Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The yin and yang of chromosomal instability in prostate cancer

Abstract

Metastatic prostate cancer remains an incurable lethal disease. Studies indicate that prostate cancer accumulates genomic changes during disease progression and displays the highest levels of chromosomal instability (CIN) across all types of metastatic tumours. CIN, which refers to ongoing chromosomal DNA gain or loss during mitosis, and derived aneuploidy, are known to be associated with increased tumour heterogeneity, metastasis and therapy resistance in many tumour types. Paradoxically, high CIN levels are also proposed to be detrimental to tumour cell survival, suggesting that cancer cells must develop adaptive mechanisms to ensure their survival. In the context of prostate cancer, studies indicate that CIN has a key role in disease progression and might also offer a therapeutic vulnerability that can be pharmacologically targeted. Thus, a comprehensive evaluation of the causes and consequences of CIN in prostate cancer, its contribution to aggressive advanced disease and a better understanding of the acquired CIN tolerance mechanisms can translate into new tumour classifications, biomarker development and therapeutic strategies.

Key points

  • Metastatic prostate cancer displays high levels of chromosomal instability (CIN); however, the causal mechanisms and cellular and tumoural consequences of harbouring highly complex genomes are not completely understood.

  • High-CIN prostate cancer adapts to ongoing chromosomal aberration accumulation developing unique functional dependencies.

  • CIN adaptation vulnerabilities can be exploited to therapeutically target prostate cancer.

  • Evaluation of CIN levels in tumour samples and liquid biopsies might enable stratification of patient prognosis and help to personalize treatment decisions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The yin and yang of CIN in tumours.
Fig. 2: CIN during prostate cancer disease progression.
Fig. 3: CIN-targeting strategies in prostate cancer through inhibition of mitotic fidelity kinases.
Fig. 4: Measuring CIN and its potential use as a biomarker.

Similar content being viewed by others

References

  1. Boutros, P. C. et al. Spatial genomic heterogeneity within localized, multifocal prostate cancer. Nat. Genet. 47, 736–745 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Fraser, M. et al. Genomic hallmarks of localized, non-indolent prostate cancer. Nature 541, 359–364 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Armenia, J. et al. The long tail of oncogenic drivers in prostate cancer. Nat. Genet. 50, 645–651 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cancer Genome Atlas Research Network. The molecular taxonomy of primary prostate cancer. Cell 163, 1011–1025 (2015).

    Article  Google Scholar 

  5. Rebello, R. J. et al. Prostate cancer. Nat. Rev. Dis. Primers 7, 9 (2021).

    Article  PubMed  Google Scholar 

  6. Hieronymus, H. et al. Tumor copy number alteration burden is a pan-cancer prognostic factor associated with recurrence and death. eLife 7, e37294 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Grasso, C. S. et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature 487, 239–243 (2012).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  8. Taylor, B. S. et al. Integrative genomic profiling of human prostate cancer. Cancer Cell 18, 11–22 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Viswanathan, S. R. et al. Structural alterations driving castration-resistant prostate cancer revealed by linked-read genome sequencing. Cell 174, 433–447.e19 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Quigley, D. A. et al. Genomic hallmarks and structural variation in metastatic prostate. Cancer Cell 175, 889 (2018).

    CAS  Google Scholar 

  11. Abida, W. et al. Genomic correlates of clinical outcome in advanced prostate cancer. Proc. Natl Acad. Sci. USA 116, 11428–11436 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  12. Robinson, D. et al. Integrative clinical genomics of advanced prostate cancer. Cell 161, 1215–1228 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ryan, M. J. & Bose, R. Genomic alteration burden in advanced prostate cancer and therapeutic implications. Front. Oncol. 9, 1287 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Williams, J. L., Greer, P. A. & Squire, J. A. Recurrent copy number alterations in prostate cancer: an in silico meta-analysis of publicly available genomic data. Cancer Genet. 207, 474–488 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Hieronymus, H. et al. Copy number alteration burden predicts prostate cancer relapse. Proc. Natl Acad. Sci. USA 111, 11139–11144 (2014).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. Baca, S. C. et al. Punctuated evolution of prostate cancer genomes. Cell 153, 666–677 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ciriello, G. et al. Emerging landscape of oncogenic signatures across human cancers. Nat. Genet. 45, 1127–1133 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ben-David, U. & Amon, A. Context is everything: aneuploidy in cancer. Nat. Rev. Genet. 21, 44–62 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Bakhoum, S. F. & Cantley, L. C. The multifaceted role of chromosomal instability in cancer and its microenvironment. Cell 174, 1347–1360 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sansregret, L., Vanhaesebroeck, B. & Swanton, C. Determinants and clinical implications of chromosomal instability in cancer. Nat. Rev. Clin. Oncol. 15, 139–150 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Bakhoum, S. F. et al. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 553, 467–472 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  22. Alcaraz, A. et al. Aneuploidy and aneusomy of chromosome 7 detected by fluorescence in situ hybridization are markers of poor prognosis in prostate cancer. Cancer Res. 54, 3998–4002 (1994).

    CAS  PubMed  Google Scholar 

  23. Stopsack, K. H. et al. Aneuploidy drives lethal progression in prostate cancer. Proc. Natl Acad. Sci. USA 116, 11390–11395 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  24. Dhital, B. et al. Harnessing transcriptionally driven chromosomal instability adaptation to target therapy-refractory lethal prostate cancer. Cell Rep. Med. 4, 100937 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Martinez, M. J., Lyles, R. D. Z., Peinetti, N., Grunfeld, A. M. & Burnstein, K. L. Inhibition of the serine/threonine kinase BUB1 reverses taxane resistance in prostate cancer. iScience 26, 107681 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  26. Thompson, S. L., Bakhoum, S. F. & Compton, D. A. Mechanisms of chromosomal instability. Curr. Biol. 20, R285–R295 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bakhoum, S. F. et al. The mitotic origin of chromosomal instability. Curr. Biol. 24, R148–R149 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gollin, S. M. Mechanisms leading to chromosomal instability. Semin. Cancer Biol. 15, 33–42 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Cortés-Ciriano, I. et al. Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. Nat. Genet. 52, 331–341 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhang, C.-Z. et al. Chromothripsis from DNA damage in micronuclei. Nature 522, 179–184 (2015).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  31. Shoshani, O. et al. Chromothripsis drives the evolution of gene amplification in cancer. Nature 591, 137–141 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  32. Ly, P. et al. Chromosome segregation errors generate a diverse spectrum of simple and complex genomic rearrangements. Nat. Genet. 51, 705–715 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bakhoum, S. F. & Landau, D. A. Chromosomal instability as a driver of tumor heterogeneity and evolution. Cold Spring Harb. Perspect. Med. 7, a029611 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Thompson, S. L. & Compton, D. A. Chromosomes and cancer cells. Chromosome Res. 19, 433–444 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bakhoum, S. F. & Compton, D. A. Chromosomal instability and cancer: a complex relationship with therapeutic potential. J. Clin. Invest. 122, 1138–1143 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. van Jaarsveld, R. H. & Kops, G. J. P. L. Difference makers: chromosomal instability versus aneuploidy in cancer. Trends Cancer 2, 561–571 (2016).

    Article  PubMed  Google Scholar 

  37. Tijhuis, A. E., Johnson, S. C. & McClelland, S. E. The emerging links between chromosomal instability (CIN), metastasis, inflammation and tumour immunity. Mol. Cytogenet. 12, 17 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Dhital, B. & Rodriguez-Bravo, V. Mechanisms of chromosomal instability (CIN) tolerance in aggressive tumors: surviving the genomic chaos. Chromosome Res. 31, 15 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bakhoum, S. F., Genovese, G. & Compton, D. A. Deviant kinetochore microtubule dynamics underlie chromosomal instability. Curr. Biol. 19, 1937–1942 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bakhoum, S. F., Thompson, S. L., Manning, A. L. & Compton, D. A. Genome stability is ensured by temporal control of kinetochore-microtubule dynamics. Nat. Cell Biol. 11, 27–35 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Ganem, N. J., Godinho, S. A. & Pellman, D. A mechanism linking extra centrosomes to chromosomal instability. Nature 460, 278–282 (2009).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  42. Davoli, T., Denchi, E. L. & de Lange, T. Persistent telomere damage induces bypass of mitosis and tetraploidy. Cell 141, 81–93 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Barber, T. D. et al. Chromatid cohesion defects may underlie chromosome instability in human colorectal cancers. Proc. Natl Acad. Sci. USA 105, 3443–3448 (2008).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  44. Rodriguez-Bravo, V. et al. Nuclear pores protect genome integrity by assembling a premitotic and Mad1-dependent anaphase inhibitor. Cell 156, 1017–1031 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Janssen, A., van der Burg, M., Szuhai, K., Kops, G. J. P. L. & Medema, R. H. Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science 333, 1895–1898 (2011).

    Article  CAS  PubMed  ADS  Google Scholar 

  46. Burrell, R. A. et al. Replication stress links structural and numerical cancer chromosomal instability. Nature 494, 492–496 (2013).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  47. Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instabilities in human cancers. Nature 396, 643–649 (1998).

    Article  CAS  PubMed  ADS  Google Scholar 

  48. Bakhoum, S. F., Kabeche, L., Murnane, J. P., Zaki, B. I. & Compton, D. A. DNA-damage response during mitosis induces whole-chromosome missegregation. Cancer Discov. 4, 1281–1289 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nyberg, K. A., Michelson, R. J., Putnam, C. W. & Weinert, T. A. Toward maintaining the genome: DNA damage and replication checkpoints. Annu. Rev. Genet. 36, 617–656 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Sancar, A., Lindsey-Boltz, L. A., Unsal-Kaçmaz, K. & Linn, S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 73, 39–85 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. McAinsh, A. D. & Kops, G. J. P. L. Principles and dynamics of spindle assembly checkpoint signalling. Nat. Rev. Mol. Cell Biol. 24, 543–559 (2023).

    Article  CAS  PubMed  Google Scholar 

  52. Lara-Gonzalez, P., Westhorpe, F. G. & Taylor, S. S. The spindle assembly checkpoint. Curr. Biol. 22, R966–R980 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Musacchio, A. & Salmon, E. D. The spindle-assembly checkpoint in space and time. Nat. Rev. Mol. Cell Biol. 8, 379–393 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Bharadwaj, R. & Yu, H. The spindle checkpoint, aneuploidy, and cancer. Oncogene 23, 2016–2027 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Kops, G. J. P. L., Weaver, B. A. A. & Cleveland, D. W. On the road to cancer: aneuploidy and the mitotic checkpoint. Nat. Rev. Cancer 5, 773–785 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Lukas, J., Lukas, C. & Bartek, J. More than just a focus: the chromatin response to DNA damage and its role in genome integrity maintenance. Nat. Cell Biol. 13, 1161–1169 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Rouse, J. & Jackson, S. P. Interfaces between the detection, signaling, and repair of DNA damage. Science 297, 547–551 (2002).

    Article  CAS  PubMed  ADS  Google Scholar 

  58. Lanz, M. C., Dibitetto, D. & Smolka, M. B. DNA damage kinase signaling: checkpoint and repair at 30 years. EMBO J. 38, e101801 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Saurin, A. T. Kinase and phosphatase cross-talk at the kinetochore. Front. Cell Dev. Biol. 6, 62 (2018).

    Article  PubMed Central  ADS  Google Scholar 

  60. Nilsson, J. Protein phosphatases in the regulation of mitosis. J. Cell Biol. 218, 395–409 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schvartzman, J.-M., Sotillo, R. & Benezra, R. Mitotic chromosomal instability and cancer: mouse modelling of the human disease. Nat. Rev. Cancer 10, 102–115 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Goehring, L., Huang, T. T. & Smith, D. J. Transcription-replication conflicts as a source of genome instability. Annu. Rev. Genet. 57, 157–179 (2023).

    Article  CAS  PubMed  Google Scholar 

  63. Hamperl, S. & Cimprich, K. A. Conflict resolution in the genome: how transcription and replication make it work. Cell 167, 1455–1467 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kim, N. & Jinks-Robertson, S. Transcription as a source of genome instability. Nat. Rev. Genet. 13, 204–214 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Drews, R. M. et al. A pan-cancer compendium of chromosomal instability. Nature 606, 976–983 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  66. Ippolito, M. R. et al. Gene copy-number changes and chromosomal instability induced by aneuploidy confer resistance to chemotherapy. Dev. Cell 56, 2440–2454.e6 (2021).

    Article  CAS  PubMed  Google Scholar 

  67. Lee, A. J. X. et al. Chromosomal instability confers intrinsic multidrug resistance. Cancer Res. 71, 1858–1870 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Salgueiro, L. et al. Acquisition of chromosome instability is a mechanism to evade oncogene addiction. EMBO Mol. Med. 12, e10941 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Swanton, C. et al. Chromosomal instability determines taxane response. Proc. Natl Acad. Sci. USA 106, 8671–8676 (2009).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  70. Tamura, N. et al. Specific mechanisms of chromosomal instability indicate therapeutic sensitivities in high-grade serous ovarian carcinoma. Cancer Res. 80, 4946–4959 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Watkins, T. B. K. et al. Pervasive chromosomal instability and karyotype order in tumour evolution. Nature 587, 126–132 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  72. Cahill, D. P., Kinzler, K. W., Vogelstein, B. & Lengauer, C. Genetic instability and Darwinian selection in tumours. Trends Cell Biol. 9, M57–M60 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Sotillo, R. et al. Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell 11, 9–23 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Gao, C. et al. Chromosome instability drives phenotypic switching to metastasis. Proc. Natl Acad. Sci. USA 113, 14793–14798 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  75. Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instability in colorectal cancers. Nature 386, 623–627 (1997).

    Article  CAS  PubMed  ADS  Google Scholar 

  76. Weaver, B. A. A. & Cleveland, D. W. Does aneuploidy cause cancer? Curr. Opin. Cell Biol. 18, 658–667 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Birkbak, N. J. et al. Paradoxical relationship between chromosomal instability and survival outcome in cancer. Cancer Res. 71, 3447–3452 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Schwarz, R. F. et al. Spatial and temporal heterogeneity in high-grade serous ovarian cancer: a phylogenetic analysis. PLoS Med. 12, e1001789 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Jamal-Hanjani, M. et al. Tracking the evolution of non-small-cell lung cancer. N. Engl. J. Med. 376, 2109–2121 (2017).

    Article  CAS  PubMed  Google Scholar 

  80. Carter, S. L., Eklund, A. C., Kohane, I. S., Harris, L. N. & Szallasi, Z. A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat. Genet. 38, 1043–1048 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Venkatesan, S. et al. Induction of APOBEC3 exacerbates DNA replication stress and chromosomal instability in early breast and lung cancer evolution. Cancer Discov. 11, 2456–2473 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Miller, E. T. et al. Chromosomal instability in untreated primary prostate cancer as an indicator of metastatic potential. BMC Cancer 20, 398 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Funk, L. C., Zasadil, L. M. & Weaver, B. A. Living in CIN: mitotic infidelity and its consequences for tumor promotion and suppression. Dev. Cell 39, 638–652 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Siegel, J. J. & Amon, A. New insights into the troubles of aneuploidy. Annu. Rev. Cell Dev. Biol. 28, 189–214 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Torres, E. M., Williams, B. R. & Amon, A. Aneuploidy: cells losing their balance. Genetics 179, 737–746 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Williams, B. R. et al. Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells. Science 322, 703–709 (2008).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  87. Pfau, S. J., Silberman, R. E., Knouse, K. A. & Amon, A. Aneuploidy impairs hematopoietic stem cell fitness and is selected against in regenerating tissues in vivo. Genes. Dev. 30, 1395–1408 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Matthews, H. K., Bertoli, C. & de Bruin, R. A. M. Cell cycle control in cancer. Nat. Rev. Mol. Cell Biol. 23, 74–88 (2022).

    Article  CAS  PubMed  Google Scholar 

  89. Wengner, A. M. et al. Novel Mps1 kinase inhibitors with potent antitumor activity. Mol. Cancer Ther. 15, 583–592 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Mason, J. M. et al. Functional characterization of CFI-402257, a potent and selective Mps1/TTK kinase inhibitor, for the treatment of cancer. Proc. Natl Acad. Sci. USA 114, 3127–3132 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  91. Sarwar, S., Morozov, V. M., Purayil, H., Daaka, Y. & Ishov, A. M. Inhibition of Mps1 kinase enhances taxanes efficacy in castration resistant prostate cancer. Cell Death Dis. 13, 868 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Malumbres, M. & Barbacid, M. Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer 9, 153–166 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Stice, J. P. et al. CDK4/6 therapeutic intervention and viable alternative to taxanes in CRPC. Mol. Cancer Res. 15, 660–669 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gong, X. et al. Genomic aberrations that activate D-type cyclins are associated with enhanced sensitivity to the CDK4 and CDK6 inhibitor abemaciclib. Cancer Cell 32, 761–776.e6 (2017).

    Article  CAS  PubMed  Google Scholar 

  95. Weaver, B. A. A., Silk, A. D., Montagna, C., Verdier-Pinard, P. & Cleveland, D. W. Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell 11, 25–36 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Silk, A. D. et al. Chromosome missegregation rate predicts whether aneuploidy will promote or suppress tumors. Proc. Natl Acad. Sci. USA 110, E4134–E4141 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hoevenaar, W. H. M. et al. Degree and site of chromosomal instability define its oncogenic potential. Nat. Commun. 11, 1501 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  98. Nguyen, B. et al. Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. Cell 185, 563–575.e11 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lapointe, J. et al. Genomic profiling reveals alternative genetic pathways of prostate tumorigenesis. Cancer Res. 67, 8504–8510 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Tomlins, S. A. et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310, 644–648 (2005).

    Article  CAS  PubMed  ADS  Google Scholar 

  101. Wang, Z. et al. Significance of the TMPRSS2:ERG gene fusion in prostate cancer. Mol. Med. Rep. 16, 5450–5458 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Demichelis, F. et al. TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort. Oncogene 26, 4596–4599 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Visakorpi, T. et al. Genetic changes in primary and recurrent prostate cancer by comparative genomic hybridization. Cancer Res. 55, 342–347 (1995).

    CAS  PubMed  Google Scholar 

  104. Camacho, N. et al. Appraising the relevance of DNA copy number loss and gain in prostate cancer using whole genome DNA sequence data. PLoS Genet. 13, e1007001 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Lalonde, E. et al. Tumour genomic and microenvironmental heterogeneity for integrated prediction of 5-year biochemical recurrence of prostate cancer: a retrospective cohort study. Lancet Oncol. 15, 1521–1532 (2014).

    Article  PubMed  Google Scholar 

  106. Lalonde, E. et al. Translating a prognostic DNA genomic classifier into the clinic: retrospective validation in 563 localized prostate tumors. Eur. Urol. 72, 22–31 (2017).

    Article  CAS  PubMed  Google Scholar 

  107. Federer-Gsponer, J. R. et al. Delineation of human prostate cancer evolution identifies chromothripsis as a polyclonal event and FKBP4 as a potential driver of castration resistance. J. Pathol. 245, 74–84 (2018).

    Article  CAS  PubMed  Google Scholar 

  108. Wu, C. et al. Poly-gene fusion transcripts and chromothripsis in prostate cancer. Genes. Chromosomes Cancer 51, 1144–1153 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. Haffner, M. C. et al. Genomic and phenotypic heterogeneity in prostate cancer. Nat. Rev. Urol. 18, 79–92 (2021).

    Article  PubMed  Google Scholar 

  110. Espiritu, S. M. G. et al. The evolutionary landscape of localized prostate cancers drives clinical aggression. Cell 173, 1003–1013.e15 (2018).

    Article  CAS  PubMed  Google Scholar 

  111. Beheshti, B., Karaskova, J., Park, P. C., Squire, J. A. & Beatty, B. G. Identification of a high frequency of chromosomal rearrangements in the centromeric regions of prostate cancer cell lines by sequential Giemsa banding and spectral karyotyping. Mol. Diagn. 5, 23–32 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Pan, Y. et al. Characterization of chromosomal abnormalities in prostate cancer cell lines by spectral karyotyping. Cytogenet. Cell Genet. 87, 225–232 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Ozen, M. & Pathak, S. Genetic alterations in human prostate cancer: a review of current literature. Anticancer. Res. 20, 1905–1912 (2000).

    CAS  PubMed  Google Scholar 

  114. Tomlins, S. A. et al. Integrative molecular concept modeling of prostate cancer progression. Nat. Genet. 39, 41–51 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Yu, Y. P. et al. Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy. J. Clin. Oncol. 22, 2790–2799 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Cai, C. et al. ERG induces androgen receptor-mediated regulation of SOX9. Prostate Cancer J. Clin. Invest. 123, 1109–1122 (2013).

    CAS  PubMed  Google Scholar 

  117. Pihan, G. A. et al. Centrosome defects can account for cellular and genetic changes that characterize prostate cancer progression. Cancer Res. 61, 2212–2219 (2001).

    CAS  PubMed  Google Scholar 

  118. Wang, M., Nagle, R. B., Knudsen, B. S., Cress, A. E. & Rogers, G. C. Centrosome loss results in an unstable genome and malignant prostate tumors. Oncogene 39, 399–413 (2020).

    Article  CAS  PubMed  Google Scholar 

  119. Tarapore, P. et al. Exposure to bisphenol A correlates with early-onset prostate cancer and promotes centrosome amplification and anchorage-independent growth in vitro. PLoS ONE 9, e90332 (2014).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  120. Chan, J. Y. A clinical overview of centrosome amplification in human cancers. Int. J. Biol. Sci. 7, 1122–1144 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Crasta, K. et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature 482, 53–58 (2012).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  122. Deng, L. et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41, 843–852 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Liu, S., Alabi, B. R., Yin, Q. & Stoyanova, T. Molecular mechanisms underlying the development of neuroendocrine prostate cancer. Semin. Cancer Biol. 86, 57–68 (2022).

    Article  CAS  PubMed  Google Scholar 

  124. Beltran, H. et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat. Med. 22, 298–305 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Marumoto, T., Zhang, D. & Saya, H. Aurora-A — a guardian of poles. Nat. Rev. Cancer 5, 42–50 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Vader, G. & Lens, S. M. A. The Aurora kinase family in cell division and cancer. Biochim. Biophys. Acta 1786, 60–72 (2008).

    CAS  PubMed  Google Scholar 

  127. Ali, A. & Stukenberg, P. T. Aurora kinases: generators of spatial control during mitosis. Front. Cell Dev. Biol. 11, 1139367 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Willems, E. et al. The functional diversity of Aurora kinases: a comprehensive review. Cell Div. 13, 7 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  129. van der Waal, M. S., Hengeveld, R. C. C., van der Horst, A. & Lens, S. M. A. Cell division control by the chromosomal passenger complex. Exp. Cell Res. 318, 1407–1420 (2012).

    Article  PubMed  Google Scholar 

  130. Beltran, H. et al. Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. Cancer Discov. 1, 487–495 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Flores-Morales, A. et al. Proteogenomic characterization of patient-derived xenografts highlights the role of REST in neuroendocrine differentiation of castration-resistant prostate cancer. Clin. Cancer Res. 25, 595–608 (2019).

    Article  CAS  PubMed  Google Scholar 

  132. Coleman, I. M. et al. Therapeutic implications for intrinsic phenotype classification of metastatic castration-resistant prostate cancer. Clin. Cancer Res. J. Am. Assoc. Cancer Res. 28, 3127–3140 (2022).

    Article  CAS  Google Scholar 

  133. Hsu, E.-C. et al. Trop2 is a driver of metastatic prostate cancer with neuroendocrine phenotype via PARP1. Proc. Natl Acad. Sci. USA 117, 2032–2042 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  134. Corella, A. N. et al. Identification of therapeutic vulnerabilities in small-cell neuroendocrine prostate cancer. Clin. Cancer Res. 26, 1667–1677 (2020).

    Article  CAS  PubMed  Google Scholar 

  135. Strominger, R. N., McGiffen, J. E. & Strominger, N. L. Morphometric and experimental studies of the red nucleus in the albino rat. Anat. Rec. 219, 420–428 (1987).

    Article  CAS  PubMed  Google Scholar 

  136. Hsu, E.-C. et al. MCM2-7 complex is a novel druggable target for neuroendocrine prostate cancer. Sci. Rep. 11, 13305 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  137. Rotinen, M. et al. ONECUT2 is a targetable master regulator of lethal prostate cancer that suppresses the androgen axis. Nat. Med. 24, 1887–1898 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Dardenne, E. et al. N-Myc induces an EZH2-mediated transcriptional program driving neuroendocrine prostate cancer. Cancer Cell 30, 563–577 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Agustinus, A. S. et al. Epigenetic dysregulation from chromosomal transit in micronuclei. Nature 619, 176–183 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  140. Mosquera, J. M. et al. Concurrent AURKA and MYCN gene amplifications are harbingers of lethal treatment-related neuroendocrine prostate cancer. Neoplasia N. Y. N. 15, 1–10 (2013).

    Article  CAS  Google Scholar 

  141. Balanis, N. G. et al. Pan-cancer convergence to a small-cell neuroendocrine phenotype that shares susceptibilities with hematological malignancies. Cancer Cell 36, 17–34.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Antonarakis, E. S., Gomella, L. G. & Petrylak, D. P. When and how to use PARP inhibitors in prostate cancer: a systematic review of the literature with an update on on-going trials. Eur. Urol. Oncol. 3, 594–611 (2020).

    Article  PubMed  Google Scholar 

  143. Karanika, S., Karantanos, T., Li, L., Corn, P. G. & Thompson, T. C. DNA damage response and prostate cancer: defects, regulation and therapeutic implications. Oncogene 34, 2815–2822 (2015).

    Article  CAS  PubMed  Google Scholar 

  144. Carceles-Cordon, M. et al. Cellular rewiring in lethal prostate cancer: the architect of drug resistance. Nat. Rev. Urol. 17, 292–307 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Jordan, M. A. & Wilson, L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer 4, 253–265 (2004).

    Article  CAS  PubMed  Google Scholar 

  146. Dominguez-Brauer, C. et al. Targeting mitosis in cancer: emerging strategies. Mol. Cell 60, 524–536 (2015).

    Article  CAS  PubMed  Google Scholar 

  147. Suski, J. M., Braun, M., Strmiska, V. & Sicinski, P. Targeting cell-cycle machinery in cancer. Cancer Cell 39, 759–778 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Chang, L., Ruiz, P., Ito, T. & Sellers, W. R. Targeting pan-essential genes in cancer: challenges and opportunities. Cancer Cell 39, 466–479 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Malumbres, M. et al. Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6. Cell 118, 493–504 (2004).

    Article  CAS  PubMed  Google Scholar 

  150. Salvador-Barbero, B. et al. CDK4/6 inhibitors impair recovery from cytotoxic chemotherapy in pancreatic adenocarcinoma. Cancer Cell 38, 584 (2020).

    Article  CAS  PubMed  Google Scholar 

  151. Goel, S., Bergholz, J. S. & Zhao, J. J. Targeting CDK4 and CDK6 in cancer. Nat. Rev. Cancer 22, 356–372 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Vitale, I., Galluzzi, L., Castedo, M. & Kroemer, G. Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat. Rev. Mol. Cell Biol. 12, 385–392 (2011).

    Article  CAS  PubMed  Google Scholar 

  153. Janssen, A., Kops, G. J. P. L. & Medema, R. H. Elevating the frequency of chromosome mis-segregation as a strategy to kill tumor cells. Proc. Natl Acad. Sci. USA 106, 19108–19113 (2009).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  154. Petrylak, D. P. et al. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N. Engl. J. Med. 351, 1513–1520 (2004).

    Article  CAS  PubMed  Google Scholar 

  155. Tannock, I. F. et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N. Engl. J. Med. 351, 1502–1512 (2004).

    Article  CAS  PubMed  Google Scholar 

  156. de Bono, J. S. et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet 376, 1147–1154 (2010).

    Article  PubMed  Google Scholar 

  157. Sweeney, C. J. et al. Chemohormonal therapy in metastatic hormone-sensitive prostate cancer. N. Engl. J. Med. 373, 737–746 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. James, N. D. et al. Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet 387, 1163–1177 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Smith, M. R. et al. Darolutamide and survival in metastatic, hormone-sensitive prostate cancer. N. Engl. J. Med. 386, 1132–1142 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Fizazi, K. et al. Abiraterone plus prednisone added to androgen deprivation therapy and docetaxel in de novo metastatic castration-sensitive prostate cancer (PEACE-1): a multicentre, open-label, randomised, phase 3 study with a 2 × 2 factorial design. Lancet 399, 1695–1707 (2022).

    Article  CAS  PubMed  Google Scholar 

  161. Nigg, E. A. Mitotic kinases as regulators of cell division and its checkpoints. Nat. Rev. Mol. Cell Biol. 2, 21–32 (2001).

    Article  CAS  PubMed  Google Scholar 

  162. Jackson, J. R., Patrick, D. R., Dar, M. M. & Huang, P. S. Targeted anti-mitotic therapies: can we improve on tubulin agents? Nat. Rev. Cancer 7, 107–117 (2007).

    Article  CAS  PubMed  Google Scholar 

  163. Nizialek, E. & Antonarakis, E. S. PARP inhibitors in metastatic prostate cancer: evidence to date. Cancer Manag. Res. 12, 8105–8114 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Graham, L. S. et al. Mismatch repair deficiency in metastatic prostate cancer: response to PD-1 blockade and standard therapies. PLoS ONE 15, e0233260 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Fu, J., Bian, M., Jiang, Q. & Zhang, C. Roles of Aurora kinases in mitosis and tumorigenesis. Mol. Cancer Res. 5, 1–10 (2007).

    Article  CAS  PubMed  Google Scholar 

  166. Meraldi, P., Honda, R. & Nigg, E. A. Aurora kinases link chromosome segregation and cell division to cancer susceptibility. Curr. Opin. Genet. Dev. 14, 29–36 (2004).

    Article  CAS  PubMed  Google Scholar 

  167. Borisa, A. C. & Bhatt, H. G. A comprehensive review on Aurora kinase: small molecule inhibitors and clinical trial studies. Eur. J. Med. Chem. 140, 1–19 (2017).

    Article  CAS  PubMed  Google Scholar 

  168. Melichar, B. et al. Safety and activity of alisertib, an investigational Aurora kinase A inhibitor, in patients with breast cancer, small-cell lung cancer, non-small-cell lung cancer, head and neck squamous-cell carcinoma, and gastro-oesophageal adenocarcinoma: a five-arm phase 2 study. Lancet Oncol. 16, 395–405 (2015).

    Article  CAS  PubMed  Google Scholar 

  169. Lin, J. et al. A phase I/II study of the investigational drug alisertib in combination with abiraterone and prednisone for patients with metastatic castration-resistant prostate cancer progressing on abiraterone. Oncologist 21, 1296–1297e (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Beltran, H. et al. A phase II trial of the Aurora kinase A inhibitor alisertib for patients with castration-resistant and neuroendocrine prostate cancer: efficacy and biomarkers. Clin. Cancer Res. 25, 43–51 (2019).

    Article  CAS  PubMed  Google Scholar 

  171. Archambault, V. & Glover, D. M. Polo-like kinases: conservation and divergence in their functions and regulation. Nat. Rev. Mol. Cell Biol. 10, 265–275 (2009).

    Article  CAS  PubMed  Google Scholar 

  172. Joukov, V. & De Nicolo, A. Aurora-PLK1 cascades as key signaling modules in the regulation of mitosis. Sci. Signal. 11, eaar4195 (2018).

    Article  PubMed  Google Scholar 

  173. Wu, J., Ivanov, A. I., Fisher, P. B. & Fu, Z. Polo-like kinase 1 induces epithelial-to-mesenchymal transition and promotes epithelial cell motility by activating CRAF/ERK signaling. eLife 5, e10734 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Gheghiani, L., Shang, S. & Fu, Z. Targeting the PLK1-FOXO1 pathway as a novel therapeutic approach for treating advanced prostate cancer. Sci. Rep. 10, 12327 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  175. Cristóbal, I., Rojo, F., Madoz-Gúrpide, J. & García-Foncillas, J. Cross talk between Wnt/β-Catenin and CIP2A/Plk1 signaling in prostate cancer: promising therapeutic implications. Mol. Cell. Biol. 36, 1734–1739 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Takai, N., Hamanaka, R., Yoshimatsu, J. & Miyakawa, I. Polo-like kinases (Plks) and cancer. Oncogene 24, 287–291 (2005).

    Article  CAS  PubMed  Google Scholar 

  177. Deeraksa, A. et al. Plk1 is upregulated in androgen-insensitive prostate cancer cells and its inhibition leads to necroptosis. Oncogene 32, 2973–2983 (2013).

    Article  CAS  PubMed  Google Scholar 

  178. Weichert, W. et al. Polo-like kinase 1 is overexpressed in prostate cancer and linked to higher tumor grades. Prostate 60, 240–245 (2004).

    Article  CAS  PubMed  Google Scholar 

  179. Patterson, J. C. et al. Plk1 inhibitors and abiraterone synergistically disrupt mitosis and kill cancer cells of disparate origin independently of androgen receptor signaling. Cancer Res. 83, 219–238 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Lauzé, E. et al. Yeast spindle pole body duplication gene MPS1 encodes an essential dual specificity protein kinase. EMBO J. 14, 1655–1663 (1995).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Abrieu, A. et al. Mps1 is a kinetochore-associated kinase essential for the vertebrate mitotic checkpoint. Cell 106, 83–93 (2001).

    Article  CAS  PubMed  Google Scholar 

  182. Kwiatkowski, N. et al. Small-molecule kinase inhibitors provide insight into Mps1 cell cycle function. Nat. Chem. Biol. 6, 359–368 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Jemaà, M. et al. Characterization of novel MPS1 inhibitors with preclinical anticancer activity. Cell Death Differ. 20, 1532–1545 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Maciejowski, J. et al. Mps1 directs the assembly of Cdc20 inhibitory complexes during interphase and mitosis to control M phase timing and spindle checkpoint signaling. J. Cell Biol. 190, 89–100 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Daniel, J., Coulter, J., Woo, J.-H., Wilsbach, K. & Gabrielson, E. High levels of the Mps1 checkpoint protein are protective of aneuploidy in breast cancer cells. Proc. Natl Acad. Sci. USA 108, 5384–5389 (2011).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  186. Chen, S. et al. Silencing TTK expression inhibits the proliferation and progression of prostate cancer. Exp. Cell Res. 385, 111669 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  187. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02138812 (2018).

  188. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02366949 (2020).

  189. Bettencourt-Dias, M. et al. SAK/PLK4 is required for centriole duplication and flagella development. Curr. Biol. 15, 2199–2207 (2005).

    Article  CAS  PubMed  Google Scholar 

  190. Habedanck, R., Stierhof, Y.-D., Wilkinson, C. J. & Nigg, E. A. The polo kinase Plk4 functions in centriole duplication. Nat. Cell Biol. 7, 1140–1146 (2005).

    Article  CAS  PubMed  Google Scholar 

  191. Basto, R. et al. Centrosome amplification can initiate tumorigenesis in flies. Cell 133, 1032–1042 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Holland, A. J., Lan, W., Niessen, S., Hoover, H. & Cleveland, D. W. Polo-like kinase 4 kinase activity limits centrosome overduplication by autoregulating its own stability. J. Cell Biol. 188, 191–198 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Singh, C. K. et al. PLK4 is upregulated in prostate cancer and its inhibition reduces centrosome amplification and causes senescence. Prostate 82, 957–969 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Mason, J. M. et al. Functional characterization of CFI-400945, a Polo-like kinase 4 inhibitor, as a potential anticancer agent. Cancer Cell 26, 163–176 (2014).

    Article  CAS  PubMed  Google Scholar 

  195. Wong, Y. L. et al. Cell biology. Reversible centriole depletion with an inhibitor of Polo-like kinase 4. Science 348, 1155–1160 (2015).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  196. Ocasio, C. A. et al. A first generation inhibitor of human Greatwall kinase, enabled by structural and functional characterisation of a minimal kinase domain construct. Oncotarget 7, 71182–71197 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Sharp, A. et al. Androgen receptor splice variant-7 expression emerges with castration resistance in prostate cancer. J. Clin. Invest. 129, 192–208 (2019).

    Article  PubMed  Google Scholar 

  198. Scher, H. I. et al. Association of AR-V7 on circulating tumor cells as a treatment-specific biomarker with outcomes and survival in castration-resistant prostate cancer. JAMA Oncol. 2, 1441–1449 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Marín-Aguilera, M. et al. Androgen receptor and its splicing variant 7 expression in peripheral blood mononuclear cells and in circulating tumor cells in metastatic castration-resistant prostate cancer. Cells 9, 203 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Magani, F. et al. Identification of an oncogenic network with prognostic and therapeutic value in prostate cancer. Mol. Syst. Biol. 14, e8202 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  201. King, A. Could immunotherapy finally break through in prostate cancer? Nature 609, S42–S44 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  202. Graham, L. S. & Schweizer, M. T. Mismatch repair deficiency and clinical implications in prostate cancer. Prostate 82, S37–S44 (2022).

    Article  PubMed  Google Scholar 

  203. Morel, K. L. et al. EZH2 inhibition activates a dsRNA-STING-interferon stress axis that potentiates response to PD-1 checkpoint blockade in prostate cancer. Nat. Cancer 2, 444–456 (2021).

    CAS  Google Scholar 

  204. Hong, C. et al. cGAS-STING drives the IL-6-dependent survival of chromosomally instable cancers. Nature 607, 366–373 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  205. Macintyre, G. et al. Copy number signatures and mutational processes in ovarian carcinoma. Nat. Genet. 50, 1262–1270 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Steele, C. D. et al. Signatures of copy number alterations in human cancer. Nature 606, 984–991 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  207. Santos, A., Wernersson, R. & Jensen, L. J. Cyclebase 3.0: a multi-organism database on cell-cycle regulation and phenotypes. Nucleic Acids Res. 43, D1140–D1144 (2015).

    Article  CAS  PubMed  Google Scholar 

  208. Lepage, C. C., Morden, C. R., Palmer, M. C. L., Nachtigal, M. W. & McManus, K. J. Detecting chromosome instability in cancer: approaches to resolve cell-to-cell heterogeneity. Cancers 11, 226 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Lynch, A. R. et al. A survey of CIN measures across mechanistic models. Preprint at bioRxiv https://doi.org/10.1101/2023.06.15.544840 (2023).

  210. Bakker, B. et al. Predicting CIN rates from single-cell whole genome sequencing data using an in silico model. Preprint at bioRxiv https://doi.org/10.1101/2023.02.14.528596 (2023).

  211. Garribba, L. et al. Short-term molecular consequences of chromosome mis-segregation for genome stability. Nat. Commun. 14, 1353 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  212. Lynch, A. R., Arp, N. L., Zhou, A. S., Weaver, B. A. & Burkard, M. E. Quantifying chromosomal instability from intratumoral karyotype diversity using agent-based modeling and Bayesian inference. eLife 11, e69799 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Schonhoft, J. D. et al. Morphology-predicted large-scale transition number in circulating tumor cells identifies a chromosomal instability biomarker associated with poor outcome in castration-resistant prostate cancer. Cancer Res. 80, 4892–4903 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Beltran, H. et al. The initial detection and partial characterization of circulating tumor cells in neuroendocrine prostate cancer. Clin. Cancer Res. 22, 1510–1519 (2016).

    Article  CAS  PubMed  Google Scholar 

  215. Tsaur, I. et al. Aggressive variants of prostate cancer-are we ready to apply specific treatment right now? Cancer Treat. Rev. 75, 20–26 (2019).

    Article  PubMed  Google Scholar 

  216. Greene, S. B. et al. Chromosomal instability estimation based on next generation sequencing and single cell genome wide copy number variation analysis. PLoS ONE 11, e0165089 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Brown, L. C. et al. Circulating tumor cell chromosomal instability and neuroendocrine phenotype by immunomorphology and poor outcomes in men with MCRPC treated with abiraterone or enzalutamide. Clin. Cancer Res. 27, 4077–4088 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Beck, J., Urnovitz, H. B., Riggert, J., Clerici, M. & Schütz, E. Profile of the circulating DNA in apparently healthy individuals. Clin. Chem. 55, 730–738 (2009).

    Article  CAS  PubMed  Google Scholar 

  219. Schwarzenbach, H., Hoon, D. S. B. & Pantel, K. Cell-free nucleic acids as biomarkers in cancer patients. Nat. Rev. Cancer 11, 426–437 (2011).

    Article  CAS  PubMed  Google Scholar 

  220. Thierry, A. R. et al. Origin and quantification of circulating DNA in mice with human colorectal cancer xenografts. Nucleic Acids Res. 38, 6159–6175 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Chan, K. C. A. et al. Cancer genome scanning in plasma: detection of tumor-associated copy number aberrations, single-nucleotide variants, and tumoral heterogeneity by massively parallel sequencing. Clin. Chem. 59, 211–224 (2013).

    Article  CAS  PubMed  Google Scholar 

  222. Leary, R. J. et al. Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Sci. Transl. Med. 4, 162ra154 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Mo, H. et al. Genome-wide chromosomal instability by cell-free DNA sequencing predicts survival in patients with metastatic breast cancer. Breast 53, 111–118 (2020).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  224. Heitzer, E. et al. Tumor-associated copy number changes in the circulation of patients with prostate cancer identified through whole-genome sequencing. Genome Med. 5, 30 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Schütz, E. et al. Chromosomal instability in cell-free DNA is a serum biomarker for prostate cancer. Clin. Chem. 61, 239–248 (2015).

    Article  PubMed  Google Scholar 

  226. Lee, C. U. et al. Chromosomal instability in cell-free DNA as a prognostic biomarker of metastatic hormone-sensitive prostate cancer treated with androgen deprivation therapy. Eur. Urol. Focus. 9, 89–95 (2023).

    Article  PubMed  Google Scholar 

  227. Herberts, C. et al. Deep whole-genome ctDNA chronology of treatment-resistant prostate cancer. Nature 608, 199–208 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  228. Persons, D. L. et al. Comparison of fluorescence in situ hybridization with flow cytometry and static image analysis in ploidy analysis of paraffin-embedded prostate adenocarcinoma. Hum. Pathol. 25, 678–683 (1994).

    Article  CAS  PubMed  Google Scholar 

  229. Fleskens, S. J. H. M. et al. Simultaneous assessment of DNA ploidy and biomarker expression in paraffin-embedded tissue sections. Histopathology 57, 14–26 (2010).

    Article  PubMed  Google Scholar 

  230. Coudray, N. et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat. Med. 24, 1559–1567 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Liao, H. et al. Deep learning-based classification and mutation prediction from histopathological images of hepatocellular carcinoma. Clin. Transl. Med. 10, e102 (2020).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  232. Fernandez, G. et al. Development and validation of an AI-enabled digital breast cancer assay to predict early-stage breast cancer recurrence within 6 years. Breast Cancer Res. 24, 93 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Cordon-Cardo, C. et al. Improved prediction of prostate cancer recurrence through systems pathology. J. Clin. Invest. 117, 1876–1883 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Donovan, M. J. et al. Systems pathology approach for the prediction of prostate cancer progression after radical prostatectomy. J. Clin. Oncol. 26, 3923–3929 (2008).

    Article  PubMed  Google Scholar 

  235. Bulten, W. et al. Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge. Nat. Med. 28, 154–163 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Xu, Z. et al. Deep learning predicts chromosomal instability from histopathology images. iScience 24, 102394 (2021).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

Download references

Acknowledgements

V.R.-B. is funded by NIH-NCI R01 CA237398. J.D.-D. is funded by NIH-NCI R01 CA207311. Both V.R.-B. and J.D.-D. are supported by the Mayo Clinic Foundation. The authors thank E. Gerner for his continued philanthropic support.

Author information

Authors and Affiliations

Authors

Contributions

V.R.-B., J.D.-D. and M.C.-C. researched data for the article and made substantial contributions to discussion of content. All authors wrote the article and reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Josep Domingo-Domenech or Veronica Rodriguez-Bravo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Michael Haffner, Niall Corcoran and Robert Bristow for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carceles-Cordon, M., Orme, J.J., Domingo-Domenech, J. et al. The yin and yang of chromosomal instability in prostate cancer. Nat Rev Urol (2024). https://doi.org/10.1038/s41585-023-00845-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41585-023-00845-9

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer