, A. G., Smith, I. J., Langhorne, P. J. & Bitz, C. M. Time-dependent freshwater input from ice shelves: impacts on Antarctic Sea Ice and the Southern Ocean in an Earth System model. Geophys. Res. Lett. 44, 10454–10461 (2017).

  127. 127.

    Perovich, D. K. & Richter-Menge, J. A. Loss of sea ice in the Arctic. Annu. Rev. Mar. Sci. 1, 417–441 (2009).

  128. 128.

    Comiso, J. C. & Nishio, F. Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. J. Geophys. Res. Oceans 113, https://doi.org/10.1029/2007JC004257 (2008).

  129. 129.

    Kwok, R. Ross Sea ice motion, area flux, and deformation. J. Clim. 18, 3759–3776 (2005).

  130. 130.

    Hollands, T., Haid, V., Dierking, W., Timmermann, R. & Ebner, L. Sea ice motion and open water area at the Ronne Polynia, Antarctica: synthetic aperture radar observations versus model results. J. Geophys. Res. Oceans 118, 1940–1954 (2013).

  131. 131.

    Emery, W. J., Fowler, C. W. & Maslanik, J. A. Satellite-derived maps of Arctic and Antarctic sea ice motion: 1988 to 1994. Geophys. Res. Lett. 24, 897–900 (1997). This paper is an early application of repeat satellite imagery for tracking the motion on sea ice floes in the polar regions, demonstrating that the Southern Hemisphere sea ice pack tends to drifts northwards under the influence of ocean currents and katabatic winds.

  132. 132.

    Kwok, R., Pang, S. S. & Kacimi, S. Sea ice drift in the Southern Ocean: regional patterns, variability, and trends. Elem. Sci. Anth. 5, https://doi.org/10.1525/elementa.226 (2017).

  133. 133.

    Alley, K. E., Scambos, T. A., Siegfried, M. R. & Fricker, H. A. Impacts of warm water on Antarctic ice shelf stability through basal channel formation. Nat. Geosci. 9, 290–293 (2016).

  134. 134.

    Giles, K. A., Laxon, S. W. & Worby, A. P. Antarctic sea ice elevation from satellite radar altimetry. Geophys. Res. Lett. 35, https://doi.org/10.1029/2007GL031572 (2008).

  135. 135.

    Willatt, R. C., Giles, K. A., Laxon, S. W., Stone-Drake, L. & Worby, A. P. Field investigations of Ku-band radar penetration into snow cover on Antarctic sea ice. IEEE Trans. Geosci. Remote Sens. 48, 365–372 (2010).

  136. 136.

    Tin, T. & Jeffries, M. O. Sea-ice thickness and roughness in the Ross Sea, Antartica. Ann. Glaciol. 33, 187–193 (2001).

  137. 137.

    Farrell, S. L. et al. Sea-ice freeboard retrieval using digital photon-counting laser altimetry. Ann. Glaciol. 56, 167–174 (2015).

  138. 138.

    Markus, T. et al. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation. Remote Sens. Environ. 190, 260–273 (2017).

  139. 139.

    Armitage, T. W. K. & Ridout, A. L. Arctic sea ice freeboard from AltiKa and comparison with CryoSat-2 and Operation IceBridge. Geophys. Res. Lett. 42, 6724–6731 (2015).

  140. 140.

    Guerreiro, K., Fleury, S., Zakharova, E., Rémy, F. & Kouraev, A. Potential for estimation of snow depth on Arctic sea ice from CryoSat-2 and SARAL/AltiKa missions. Remote Sens. Environ. 186, 339–349 (2016).

  141. 141.

    Fricker, H. A. & Padman, L. Ice shelf grounding zone structure from ICESat laser altimetry. Geophys. Res. Lett. 33, https://doi.org/10.1029/2006GL026907 (2006).

  142. 142.

    Haran, T., Bohlander, J., Scambos, T., Painter, T. & Fahnestock, M. A. MODIS Mosaic of Antarctica 2008–2009 (MOA2009) Image Map. (National Snow and Ice Data Center (NSIDC), Boulder, 2014).

  143. 143.

    Tschudi, M., Fowler, C. W., Maslanik, J. A., Stewart, J. S. & Meier, W. EASE-Grid Sea Ice Age. Version 3. (NASA NSIDC Distributed Active Archive Center, Boulder, 2016).

  144. 144.

    Fetterer, F., Knowles, K., Meier, W., Savoie, M. & Windnagel, A. K. Sea Ice Index. Version 2 (NSIDC, Boulder, Colorado USA, 2017).

  145. 145.

    Ryan, W. B. F. et al. Global multi-resolution topography synthesis. Geochem. Geophys. Geosyst. 10, https://doi.org/10.1029/2008GC002332 (2009).

  146. 146.

    Timmermann, R. et al. A consistent dataset of Antarctic ice sheet topography, cavity geometry, and global bathymetry. Earth Syst. Sci. Data 2, 261–273, https://doi.org/10.1594/pangea.741917 (2010).

  147. 147.

    Locarnini, R. A. et al. World Ocean Atlas 2009 Vol. 1 Temperature. NOAA Atlas NESDIS 68 (eds Levitus, S.) http://www.nodc.noaa.gov/OC5/indprod.html (US Government Printing Office, Washington DC, 2010).

  148. 148.

    McMillan, M. et al. Increased ice losses from Antarctica detected by CryoSat-2. Geophys. Res. Lett. 41, 3899–3905 (2014).

  149. 149.

    Anandakrishnan, S. & Alley, R. B. Stagnation of ice stream C, West Antarctica by water piracy. Geophys. Res. Lett. 24, 265–268 (1997).

Download references

Acknowledgements

This work was supported by the UK Natural Environment Research Council's Centre for Polar Observation and Modelling (cpom300001) and the European Space Agency’s Climate Change Initiative. AS was supported by a Royal Society Wolfson Research Merit award. SLF was supported under NASA grant 80NSSC17K0006 and NOAA grant NA14NES4320003. We thank T. Slater, A. Ridout, and L. Gilbert for their help in preparing Fig. 1 and Fig. 2, and K. Duncan for help in preparing Fig. 4.

Author information

Affiliations

  1. Centre for Polar Observation and Modelling, University of Leeds, Leeds, UK

    • Andrew Shepherd
  2. Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA

    • Helen Amanda Fricker
  3. Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA

    • Sinead Louise Farrell

Authors

  1. Search for Andrew Shepherd in:

  2. Search for Helen Amanda Fricker in:

  3. Search for Sinead Louise Farrell in:

Contributions

A.S. coordinated the work, and led the review of grounded ice. H.F. led the review of ice shelves and subglacial lakes. S.F. led the review of sea ice.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Andrew Shepherd.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41586-018-0171-6

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.