Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Pancreas regeneration

An Author Correction to this article was published on 20 June 2018

This article has been updated

Abstract

The pancreas is made from two distinct components: the exocrine pancreas, a reservoir of digestive enzymes, and the endocrine islets, the source of the vital metabolic hormone insulin. Human islets possess limited regenerative ability; loss of islet β-cells in diseases such as type 1 diabetes requires therapeutic intervention. The leading strategy for restoration of β-cell mass is through the generation and transplantation of new β-cells derived from human pluripotent stem cells. Other approaches include stimulating endogenous β-cell proliferation, reprogramming non-β-cells to β-like cells, and harvesting islets from genetically engineered animals. Together these approaches form a rich pipeline of therapeutic development for pancreatic regeneration.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Natural regenerative responses of the endocrine pancreas.
Fig. 2: Regeneration of the exocrine pancreas.
Fig. 3: Therapeutic strategies for regeneration and repair of the endocrine pancreas.

Change history

  • 20 June 2018

    Change history: In this Insight Review, ‘1989’ has been changed to ‘1998’ in the sentence “This deep understanding of pancreatic development was put to the service of regenerative medicine in 1998, when human embryonic stem cells (hES cells) were successfully cultured and opened the door to developing methods of deriving pancreatic islets from hES cells66.”. This error has been corrected online.

References

  1. 1.

    McCarthy, M. I. Genomics, type 2 diabetes, and obesity. N. Engl. J. Med. 363, 2339–2350 (2010).

    CAS  PubMed  Google Scholar 

  2. 2.

    Flannick, J. & Florez, J. C. Type 2 diabetes: genetic data sharing to advance complex disease research. Nat. Rev. Genet. 17, 535–549 (2016).

    CAS  PubMed  Google Scholar 

  3. 3.

    Butler, A. E. et al. β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes 52, 102–110 (2003).

    CAS  PubMed  Google Scholar 

  4. 4.

    Rahier, J., Guiot, Y., Goebbels, R. M., Sempoux, C. & Henquin, J. C. Pancreatic β-cell mass in European subjects with type 2 diabetes. Diabetes Obes. Metab. 10 (Suppl. 4), 32–42 (2008).

    PubMed  Google Scholar 

  5. 5.

    Slack, J. M. Developmental biology of the pancreas. Development 121, 1569–1580 (1995).

    CAS  PubMed  Google Scholar 

  6. 6.

    Lehv, M. & Fitzgerald, P. J. Pancreatic acinar cell regeneration. IV. Regeneration after resection. Am. J. Pathol. 53, 513–535 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Bonner-Weir, S., Trent, D. F. & Weir, G. C. Partial pancreatectomy in the rat and subsequent defect in glucose-induced insulin release. J. Clin. Invest. 71, 1544–1553 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Watanabe, H., Saito, H., Rychahou, P. G., Uchida, T. & Evers, B. M. Aging is associated with decreased pancreatic acinar cell regeneration and phosphatidylinositol 3-kinase/Akt activation. Gastroenterology 128, 1391–1404 (2005).

    CAS  PubMed  Google Scholar 

  9. 9.

    Kumar, A. F., Gruessner, R. W. & Seaquist, E. R. Risk of glucose intolerance and diabetes in hemipancreatectomized donors selected for normal preoperative glucose metabolism. Diabetes Care 31, 1639–1643 (2008).

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Menge, B. A. et al. Partial pancreatectomy in adult humans does not provoke β-cell regeneration. Diabetes 57, 142–149 (2008).

    CAS  PubMed  Google Scholar 

  11. 11.

    Berrocal, T., Luque, A. A., Pinilla, I. & Lassaletta, L. Pancreatic regeneration after near-total pancreatectomy in children with nesidioblastosis. Pediatr. Radiol. 35, 1066–1070 (2005).

    PubMed  Google Scholar 

  12. 12.

    Rankin, M. M. & Kushner, J. A. Adaptive β-cell proliferation is severely restricted with advanced age. Diabetes 58, 1365–1372 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Rankin, M. M. et al. β-Cells are not generated in pancreatic duct ligation-induced injury in adult mice. Diabetes 62, 1634–1645 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Xiao, X. et al. No evidence for β cell neogenesis in murine adult pancreas. J. Clin. Invest. 123, 2207–2217 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Tschen, S. I., Dhawan, S., Gurlo, T. & Bhushan, A. Age-dependent decline in β-cell proliferation restricts the capacity of β-cell regeneration in mice. Diabetes 58, 1312–1320 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Mezza, T. & Kulkarni, R. N. The regulation of pre- and post-maturational plasticity of mammalian islet cell mass. Diabetologia 57, 1291–1303 (2014).

    PubMed  Google Scholar 

  17. 17.

    Saunders, D. & Powers, A. C. Replicative capacity of β-cells and type 1 diabetes. J. Autoimmun. 71, 59–68 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Wang, P. et al. Diabetes mellitus—advances and challenges in human β-cell proliferation. Nat. Rev. Endocrinol. 11, 201–212 (2015).

    CAS  PubMed  Google Scholar 

  19. 19.

    Rieck, S. & Kaestner, K. H. Expansion of β-cell mass in response to pregnancy. Trends Endocrinol. Metab. 21, 151–158 (2010).

    CAS  PubMed  Google Scholar 

  20. 20.

    Ernst, S., Demirci, C., Valle, S., Velazquez-Garcia, S. & Garcia-Ocaña, A. Mechanisms in the adaptation of maternal β-cells during pregnancy. Diabetes Manag. (Lond.) 1, 239–248 (2011).

    CAS  Google Scholar 

  21. 21.

    Kim, H. et al. Serotonin regulates pancreatic β-cell mass during pregnancy. Nat. Med. 16, 804–808 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Zhang, H. et al. Gestational diabetes mellitus resulting from impaired β-cell compensation in the absence of FoxM1, a novel downstream effector of placental lactogen. Diabetes 59, 143–152 (2010).

    PubMed  Google Scholar 

  23. 23.

    Karnik, S. K. et al. Menin controls growth of pancreatic β-cells in pregnant mice and promotes gestational diabetes mellitus. Science 318, 806–809 (2007).

    ADS  CAS  PubMed  Google Scholar 

  24. 24.

    Kahn, S. E., Hull, R. L. & Utzschneider, K. M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444, 840–846 (2006).

    ADS  CAS  PubMed  Google Scholar 

  25. 25.

    Michael, M. D. et al. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol. Cell 6, 87–97 (2000).

    CAS  PubMed  Google Scholar 

  26. 26.

    Finegood, D. T., Scaglia, L. & Bonner-Weir, S. Dynamics of β-cell mass in the growing rat pancreas. Estimation with a simple mathematical model. Diabetes 44, 249–256 (1995).

    CAS  PubMed  Google Scholar 

  27. 27.

    Teta, M., Long, S. Y., Wartschow, L. M., Rankin, M. M. & Kushner, J. A. Very slow turnover of β-cells in aged adult mice. Diabetes 54, 2557–2567 (2005).

    CAS  PubMed  Google Scholar 

  28. 28.

    Montanya, E., Nacher, V., Biarnés, M. & Soler, J. Linear correlation between beta-cell mass and body weight throughout the lifespan in Lewis rats: role of β-cell hyperplasia and hypertrophy. Diabetes 49, 1341–1346 (2000).

    CAS  PubMed  Google Scholar 

  29. 29.

    Dor, Y., Brown, J., Martinez, O. I. & Melton, D. A. Adult pancreatic β-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429, 41–46 (2004). This paper used genetic lineage tracing in mouse models and convincingly demonstrated β-cell replication as a major mechanism for maintaining β-cell mass in homeostasis.

    ADS  CAS  PubMed  Google Scholar 

  30. 30.

    Saisho, Y. et al. β-cell mass and turnover in humans: effects of obesity and aging. Diabetes Care 36, 111–117 (2013).

    PubMed  Google Scholar 

  31. 31.

    Butler, A. E. et al. Adaptive changes in pancreatic β cell fractional area and β cell turnover in human pregnancy. Diabetologia 53, 2167–2176 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Thorel, F. et al. Conversion of adult pancreatic α-cells to β-cells after extreme β-cell loss. Nature 464, 1149–1154 (2010). Data from this paper suggested that mouse pancreatic α-cells could naturally convert to β-cells after extreme β-cell loss.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Chera, S. et al. Diabetes recovery by age-dependent conversion of pancreatic δ-cells into insulin producers. Nature 514, 503–507 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Aguayo-Mazzucato, C. & Bonner-Weir, S. Pancreatic β cell regeneration as a possible therapy for diabetes. Cell Metab. 27, 57–67 (2018).

    CAS  PubMed  Google Scholar 

  35. 35.

    Desai, B. M. et al. Preexisting pancreatic acinar cells contribute to acinar cell, but not islet β cell, regeneration. J. Clin. Invest. 117, 971–977 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Kopp, J. L. et al. Sox9+ ductal cells are multipotent progenitors throughout development but do not produce new endocrine cells in the normal or injured adult pancreas. Development 138, 653–665 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Solar, M. et al. Pancreatic exocrine duct cells give rise to insulin-producing β cells during embryogenesis but not after birth. Dev. Cell 17, 849–860 (2009).

    CAS  PubMed  Google Scholar 

  38. 38.

    Pan, F. C. et al. Spatiotemporal patterns of multipotentiality in Ptf1a-expressing cells during pancreas organogenesis and injury-induced facultative restoration. Development 140, 751–764 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Kopinke, D. & Murtaugh, L. C. Exocrine-to-endocrine differentiation is detectable only prior to birth in the uninjured mouse pancreas. BMC Dev. Biol. 10, 38 (2010).

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Xu, X. et al. β cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 132, 197–207 (2008).

    CAS  PubMed  Google Scholar 

  41. 41.

    Al-Hasani, K. et al. Adult duct-lining cells can reprogram into β-like cells able to counter repeated cycles of toxin-induced diabetes. Dev. Cell 26, 86–100 (2013).

    CAS  PubMed  Google Scholar 

  42. 42.

    Ben-Othman, N. et al. Long-term GABA administration induces α-cell-mediated β-like cell neogenesis. Cell 168, 73–85 (2017).

    CAS  PubMed  Google Scholar 

  43. 43.

    Lowenfels, A. B., Sullivan, T., Fiorianti, J. & Maisonneuve, P. The epidemiology and impact of pancreatic diseases in the United States. Curr. Gastroenterol. Rep. 7, 90–95 (2005).

    PubMed  Google Scholar 

  44. 44.

    Willemer, S., Elsässer, H. P. & Adler, G. Hormone-induced pancreatitis. Eur. Surg. Res. 24 (Suppl. 1), 29–39 (1992).

    PubMed  Google Scholar 

  45. 45.

    Lerch, M. M. & Gorelick, F. S. Models of acute and chronic pancreatitis. Gastroenterology 144, 1180–1193 (2013).

    PubMed  Google Scholar 

  46. 46.

    Bockman, D. E. Morphology of the exocrine pancreas related to pancreatitis. Microsc. Res. Tech. 37, 509–519 (1997).

    CAS  PubMed  Google Scholar 

  47. 47.

    Bockman, D. E., Boydston, W. R. & Anderson, M. C. Origin of tubular complexes in human chronic pancreatitis. Am. J. Surg. 144, 243–249 (1982).

    CAS  PubMed  Google Scholar 

  48. 48.

    Willemer, S. & Adler, G. Histochemical and ultrastructural characteristics of tubular complexes in human acute pancreatitis. Dig. Dis. Sci. 34, 46–55 (1989).

    CAS  PubMed  Google Scholar 

  49. 49.

    Murtaugh, L. C. & Keefe, M. D. Regeneration and repair of the exocrine pancreas. Annu. Rev. Physiol. 77, 229–249 (2015).

    CAS  PubMed  Google Scholar 

  50. 50.

    Blaine, S. A. et al. Adult pancreatic acinar cells give rise to ducts but not endocrine cells in response to growth factor signaling. Development 137, 2289–2296 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Strobel, O. et al. In vivo lineage tracing defines the role of acinar-to-ductal transdifferentiation in inflammatory ductal metaplasia. Gastroenterology 133, 1999–2009 (2007).

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Morris, J. P. IV, Cano, D. A., Sekine, S., Wang, S. C. & Hebrok, M. β-catenin blocks Kras-dependent reprogramming of acini into pancreatic cancer precursor lesions in mice. J. Clin. Invest. 120, 508–520 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Fendrich, V. et al. Hedgehog signaling is required for effective regeneration of exocrine pancreas. Gastroenterology 135, 621–631 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Siveke, J. T. et al. Notch signaling is required for exocrine regeneration after acute pancreatitis. Gastroenterology 134, 544–555 (2008).

    CAS  PubMed  Google Scholar 

  55. 55.

    Hoang, C. Q. et al. Transcriptional maintenance of pancreatic acinar identity, differentiation, and homeostasis by PTF1A. Mol. Cell. Biol. 36, 3033–3047 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    von Figura, G., Morris, J. P. IV, Wright, C. V. & Hebrok, M. Nr5a2 maintains acinar cell differentiation and constrains oncogenic Kras-mediated pancreatic neoplastic initiation. Gut 63, 656–664 (2014).

    Google Scholar 

  57. 57.

    Kopp, J. L. et al. Identification of Sox9-dependent acinar-to-ductal reprogramming as the principal mechanism for initiation of pancreatic ductal adenocarcinoma. Cancer Cell 22, 737–750 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Stanger, B. Z. & Hebrok, M. Control of cell identity in pancreas development and regeneration. Gastroenterology 144, 1170–1179 (2013).

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Bluestone, J. A., Herold, K. & Eisenbarth, G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 464, 1293–1300 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Atkinson, M. A. et al. How does type 1 diabetes develop? The notion of homicide or β-cell suicide revisited. Diabetes 60, 1370–1379 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Lakey, J. R., Mirbolooki, M. & Shapiro, A. M. Current status of clinical islet cell transplantation. Methods Mol. Biol. 333, 47–104 (2006).

    PubMed  Google Scholar 

  62. 62.

    Hering, B. J. et al. Phase 3 trial of transplantation of human islets in type 1 diabetes complicated by severe hypoglycemia. Diabetes Care 39, 1230–1240 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Arda, H. E., Benitez, C. M. & Kim, S. K. Gene regulatory networks governing pancreas development. Dev. Cell 25, 5–13 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    McCracken, K. W. & Wells, J. M. Molecular pathways controlling pancreas induction. Semin. Cell Dev. Biol. 23, 656–662 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Murtaugh, L. C. & Melton, D. A. Genes, signals, and lineages in pancreas development. Annu. Rev. Cell Dev. Biol. 19, 71–89 (2003).

    CAS  PubMed  Google Scholar 

  66. 66.

    Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    ADS  CAS  PubMed  Google Scholar 

  67. 67.

    Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    D’Amour, K. A. et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat. Biotechnol. 24, 1392–1401 (2006). Refs 68 and 69 were among the first to report differentiation of hES cells toward pancreatic endocrine progenitors and islet cells.

    CAS  PubMed  Google Scholar 

  69. 69.

    Kroon, E. et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat. Biotechnol. 26, 443–452 (2008).

    CAS  Google Scholar 

  70. 70.

    Pagliuca, F. W. et al. Generation of functional human pancreatic β cells in vitro. Cell 159, 428–439 (2014). Refs 70 and 71 reported successful generation of glucose-sensitive islet clusters by in vitro differentiation of hES and iPS cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Rezania, A. et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat. Biotechnol. 32, 1121–1133 (2014).

    CAS  Google Scholar 

  72. 72.

    Szot, G. L. et al. Tolerance induction and reversal of diabetes in mice transplanted with human embryonic stem cell-derived pancreatic endoderm. Cell Stem Cell 16, 148–157 (2015).

    CAS  PubMed  Google Scholar 

  73. 73.

    Andersson, O. et al. Adenosine signaling promotes regeneration of pancreatic β cells in vivo. Cell Metab. 15, 885–894 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Schulz, N. et al. Critical role for adenosine receptor A2a in β-cell proliferation. Mol. Metab. 5, 1138–1146 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Annes, J. P. et al. Adenosine kinase inhibition selectively promotes rodent and porcine islet β-cell replication. Proc. Natl Acad. Sci. USA 109, 3915–3920 (2012).

    ADS  CAS  PubMed  Google Scholar 

  76. 76.

    Kassem, S. A., Ariel, I., Thornton, P. S., Scheimberg, I. & Glaser, B. Beta-cell proliferation and apoptosis in the developing normal human pancreas and in hyperinsulinism of infancy. Diabetes 49, 1325–1333 (2000).

    CAS  PubMed  Google Scholar 

  77. 77.

    Meier, J. J. et al. β-cell replication is the primary mechanism subserving the postnatal expansion of β-cell mass in humans. Diabetes 57, 1584–1594 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Köhler, C. U. et al. Cell cycle control of β-cell replication in the prenatal and postnatal human pancreas. Am. J. Physiol. Endocrinol. Metab. 300, E221–E230 (2011).

    PubMed  Google Scholar 

  79. 79.

    Gregg, B. E. et al. Formation of a human β-cell population within pancreatic islets is set early in life. J. Clin. Endocrinol. Metab. 97, 3197–3206 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Dai, C. et al. Islet-enriched gene expression and glucose-induced insulin secretion in human and mouse islets. Diabetologia 55, 707–718 (2012).

    CAS  PubMed  Google Scholar 

  81. 81.

    De Vos, A. et al. Human and rat β cells differ in glucose transporter but not in glucokinase gene expression. J. Clin. Invest. 96, 2489–2495 (1995).

    PubMed  PubMed Central  Google Scholar 

  82. 82.

    Ferrer, J., Benito, C. & Gomis, R. Pancreatic islet GLUT2 glucose transporter mRNA and protein expression in humans with and without NIDDM. Diabetes 44, 1369–1374 (1995).

    CAS  PubMed  Google Scholar 

  83. 83.

    Kulkarni, R. N., Mizrachi, E. B., Ocana, A. G. & Stewart, A. F. Human β-cell proliferation and intracellular signaling: driving in the dark without a road map. Diabetes 61, 2205–2213 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Bernal-Mizrachi, E. et al. Human β-cell proliferation and intracellular signaling part 2: still driving in the dark without a road map. Diabetes 63, 819–831 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Stewart, A. F. et al. Human β-cell proliferation and intracellular signaling: part 3. Diabetes 64, 1872–1885 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Fiaschi-Taesch, N. M. et al. Human pancreatic β-cell G1/S molecule cell cycle atlas. Diabetes 62, 2450–2459 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Fiaschi-Taesch, N. M. et al. Cytoplasmic-nuclear trafficking of G1/S cell cycle molecules and adult human β-cell replication: a revised model of human β-cell G1/S control. Diabetes 62, 2460–2470 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Krishnamurthy, J. et al. p16INK4a induces an age-dependent decline in islet regenerative potential. Nature 443, 453–457 (2006).

    ADS  CAS  PubMed  Google Scholar 

  89. 89.

    Chen, H. et al. Polycomb protein Ezh2 regulates pancreatic β-cell Ink4a/Arf expression and regeneration in diabetes mellitus. Genes Dev. 23, 975–985 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Helman, A. et al. p16Ink4a-induced senescence of pancreatic beta cells enhances insulin secretion. Nat. Med. 22, 412–420 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Kulkarni, R. N. New insights into the roles of insulin/IGF-I in the development and maintenance of β-cell mass. Rev. Endocr. Metab. Disord. 6, 199–210 (2005).

    CAS  PubMed  Google Scholar 

  92. 92.

    Dadon, D. et al. Glucose metabolism: key endogenous regulator of β-cell replication and survival. Diabetes Obes. Metab. 14 (Suppl 3), 101–108 (2012).

    CAS  PubMed  Google Scholar 

  93. 93.

    Stamateris, R. E. et al. Glucose induces mouse β-cell proliferation via IRS2, MTOR, and cyclin D2 but not the insulin receptor. Diabetes 65, 981–995 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Wang, P. et al. A high-throughput chemical screen reveals that harmine-mediated inhibition of DYRK1A increases human pancreatic β cell replication. Nat. Med. 21, 383–388 (2015). Refs 94, 95 and 96 identified DRYK1 inhibitors as reagents that stimulate human β-cell proliferation.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Dirice, E. et al. Inhibition of DYRK1A stimulates human β-cell proliferation. Diabetes 65, 1660–1671 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Shen, W. et al. Inhibition of DYRK1A and GSK3B induces human β-cell proliferation. Nat. Commun. 6, 8372 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    El Ouaamari, A. et al. SerpinB1 promotes pancreatic β cell proliferation. Cell Metab. 23, 194–205 (2016).

    CAS  PubMed  Google Scholar 

  98. 98.

    Dai, C. et al. Age-dependent human β cell proliferation induced by glucagon-like peptide 1 and calcineurin signaling. J. Clin. Invest. 127, 3835–3844 (2017).

    PubMed  PubMed Central  Google Scholar 

  99. 99.

    Slack, J. M. Metaplasia and transdifferentiation: from pure biology to the clinic. Nat. Rev. Mol. Cell Biol. 8, 369–378 (2007).

    CAS  PubMed  Google Scholar 

  100. 100.

    Eguchi, G. & Okada, T. S. Differentiation of lens tissue from the progeny of chick retinal pigment cells cultured in vitro: a demonstration of a switch of cell types in clonal cell culture. Proc. Natl Acad. Sci. USA 70, 1495–1499 (1973).

    ADS  CAS  PubMed  Google Scholar 

  101. 101.

    Choi, J. et al. MyoD converts primary dermal fibroblasts, chondroblasts, smooth muscle, and retinal pigmented epithelial cells into striated mononucleated myoblasts and multinucleated myotubes. Proc. Natl Acad. Sci. USA 87, 7988–7992 (1990).

    ADS  CAS  PubMed  Google Scholar 

  102. 102.

    Gurdon, J. B. From nuclear transfer to nuclear reprogramming: the reversal of cell differentiation. Annu. Rev. Cell Dev. Biol. 22, 1–22 (2006).

    ADS  CAS  PubMed  Google Scholar 

  103. 103.

    Ferber, S. et al. Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nat. Med. 6, 568–572 (2000).

    CAS  PubMed  Google Scholar 

  104. 104.

    Heremans, Y. et al. Recapitulation of embryonic neuroendocrine differentiation in adult human pancreatic duct cells expressing neurogenin 3. J. Cell Biol. 159, 303–312 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Gasa, R. et al. Proendocrine genes coordinate the pancreatic islet differentiation program in vitro. Proc. Natl Acad. Sci. USA 101, 13245–13250 (2004).

    ADS  CAS  PubMed  Google Scholar 

  106. 106.

    Kaneto, H. et al. PDX-1/VP16 fusion protein, together with NeuroD or Ngn3, markedly induces insulin gene transcription and ameliorates glucose tolerance. Diabetes 54, 1009–1022 (2005).

    CAS  PubMed  Google Scholar 

  107. 107.

    Minami, K., Okano, H., Okumachi, A. & Seino, S. Role of cadherin-mediated cell–cell adhesion in pancreatic exocrine-to-endocrine transdifferentiation. J. Biol. Chem. 283, 13753–13761 (2008).

    CAS  PubMed  Google Scholar 

  108. 108.

    Baeyens, L. et al. In vitro generation of insulin-producing β cells from adult exocrine pancreatic cells. Diabetologia 48, 49–57 (2005).

    CAS  PubMed  Google Scholar 

  109. 109.

    Zhou, Q., Brown, J., Kanarek, A., Rajagopal, J. & Melton, D. A. In vivo reprogramming of adult pancreatic exocrine cells to β-cells. Nature 455, 627–632 (2008). This paper showed that it is possible to directly convert pancreatic acinar cells to β-like cells in adult mice.

    ADS  CAS  Google Scholar 

  110. 110.

    Li, W. et al. Long-term persistence and development of induced pancreatic β cells generated by lineage conversion of acinar cells. Nat. Biotechnol. 32, 1223–1230 (2014).

    CAS  PubMed  Google Scholar 

  111. 111.

    Chen, Y. J. et al. De novo formation of insulin-producing “neo-β cell islets” from intestinal crypts. Cell Reports 6, 1046–1058 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Ariyachet, C. et al. Reprogrammed stomach tissue as a renewable source of functional β cells for blood glucose regulation. Cell Stem Cell 18, 410–421 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Talchai, C., Xuan, S., Kitamura, T., DePinho, R. A. & Accili, D. Generation of functional insulin-producing cells in the gut by Foxo1 ablation. Nat Genet. 44, 406–412 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Baeyens, L. et al. Transient cytokine treatment induces acinar cell reprogramming and regenerates functional beta cell mass in diabetic mice. Nat. Biotechnol. 32, 76–83 (2014).

    CAS  PubMed  Google Scholar 

  115. 115.

    Sancho, R., Gruber, R., Gu, G. & Behrens, A. Loss of Fbw7 reprograms adult pancreatic ductal cells into α, δ, and β cells. Cell Stem Cell 15, 139–153 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Cerdá-Esteban, N. et al. Stepwise reprogramming of liver cells to a pancreas progenitor state by the transcriptional regulator Tgif2. Nat. Commun. 8, 14127 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Courtney, M. et al. The inactivation of Arx in pancreatic α-cells triggers their neogenesis and conversion into functional β-like cells. PLoS Genet. 9, e1003934 (2013).

    PubMed  PubMed Central  Google Scholar 

  118. 118.

    Collombat, P. et al. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into α and subsequently β cells. Cell 138, 449–462 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119.

    van der Meulen, T. et al. Virgin β cells persist throughout life at a neogenic niche within pancreatic islets. Cell Metab. 25, 911–926 (2017).

    PubMed  Google Scholar 

  120. 120.

    Xiao, X. et al. Endogenous reprogramming of α cells into β cells, induced by viral gene therapy, reverses autoimmune diabetes. Cell Stem Cell 22, 78–90 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121.

    Lee, J. et al. Expansion and conversion of human pancreatic ductal cells into insulin-secreting endocrine cells. eLife 2, e00940 (2013).

    PubMed  PubMed Central  Google Scholar 

  122. 122.

    Bouchi, R. et al. FOXO1 inhibition yields functional insulin-producing cells in human gut organoid cultures. Nat. Commun. 5, 4242 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Galivo, F. et al. Reprogramming human gallbladder cells into insulin-producing β-like cells. PLoS ONE  12, e0181812 (2017).

    PubMed  PubMed Central  Google Scholar 

  124. 124.

    Lemper, M. et al. Reprogramming of human pancreatic exocrine cells to β-like cells. Cell Death Differ. 22, 1117–1130 (2015).

    CAS  PubMed  Google Scholar 

  125. 125.

    Sun, Y., Ma, X., Zhou, D., Vacek, I. & Sun, A. M. Normalization of diabetes in spontaneously diabetic cynomologus monkeys by xenografts of microencapsulated porcine islets without immunosuppression. J. Clin. Invest. 98, 1417–1422 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Dufrane, D., Goebbels, R. M., Saliez, A., Guiot, Y. & Gianello, P. Six-month survival of microencapsulated pig islets and alginate biocompatibility in primates: proof of concept. Transplantation 81, 1345–1353 (2006).

    PubMed  Google Scholar 

  127. 127.

    Elliott, R. B. Towards xenotransplantation of pig islets in the clinic. Curr. Opin. Organ Transplant. 16, 195–200 (2011).

    CAS  PubMed  Google Scholar 

  128. 128.

    Niu, D. et al. Inactivation of porcine endogenous retrovirus in pigs using CRISPR–Cas9. Science 357, 1303–1307 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  129. 129.

    Yang, L. et al. Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science 350, 1101–1104 (2015).

    ADS  CAS  PubMed  Google Scholar 

  130. 130.

    Kobayashi, T. et al. Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells. Cell 142, 787–799 (2010).

    CAS  Google Scholar 

  131. 131.

    Rashid, T., Kobayashi, T. & Nakauchi, H. Revisiting the flight of Icarus: making human organs from PSCs with large animal chimeras. Cell Stem Cell 15, 406–409 (2014).

    CAS  PubMed  Google Scholar 

  132. 132.

    Yamaguchi, T. et al. Interspecies organogenesis generates autologous functional islets. Nature 542, 191–196 (2017). This paper demonstrated the feasibility of harvesting interspecies-derived islets to control diabetes with rodent models.

    ADS  CAS  Google Scholar 

  133. 133.

    Wu, J. et al. Interspecies chimerism with mammalian pluripotent stem cells. Cell 168, 473–486 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. 134.

    Talchai, C., Xuan, S., Lin, H. V., Sussel, L. & Accili, D. Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure. Cell 150, 1223–1234 (2012). This paper suggested that dedifferentiation is a potential major mechanism for β-cell failure in T2D.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. 135.

    Accili, D. et al. When β-cells fail: lessons from dedifferentiation. Diabetes Obes. Metab. 18 (Suppl. 1), 117–122 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. 136.

    Orlando, G. et al. Cell replacement strategies aimed at reconstitution of the β-cell compartment in type 1 diabetes. Diabetes 63, 1433–1444 (2014).

    CAS  PubMed  Google Scholar 

  137. 137.

    Vegas, A. J. et al. Long-term glycemic control using polymer-encapsulated human stem cell-derived β cells in immune-competent mice. Nat. Med. 22, 306–311 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. 138.

    An, D. et al. Designing a retrievable and scalable cell encapsulation device for potential treatment of type 1 diabetes. Proc. Natl Acad. Sci. USA 115, E263–E272 (2018).

    CAS  PubMed  Google Scholar 

  139. 139.

    Manzoli, V. et al. Immunoisolation of murine islet allografts in vascularized sites through conformal coating with polyethylene glycol. Am. J. Transplant. 18, 590–603 (2018).

    CAS  PubMed  Google Scholar 

  140. 140.

    Chen, T. et al. Alginate encapsulant incorporating CXCL12 supports long-term allo- and xenoislet transplantation without systemic immune suppression. Am. J. Transplant. 15, 618–627 (2015).

    CAS  PubMed  Google Scholar 

  141. 141.

    Shoda, L. K. et al. A comprehensive review of interventions in the NOD mouse and implications for translation. Immunity 23, 115–126 (2005).

    CAS  PubMed  Google Scholar 

  142. 142.

    Lernmark, A. & Larsson, H. E. Immune therapy in type 1 diabetes mellitus. Nat. Rev. Endocrinol. 9, 92–103 (2013).

    CAS  PubMed  Google Scholar 

  143. 143.

    Reed, J. C. & Herold, K. C. Thinking bedside at the bench: the NOD mouse model of T1DM. Nat. Rev. Endocrinol. 11, 308–314 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. 144.

    Keenan, H. A. et al. Residual insulin production and pancreatic β-cell turnover after 50 years of diabetes: Joslin Medalist Study. Diabetes 59, 2846–2853 (2010). This paper demonstrated the persistence of insulin-expressing cells in patients with long-term T1D.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. 145.

    Liu, E. H. et al. Pancreatic β cell function persists in many patients with chronic type 1 diabetes, but is not dramatically improved by prolonged immunosuppression and euglycaemia from a β cell allograft. Diabetologia 52, 1369–1380 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. 146.

    Dorrell, C. et al. Human islets contain four distinct subtypes of β cells. Nat. Commun. 7, 11756 (2016). Refs 146 and 147 suggested that islet β-cells are heterogeneous in their molecular and functional properties.

    ADS  PubMed  PubMed Central  Google Scholar 

  147. 147.

    Bader, E. et al. Identification of proliferative and mature β-cells in the islets of Langerhans. Nature 535, 430–434 (2016).

    ADS  CAS  PubMed  Google Scholar 

  148. 148.

    Wang, Y. J. et al. Single-cell mass cytometry analysis of the human endocrine pancreas. Cell Metab. 24, 616–626 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. 149.

    Johnston, N. R. et al. β Cell hubs dictate pancreatic islet responses to glucose. Cell Metab. 24, 389–401 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize that we were unable to cite many studies owing to space limitations. We thank past and present members of our laboratories and colleagues for their insights and contributions. Q.Z. and D.A.M. receive support from National Institute of Health (NIH) and Harvard Stem Cell Institute (HSCI), and D.A.M. from Howard Hughes Medical Institute (HHMI).

Author information

Affiliations

Authors

Contributions

Q.Z. and D.A.M. wrote and edited the manuscript. Q.Z. prepared the figures.

Corresponding authors

Correspondence to Qiao Zhou or Douglas A. Melton.

Ethics declarations

Competing interests

D.A.M. is a founder of Semma Therapeutics Inc. Q.Z. declares no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, Q., Melton, D.A. Pancreas regeneration. Nature 557, 351–358 (2018). https://doi.org/10.1038/s41586-018-0088-0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing