Letter | Published:

Lightwave valleytronics in a monolayer of tungsten diselenide

Naturevolume 557pages7680 (2018) | Download Citation


As conventional electronics approaches its limits1, nanoscience has urgently sought methods of fast control of electrons at the fundamental quantum level2. Lightwave electronics3—the foundation of attosecond science4—uses the oscillating carrier wave of intense light pulses to control the translational motion of the electron’s charge faster than a single cycle of light5,6,7,8,9,10,11,12,13,14,15. Despite being particularly promising information carriers, the internal quantum attributes of spin16 and valley pseudospin17,18,21 have not been switchable on the subcycle scale. Here we demonstrate lightwave-driven changes of the valley pseudospin and introduce distinct signatures in the optical readout. Photogenerated electron–hole pairs in a monolayer of tungsten diselenide are accelerated and collided by a strong lightwave. The emergence of high-odd-order sidebands and anomalous changes in their polarization direction directly attest to the ultrafast pseudospin dynamics. Quantitative computations combining density functional theory with a non-perturbative quantum many-body approach assign the polarization of the sidebands to a lightwave-induced change of the valley pseudospin and confirm that the process is coherent and adiabatic. Our work opens the door to systematic valleytronic logic at optical clock rates.

  • Subscribe to Nature for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Markov, I. L. Limits on fundamental limits to computation. Nature 512, 147–154 (2014).

  2. 2.

    Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).

  3. 3.

    Krausz, F. & Stockman, M. I. Attosecond metrology: from electron capture to future signal processing. Nat. Photon. 8, 205–213 (2014).

  4. 4.

    Corkum, P. B. & Krausz, F. Attosecond science. Nat. Phys. 3, 381–387 (2007).

  5. 5.

    Ghimire, S. et al. Observation of high-order harmonic generation in a bulk crystal. Nat. Phys. 7, 138–141 (2011).

  6. 6.

    Zaks, B., Liu, R. B. & Sherwin, M. S. Experimental observation of electron–hole recollisions. Nature 483, 580–583 (2012).

  7. 7.

    Schubert, O. et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nat. Photon. 8, 119–123 (2014).

  8. 8.

    Hohenleutner, M. et al. Real-time observation of interfering crystal electrons in high-harmonic generation. Nature 523, 572–575 (2015).

  9. 9.

    Higuchi, T., Heide, C., Ullman, K., Weber, H. B. & Hommelhoff, P. Light-field-driven currents in graphene. Nature 550, 224–228 (2017).

  10. 10.

    Vampa, G. et al. Linking high-harmonics from gases and solids. Nature 522, 462–464 (2015).

  11. 11.

    Garg, M. et al. Multi-petahertz electronic metrology. Nature 538, 359–363 (2016).

  12. 12.

    Langer, F. et al. Lightwave-driven quasiparticle collisions on a subcycle timescale. Nature 533, 225–229 (2016).

  13. 13.

    Liu, H. et al. High-harmonic generation from an atomically thin semiconductor. Nat. Phys. 13, 262–265 (2017).

  14. 14.

    Yoshikawa, N., Tamaya, T. & Tanaka, K. High-harmonic generation in graphene enhanced by elliptically polarized light excitation. Science 356, 736–738 (2017).

  15. 15.

    Sivis, M. et al. Tailored semiconductors for high-harmonic optoelectronics. Science 357, 303–306 (2017).

  16. 16.

    Wolf, S. A. et al. Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

  17. 17.

    Schaibley, J. R. et al. Valleytronics in 2D materials. Nat. Rev. Mater. 1, 16055 (2016).

  18. 18.

    Xu, X., Wang, Y., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

  19. 19.

    Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

  20. 20.

    Aivazian, G. et al. Magnetic control of valley pseudospin in monolayer WSe2. Nat. Phys. 11, 148–152 (2015).

  21. 21.

    Ye, Z., Sun, D. & Heinz, T. F. Optical manipulation of valley pseudospin. Nat. Phys. 13, 26–29 (2017).

  22. 22.

    Bloch, F. Über die Quantenmechanik der Elektronen in Kristallgittern. Z. Phys. 52, 555–600 (1929).

  23. 23.

    Kira, M. & Koch, S. W. Semiconductor Quantum Optics (Cambridge Univ. Press, Cambridge, 2012).

  24. 24.

    Yan, J.-Y. Theory of excitonic high-order sideband generation in semiconductors under a strong terahertz field. Phys. Rev. B 78, 075204 (2008).

  25. 25.

    Vampa, G. et al. All-optical reconstruction of crystal band structure. Phys. Rev. Lett. 115, 193603 (2015).

  26. 26.

    Banks, H. B. et al. Dynamical birefringence: electron–hole recollisions as probes of Berry curvature. Phys. Rev. X 7, 041042 (2017).

  27. 27.

    Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494–498 (2012).

  28. 28.

    Jones, A. M. et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol. 8, 634–638 (2013).

  29. 29.

    Wang, G. et al. Control of exciton valley coherence in transition metal dichalcogenide monolayers. Phys. Rev. Lett. 117, 187401 (2016).

  30. 30.

    Rycerz, A., Tworzydło, J. & Beenakker, C. W. J. Valley filter and valley valve in graphene. Nat. Phys. 3, 172–175 (2007).

  31. 31.

    Gallot, G. & Grischkowsky, D. Electro-optic detection of terahertz radiation. J. Opt. Soc. Am. B 16, 1204–1212 (1999).

  32. 32.

    Poellmann, C. et al. Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2. Nat. Mater. 14, 889–893 (2015).

  33. 33.

    Blaha, P., Schwarz, K., Madsen, G. K. H., Kvasnicka, D. & Luitz, J. Wien2k, An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties http://susi.theochem.tuwien.ac.at/ (Vienna Univ. Technology, Vienna, 2013).

  34. 34.

    Kormányos, A. et al. k·p theory for two-dimensional transition metal dichalcogenide semiconductors. 2D Mater. 2, 022001 (2015).

  35. 35.

    Singh, D. J. & Nordström, L. Planewaves, Pseudopotentials, and the LAPW Method (Springer, New York, 2006).

  36. 36.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

  37. 37.

    Steinhoff, A., Rösner, M., Jahnke, F., Wehling, T. O. & Gies, C. Influence of excited carriers on the optical and electronic properties of MoS2. Nano Lett. 14, 3743–3748 (2014).

  38. 38.

    Mootz, M., Kira, M. & Koch, S. W. Sequential build-up of quantum-optical correlations. J. Opt. Soc. Am. B 29, A17–A24 (2012).

  39. 39.

    Kira, M. Hyperbolic Bloch equations: atom-cluster kinetics of an interacting Bose gas. Ann. Phys. 356, 185–243 (2015).

  40. 40.

    Mootz, M., Kira, M. & Koch, S. W. Pair-excitation energetics of highly correlated many-body states. New J. Phys. 15, 093040 (2013).

  41. 41.

    Kira, M. & Koch, S. W. Many-body correlations and excitonic effects in semiconductor spectroscopy. Prog. Quantum Electron. 30, 155–296 (2006).

  42. 42.

    Kira, M. Coherent quantum depletion of an interacting atom condensate. Nat. Commun. 6, 6624 (2015).

  43. 43.

    Smith, R. P. et al. Extraction of many-body configurations from nonlinear absorption in semiconductor quantum wells. Phys. Rev. Lett. 104, 247401 (2010).

  44. 44.

    Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).

Download references


The work in Regensburg was supported by the European Research Council through grant number 305003 (QUANTUMsubCYCLE) as well as by the Deutsche Forschungsgemeinschaft (through grant number HU 1598/2-1, SFB 1277, projects A05, B05 and B06, and GRK 1570) and the work in Marburg and Michigan by the Deutsche Forschungsgemeinschaft (through SFB 1083 and grant numbers KI 917/3-1 and KI 917/2-2).

Reviewer information

Nature thanks J. Wang and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Author notes

  1. These authors contributed equally: F. Langer, P. G. Hawkins.


  1. Department of Physics, University of Regensburg, Regensburg, Germany

    • F. Langer
    • , C. P. Schmid
    • , S. Schlauderer
    • , M. Gmitra
    • , J. Fabian
    • , P. Nagler
    • , C. Schüller
    • , T. Korn
    •  & R. Huber
  2. Department of Physics, University of Marburg, Marburg, Germany

    • P. G. Hawkins
    • , J. T. Steiner
    • , U. Huttner
    •  & S. W. Koch
  3. Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA

    • M. Kira


  1. Search for F. Langer in:

  2. Search for C. P. Schmid in:

  3. Search for S. Schlauderer in:

  4. Search for M. Gmitra in:

  5. Search for J. Fabian in:

  6. Search for P. Nagler in:

  7. Search for C. Schüller in:

  8. Search for T. Korn in:

  9. Search for P. G. Hawkins in:

  10. Search for J. T. Steiner in:

  11. Search for U. Huttner in:

  12. Search for S. W. Koch in:

  13. Search for M. Kira in:

  14. Search for R. Huber in:


F.L., P.G.H., C.P.S., S.S., S.W.K., M.K. and R.H. conceived the study. F.L., C.P.S., S.S. and R.H. carried out the experiment and analysed the data. P.N., C.S. and T.K. provided, processed and characterized the samples. M.G. and J.F. performed the DFT calculations and P.G.H., J.T.S., U.H., S.W.K. and M.K. developed the quantum-mechanical model, carried out the computations and analysed the data. All authors discussed the results and contributed to the writing of the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to M. Kira.

Extended data figures and tables

  1. Extended Data Fig. 1 Sample orientation.

    a, Azimuthal scan of the second-harmonic intensity polarized parallel to the excitation pulse, ISHG,|| (blue curve), revealing the armchair direction at a crystal angle of φ = 30°. The dashed line marks the expected scaling proportional to sin2(3φ). Around the polar diagram, the hexagonal Brillouin zone of WSe2 is depicted with the high-symmetry points. b, Optical microscope image of the exfoliated monolayer on the visco-elastic gel film used for exfoliation. Areas appearing in lighter grey are few-layer tungsten diselenide. c, Monolayer sample after transfer to a diamond substrate. The contrast of this image has been enhanced to improve the visibility of the atomically thin WSe2 film. The red arrows mark the same edge in b and c, which has been identified as the zigzag direction using the SHG scan.

  2. Extended Data Fig. 2 Polarization of subcycle sideband emission.

    Circularly polarized 10-fs near-infrared (NIR) pulses (polarization-resolved intensity depicted as black spheres) excite valley-polarized electron–hole pairs in a monolayer of tungsten diselenide. Simultaneously, an atomically strong terahertz wave is applied in the zigzag direction and may transfer electrons and holes to the non-excited K′ valley. The high-order sideband emission resulting from coherent electron–hole collisions driven by the most intense half-cycle is measured to have an elliptical polarization (blue spheres), and contains contributions from the opposite valley. Our quantum theory reproduces this polarization state (red curve) and reveals a transfer yield of 66% to the initially unexcited K′ valley.

About this article

Publication history






Rights and permissions

To obtain permission to re-use content from this article visit RightsLink.


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.