Magnetic edge states and coherent manipulation of graphene nanoribbons


Graphene, a single-layer network of carbon atoms, has outstanding electrical and mechanical properties1. Graphene ribbons with nanometre-scale widths2,3 (nanoribbons) should exhibit half-metallicity4 and quantum confinement. Magnetic edges in graphene nanoribbons5,6 have been studied extensively from a theoretical standpoint because their coherent manipulation would be a milestone for spintronic7 and quantum computing devices8. However, experimental investigations have been hampered because nanoribbon edges cannot be produced with atomic precision and the graphene terminations that have been proposed are chemically unstable9. Here we address both of these problems, by using molecular graphene nanoribbons functionalized with stable spin-bearing radical groups. We observe the predicted delocalized magnetic edge states and test theoretical models of the spin dynamics and spin–environment interactions. Comparison with a non-graphitized reference material enables us to clearly identify the characteristic behaviour of the radical-functionalized graphene nanoribbons. We quantify the parameters of spin–orbit coupling, define the interaction patterns and determine the spin decoherence channels. Even without any optimization, the spin coherence time is in the range of microseconds at room temperature, and we perform quantum inversion operations between edge and radical spins. Our approach provides a way of testing the theory of magnetism in graphene nanoribbons experimentally. The coherence times that we observe open up encouraging prospects for the use of magnetic nanoribbons in quantum spintronic devices.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Functionalized graphene nanoribbons.
Fig. 2: Static spectra and magnetic interaction pathways.
Fig. 3: Spin–lattice relaxation and spin coherence times.
Fig. 4: Hyperfine coupling and multi-spin operability in GNRs.

Change history

  • 26 June 2018

    In Fig. 1 of this Letter, there should have been two nitrogen (N) atoms at the 1,3-positions of all the blue chemical structures (next to the oxygen atoms), rather than one at the 2-position. The figure has been corrected online, and the original incorrect figure is shown as Supplementary Information to the accompanying Amendment.


  1. 1.

    Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    ADS  Article  CAS  Google Scholar 

  2. 2.

    Jiao, L., Zhang, L., Wang, X., Diankov, G. & Dai, H. Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877–880 (2009).

    ADS  Article  PubMed  CAS  Google Scholar 

  3. 3.

    Jia, X. et al. Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons. Science 323, 1701–1705 (2009).

    ADS  Article  PubMed  CAS  Google Scholar 

  4. 4.

    Son, Y. W., Cohen, M. L. & Louie, S. G. Half-metallic graphene nanoribbons. Nature 444, 347–349 (2006). corrigendum 446, 342 (2007).

    ADS  Article  PubMed  CAS  Google Scholar 

  5. 5.

    Recher, P. & Trauzettel, B. Quantum dots and spin qubits in graphene. Nanotechnology 21, 302001 (2010).

    Article  PubMed  CAS  Google Scholar 

  6. 6.

    Meunier, V., Souza Filho, A. G., Barros, E. B. & Dresselhaus, M. S. Physical properties of low-dimensional sp 2-based carbon nanostructures. Rev. Mod. Phys. 88, 025005 (2016).

    ADS  Article  Google Scholar 

  7. 7.

    Pesin, D. & MacDonald, A. H. Spintronics and pseudospintronics in graphene and topological insulators. Nat. Mater. 11, 409–416 (2012).

    ADS  Article  PubMed  CAS  Google Scholar 

  8. 8.

    Trauzettel, B., Bulaev, D. V., Loss, D. & Burkard, G. Spin qubits in graphene quantum dots. Nat. Phys. 3, 192–196 (2007).

    Article  CAS  Google Scholar 

  9. 9.

    Barone, V., Hod, O. & Scuseria, G. E. Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett. 6, 2748–2754 (2006).

    ADS  Article  PubMed  CAS  Google Scholar 

  10. 10.

    Narita, A., Wang, X.-Y., Feng, X. & Müllen, K. New advances in nanographene chemistry. Chem. Soc. Rev. 44, 6616–6643 (2015).

    Article  PubMed  CAS  Google Scholar 

  11. 11.

    Ruffieux, P. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 531, 489–492 (2016).

    ADS  Article  PubMed  CAS  Google Scholar 

  12. 12.

    Cai, J. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010).

    ADS  Article  PubMed  CAS  Google Scholar 

  13. 13.

    Caneschi, A., Gatteschi, D. & Rey, P. The chemistry and magnetic properties of metal nitronyl nitroxide complexes. Prog. Inorg. Chem. 39, 331–429 (1991).

    Google Scholar 

  14. 14.

    Collauto, A. et al. A slow relaxing species for molecular spin devices: EPR characterization of static and dynamic magnetic properties of a nitronyl nitroxide radical. J. Mater. Chem. 22, 22272–22281 (2012).

    Article  CAS  Google Scholar 

  15. 15.

    Narita, A. et al. Synthesis of structurally well-defined and liquid-phase-processable graphene nanoribbons. Nat. Chem. 6, 126–132 (2014).

    Article  PubMed  CAS  Google Scholar 

  16. 16.

    Zheludev, A. et al. Spin-density in a nitronyl nitroxide free-radical-polarized neutron-diffraction investigation and ab initio calculations. J. Am. Chem. Soc. 116, 2019–2027 (1994).

    Article  CAS  Google Scholar 

  17. 17.

    Schweiger, A. & Jeschke, G. Principles of Pulse Electron Paramagnetic Resonance (Oxford Univ. Press, Oxford, 2001).

    Google Scholar 

  18. 18.

    Golor, M., Wessel, S. & Schmidt, M. J. Quantum nature of edge magnetism in graphene. Phys. Rev. Lett. 112, 046601 (2014).

    ADS  Article  PubMed  CAS  Google Scholar 

  19. 19.

    Rao, S. S. et al. Spin dynamics and relaxation in graphene nanoribbons: electron spin resonance probing. ACS Nano 6, 7615–7623 (2012).

    Article  PubMed  CAS  Google Scholar 

  20. 20.

    Min, H. et al. Intrinsic and Rashba spin-orbit interactions in graphene sheets. Phys. Rev. B 74, 165310 (2006).

    ADS  Article  CAS  Google Scholar 

  21. 21.

    Kane, C. L. & Mele, E. J. Z 2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005).

    ADS  Article  PubMed  CAS  Google Scholar 

  22. 22.

    Eaton, G. R. & Eaton, S. S. in Multifrequency Electron Paramagnetic Resonance: Theory and Applications (ed. Misra, S. K.) Ch. 17 (Wiley, Weinheim, 2011).

  23. 23.

    Klauder, J. R. & Anderson, P. W. Spectral diffusion decay in spin resonance experiments. Phys. Rev. 125, 912–932 (1962).

    ADS  Article  CAS  Google Scholar 

  24. 24.

    Struck, P. R. & Burkard, G. Effective time-reversal symmetry breaking in the spin relaxation in a graphene quantum dot. Phys. Rev. B 82, 125401 (2010).

    ADS  Article  CAS  Google Scholar 

  25. 25.

    Drögeler, M. et al. Spin lifetimes exceeding 12 ns in graphene nonlocal spin valve devices. Nano Lett. 16, 3533–3539 (2016).

    ADS  Article  PubMed  CAS  Google Scholar 

  26. 26.

    Fischer, J., Trauzettel, B. & Loss, D. Hyperfine interaction and electron-spin decoherence in graphene and carbon nanotube quantum dots. Phys. Rev. B 80, 155401 (2009).

    ADS  Article  CAS  Google Scholar 

  27. 27.

    Dutt, M. G. et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 1312–1316 (2007).

    Article  PubMed  CAS  Google Scholar 

  28. 28.

    Foletti, S., Bluhm, H., Mahalu, D., Umansky, V. & Yacoby, A. Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization. Nat. Phys. 5, 903–908 (2009).

    Article  CAS  Google Scholar 

  29. 29.

    Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater. 8, 383–387 (2009).

    ADS  Article  PubMed  CAS  Google Scholar 

  30. 30.

    Shiddiq, M. et al. Enhancing coherence in molecular spin qubits via atomic clock transitions. Nature 531, 348–351 (2016).

    ADS  Article  PubMed  CAS  Google Scholar 

  31. 31.

    Narita, A. et al. Bottom-up synthesis of liquid-phase-processable graphene nanoribbons with near-infrared absorption. ACS Nano 8, 11622–11630 (2014).

    Article  PubMed  CAS  Google Scholar 

  32. 32.

    Keerthi, A. et al. Hexa-peri-hexabenzocoronene with different acceptor units for tuning optoelectronic properties. Chem. Asian J. 11, 2710–2714 (2016).

    Article  PubMed  CAS  Google Scholar 

  33. 33.

    Stoll, S. & Schweiger, A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 178, 42–55 (2006).

    ADS  Article  PubMed  CAS  Google Scholar 

  34. 34.

    Wacker, T., Sierra, G. A. & Schweiger, A. The concept of FID-detected hole-burning in pulsed EPR spectroscopy. Isr. J. Chem. 32, 305–322 (1992).

    Article  CAS  Google Scholar 

  35. 35.

    Rintoul, L., Micallef, A. S. & Bottle, S. E. The vibrational group frequency of the N–O rad stretching band of nitroxide stable free radical. Spectrochim. Acta A 70, 713–717 (2008).

    ADS  Article  CAS  Google Scholar 

  36. 36.

    Cox, N., Lubitz, W. & Savitzky, A. W-band ELDOR-detected NMR (EDNMR) spectroscopy as a versatile technique for the characterisation of transition metal–ligand interactions. Mol. Phys. 111, 2788–2808 (2013).

    ADS  Article  CAS  Google Scholar 

  37. 37.

    Jeschke, G. et al. DeerAnalysis2006—a comprehensive software package for analyzing pulsed ELDOR data. Appl. Magn. Reson. 30, 473–498 (2006).

    Article  CAS  Google Scholar 

  38. 38.

    Gaussian 09. revision A.02. (Gaussian, Wallingford, 2016).

    Google Scholar 

  39. 39.

    Soler, J. M. et al. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 14, 2745–2779 (2002).

    ADS  Article  CAS  Google Scholar 

Download references


We thank the European Research Council (ERC-StG 338258 OptoQMol), the EU (COST-CA15128, MOLESCO-606728 and Graphene Flagship), the EPSRC (QuEEN grant), the Royal Society (University Research Fellowship and URF grant), the RFBR (17-53-50043), the Max Planck Society and the German DAAD Bilateral Exchange of Academics (2015/50015739) for financial support.

Reviewer information

Nature thanks E. Coronado, D. Gatteschi, A.-P. Li and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information




M.S. and W.K.M. performed the ESR characterization. A.K. and E.T. performed the synthesis and related characterization, for which M.B., A.N. and K.M. provided supervision. H.S. and C.J.L. performed the numerical modelling. M.S., W.K.M., A.A. and L.B. contributed to the ESR data analysis. M.S., A.N., K.M. and L.B. conceived the experiments and M.S. and L.B. wrote the manuscript. All authors contributed to the discussion and to the final version of the manuscript.

Corresponding author

Correspondence to Lapo Bogani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary Figures 1-15, Supplementary Tables 1-3 and a Supplementary Bibliography.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Slota, M., Keerthi, A., Myers, W.K. et al. Magnetic edge states and coherent manipulation of graphene nanoribbons. Nature 557, 691–695 (2018).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.