Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular mechanisms of cellular dysfunction in testes from men with non-obstructive azoospermia

Abstract

Male factor infertility affects 50% of infertile couples worldwide; the most severe form, non-obstructive azoospermia (NOA), affects 10–15% of infertile males. Treatment for individuals with NOA is limited to microsurgical sperm extraction paired with in vitro fertilization intracytoplasmic sperm injection. Unfortunately, spermatozoa are only retrieved in ~50% of patients, resulting in live birth rates of 21–46%. Regenerative therapies could provide a solution; however, understanding the cell-type-specific mechanisms of cellular dysfunction is a fundamental necessity to develop precision medicine strategies that could overcome these abnormalities and promote regeneration of spermatogenesis. A number of mechanisms of cellular dysfunction have been elucidated in NOA testicular cells. These mechanisms include abnormalities in both somatic cells and germ cells in NOA testes, such as somatic cell immaturity, aberrant growth factor signalling, increased inflammation, increased apoptosis and abnormal extracellular matrix regulation. Future cell-type-specific investigations in identifying modulators of cellular transcription and translation will be key to understanding upstream dysregulation, and these studies will require development of in vitro models to functionally interrogate spermatogenic niche dysfunction in both somatic and germ cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NOA phenotypes and intratesticular heterogeneity observed during microTESE.
Fig. 2: Five states of human spermatogonial stem cells.
Fig. 3: Interplay between testicular cell abnormalities associated with NOA.
Fig. 4: Proposed personalized and precision medicine workflow for restoring sperm production using IVS.

Similar content being viewed by others

References

  1. Vahidi, S. et al. Success rate and art outcome of microsurgical sperm extraction in non obstructive azoospermia: a retrospective study. Int. J. Reprod. Biomed. 19, 781–788 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Schlegel, P. N. Testicular sperm extraction: microdissection improves sperm yield with minimal tissue excision. Hum. Reprod. 14, 131–135 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Punjani, N., Flannigan, R., Kang, C., Khani, F. & Schlegel, P. N. Quantifying heterogeneity of testicular histopathology in men with nonobstructive azoospermia. J. Urol. 206, 1268–1275 (2021).

    Article  PubMed  Google Scholar 

  4. Chiba, K., Enatsu, N. & Fujisawa, M. Management of non-obstructive azoospermia. Reprod. Med. Biol. 15, 165–173 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. O’Donnell, L. et al. Endocrinology of the Male Reproductive System and Spermatogenesis. Endotext [internet] https://www.ncbi.nlm.nih.gov/books/NBK279031/ (updated 11 Jan 2017).

  6. Sohni, A. et al. The neonatal and adult human testis defined at the single-cell level. Cell Rep. 26, 1501–1517.e4 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Guo, J. et al. Single-cell analysis of the developing human testis reveals somatic niche cell specification and fetal germline stem cell establishment. Cell Stem Cell 28, 764–778.e4 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hajkova, P. et al. Epigenetic reprogramming in mouse primordial germ cells. Mechanisms Dev. 117, 15–23 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Nikolic, A., Volarevic, V., Armstrong, L., Lako, M. & Stojkovic, M. Primordial germ cells: current knowledge and perspectives. Stem Cell Int. 2016, 1741072 (2016).

    Google Scholar 

  10. Guo, J. et al. The dynamic transcriptional cell atlas of testis development during human puberty. Cell Stem Cell 26, 262–273.e4 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Loveland, K. L. & Hedger, M. P. in Sertoli Cell Biology (eds Skinner, M. & Griswold, M.) 201–232 (Elsevier, 2015).

  12. Le Magueresse-Battistoni, B. Serine proteases and serine protease inhibitors in testicular physiology: the plasminogen activation system. Reproduction 134, 721–729 (2007).

    Article  PubMed  Google Scholar 

  13. Charron, M. & Wright, W. W. in: Skinner, M. & Griswold, M. (eds) Sertoli Cell Biology. 121–152 (Elsevier, 2005).

  14. França, L. R., Hess, R. A., Dufour, J. M., Hofmann, M. C. & Griswold, M. D. The Sertoli cell: one hundred fifty years of beauty and plasticity. Andrology 4, 189–212 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Griswold, M. D. Protein secretions of Sertoli cells. Int. Rev. Cytol. 110, 133–156 (1988).

    Article  CAS  PubMed  Google Scholar 

  16. Peng, Y. J. et al. Sertoli cells are the source of stem cell factor for spermatogenesis. Development 150, dev200706 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Washburn, R. L., Hibler, T., Kaur, G. & Dufour, J. M. Sertoli cell immune regulation: a double-edged sword. Front. Immunol. 13, 913502 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hofmann, M.-C. & McBeath, E. Sertoli cell-germ cell interactions within the niche: paracrine and juxtacrine molecular communications. Front. Endocrinol. 13, 897062 (2022).

    Article  Google Scholar 

  19. Nakanishi, Y. & Shiratsuchi, A. Phagocytic removal of apoptotic spermatogenic cells by Sertoli cells: mechanisms and consequences. Biol. Pharm. Bull. 27, 13–16 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Jensen, C. F. et al. Sertoli and germ cells within atrophic seminiferous tubules of men with non-obstructive azoospermia. Front. Endocrinol. 13, 825904 (2022).

    Article  Google Scholar 

  21. Aumüller, G., Schulze, C. & Viebahn, C. Intermediate filaments in Sertoli cells. Microsc. Res. Tech. 20, 50–72 (1992).

    Article  PubMed  Google Scholar 

  22. Steger, K. Reversion of the differentiated phenotype and maturation block in Sertoli cells in pathological human testis. Hum. Reprod. 14, 136–143 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Zhao, L. Y. et al. Single-cell analysis of developing and azoospermia human testicles reveals central role of Sertoli cells. Nat. Commun. 11, 5683 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Boukari, K. et al. Lack of androgen receptor expression in Sertoli cells accounts for the absence of anti-mullerian hormone repression during early human testis development. J. Clin. Endocrinol. Metab. 94, 1818–1825 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Yao, C. et al. MiRNA-133B promotes the proliferation of human Sertoli cells through targeting GLI3. Oncotarget 7, 2201–2219 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yang, C. et al. Mir-202-3p regulates Sertoli cell proliferation, synthesis function, and apoptosis by targeting LRP6 and cyclin D1 of wnt/β-catenin signaling. Mol. Ther. Nucleic Acids 14, 1–19 (2019).

    Article  PubMed  Google Scholar 

  27. Dabaja, A. A. et al. Possible germ cell-Sertoli cell interactions are critical for establishing appropriate expression levels for the Sertoli cell-specific microRNA, mir-202-5p, in human testis. Basic. Clin. Androl. 25, 2 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lian, J. et al. Altered microRNA expression in patients with non-obstructive azoospermia. Reprod. Biol. Endocrinol. 7, 13 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mak, I. W. Y., Singh, S., Turcotte, R. & Ghert, M. The epigenetic regulation of SOX9 by mir-145 in human chondrosarcoma. J. Cell. Biochem. 116, 37–44 (2014).

    Article  Google Scholar 

  30. Pan, S., Bearelly, P. & Oates, R. D. Fertility in men with Klinefelter syndrome and Y chromosome microdeletions: an update. Curr. Opin. Endocr. Metab. Res. 6, 21–28 (2019).

    Article  Google Scholar 

  31. Mahyari, E. et al. Comparative single-cell analysis of biopsies clarifies pathogenic mechanisms in Klinefelter syndrome. Am. J. Hum. Gen. 108, 1924–1945 (2021).

    Article  CAS  Google Scholar 

  32. Wang, M. et al. Single-cell RNA sequencing analysis reveals sequential cell fate transition during human spermatogenesis. Cell Stem Cell 23, 599–614.e4 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Alfano, M. et al. Aging, inflammation and DNA damage in the somatic testicular niche with idiopathic germ cell aplasia. Nat. Commun. 12, 5205 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Abraham, R. T. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes. Dev. 15, 2177–2196 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Nie, X. et al. Single-cell analysis of human testis aging and correlation with elevated body mass index. Dev. Cell 57, 1160–1176.e5 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang, X. et al. Comprehensive analysis of the association between human non-obstructive azoospermia and plasticisers via single-cell and traditional RNA sequencing methods. Exposure Health 14, 829–842 (2022).

    Article  CAS  Google Scholar 

  37. Chen, S. et al. Human obstructive (postvasectomy) and nonobstructive azoospermia — insights from scRNA-seq and transcriptome analysis. Genes. Dis. 9, 766–776 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Mruk, D. D. & Cheng, C. Y. The mammalian blood-testis barrier: its biology and regulation. Endocr. Rev. 36, 564–591 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Aydin, S. et al. Evaluation of blood–testis barrier integrity in terms of adhesion molecules in nonobstructive azoospermia. Andrologia 52, e13636 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Chiba, K., Yamaguchi, K., Ando, M., Miyake, H. & Fujisawa, M. Expression pattern of testicular claudin-11 in infertile men. Urology 80, 1161.e13-7 (2012).

    Article  PubMed  Google Scholar 

  41. Zhu, R. et al. The alteration of Rhoa geranylgeranylation and Ras farnesylation breaks the integrity of the blood–testis barrier and results in hypospermatogenesis. Cell Death Dis. 10, 450 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sun, H. et al. Presence of metastasis-associated protein 1 in Sertoli cells is required for proper contact between Sertoli cells and adjacent germ cells. Urology 81, 66–73 (2013).

    Article  PubMed  Google Scholar 

  43. Sen, N., Gui, B. & Kumar, R. Physiological functions of MTA family of proteins. Cancer Metastasis Rev. 33, 869–877 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xiang, W. et al. CR16 forms a complex with N-WASP in human testes. Cell Tissue Res. 344, 519–526 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Fargeas, C. A. et al. Identification of novel prominin-1/CD133 splice variants with alternative C-termini and their expression in epididymis and testis. J. Cell Sci. 117, 4301–4311 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Yukselten, Y., Aydos, O. S., Sunguroglu, A. & Aydos, K. Investigation of CD133 and CD24 as candidate azoospermia markers and their relationship with spermatogenesis defects. Gene 706, 211–221 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Wu, X. et al. Role of laminin and collagen chains in human spermatogenesis — insights from studies in rodents and scRNA-seq transcriptome profiling. Semin. Cell Dev. Biol. 121, 125–132 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. Aydos, O. S., Yukselten, Y., Ozkavukcu, S., Sunguroglu, A. & Aydos, K. ADAMTS1 and ADAMTS5 metalloproteases produced by Sertoli cells: a potential diagnostic marker in azoospermia. Syst. Biol. Reprod. Med. 65, 29–38 (2018).

    Article  PubMed  Google Scholar 

  49. Longin, J. & Le Magueresse-Battistoni, B. Evidence that MMP-2 and Timp-2 are at play in the FSH-induced changes in Sertoli cells. Mol. Cell. Endocrinol. 189, 25–35 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Robinson, L. L. L., Sznajder, N. A., Riley, S. C. & Anderson, R. A. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in human fetal testis and ovary. Mol. Hum. Reprod. 7, 641–648 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Walczak-Jędrzejowska, R. et al. Expression of G-protein-coupled estrogen receptor (GPER) in whole testicular tissue and laser-capture microdissected testicular compartments of men with normal and aberrant spermatogenesis. Biology 11, 373 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zhao, Y., Wu, T.-Y., Zhao, M.-F. & Li, C.-J. The balance of protein farnesylation and geranylgeranylation during the progression of nonalcoholic fatty liver disease. J. Biol. Chem. 295, 5152–5162 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang, M. & Casey, P. J. Protein prenylation: unique fats make their mark on biology. Nat. Rev. Mol. Cell Biol. 17, 110–122 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Wang, X.-X. et al. Altered protein prenylation in Sertoli cells is associated with adult infertility resulting from childhood mumps infection. J. Exp. Med. 210, 1559–1574 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Azizi, H., Hashemi Karoii, D. & Skutella, T. Whole exome sequencing and in silico analysis of human Sertoli in patients with non-obstructive azoospermia. Int. J. Mol. Sci. 23, 12570 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ma, M. et al. Sertoli cells from non-obstructive azoospermia and obstructive azoospermia patients show distinct morphology, Raman spectrum and biochemical phenotype. Hum. Reprod. 28, 1863–1873 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Ohta, H., Yomogida, K., Dohmae, K. & Nishimune, Y. Regulation of proliferation and differentiation in spermatogonial stem cells: the role of c-kit and its ligand SCF. Development 127, 2125–2131 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Meng, X. et al. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287, 1489–1493 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. He, Z., Kokkinaki, M. & Dym, M. Signaling molecules and pathways regulating the fate of spermatogonial stem cells. Microsc. Res. Tech. 72, 586–595 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chui, K. et al. Characterization and functionality of proliferative human Sertoli cells. Cell Transpl. 20, 619–635 (2011).

    Article  Google Scholar 

  61. Fujita, K. et al. Expression of inhibin α, glial cell line-derived neurotrophic factor and stem cell factor in Sertoli cell-only syndrome: relation to successful sperm retrieval by microdissection testicular sperm extraction. Hum. Reprod. 20, 2289–2294 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Hai, Y. et al. BMP4 promotes human Sertoli cell proliferation via Smad1/5 and ID2/3 pathway and its abnormality is associated with azoospermia. Discov. Med. 19 105, 311–325 (2015).

    Google Scholar 

  63. Tian, R. et al. Fibroblast growth factor-5 promotes spermatogonial stem cell proliferation via ERK and Akt activation. Stem Cell Res. Ther. 10, 40 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kato, Y., Shiraishi, K. & Matsuyama, H. Expression of testicular androgen receptor in non-obstructive azoospermia and its change after hormonal therapy. Andrology 2, 734–740 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Kuyucu, Y. et al. Immunohistochemical examination of androgen receptor and estrogen receptor alpha expressions in obstructive and non-obstructive azoospermia. Syst. Biol. Reprod. Med. 67, 463–470 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Lan, K.-C. et al. Up-regulation of SOX9 in Sertoli cells from testiculopathic patients accounts for increasing Anti-Mullerian hormone expression via impaired androgen receptor signaling. PLoS One 8, e76303 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Almeida, C. et al. Caspase signalling pathways in human spermatogenesis. J. Assist. Reprod. Genet. 30, 487–495 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kim, S.-K., Yoon, Y.-D., Park, Y.-S., Seo, J. T. & Kim, J.-H. Involvement of the FAS–FAS ligand system and active caspase-3 in abnormal apoptosis in human testes with maturation arrest and Sertoli cell-only syndrome. Fertil. Steril. 87, 547–553 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Sinha Hikim, A. P. et al. Deciphering the pathways of germ cell apoptosis in the testis. J. Steroid Biochem. Mol. Biol. 85, 175–182 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Vogl, A. W., Vaid, K. S. & Guttman, J. A. The Sertoli cell cytoskeleton. Adv. Exp. Med. Biol. 636, 186–211 (2009).

    Article  Google Scholar 

  71. Wu, X. et al. Defects of microtubule cytoskeletal organization in NOA Human testes. Reprod. Biol. Endocrinol. 20, 154 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nogales, E. Structural insights into microtubule function. Annu. Rev. Biochem. 69, 277–302 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Tang, E. I., Mok, K.-W., Lee, W. M. & Cheng, C. Y. EB1 regulates tubulin and actin cytoskeletal networks at the Sertoli cell blood-testis barrier in male rats: an in vitro study. Endocrinology 156, 680–693 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Wen, Q. et al. Dynein 1 supports spermatid transport and spermiation during spermatogenesis in the rat testis. Am. J. Physiol. Endocrinol. Metab. 315, E924–E948 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wu, S. et al. KIF15 supports spermatogenesis via its effects on Sertoli cell microtubule, actin, vimentin, and septin cytoskeletons. Endocrinology 162, bqab010 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Voutilainen, R. Differentiation of the fetal gonad. Horm. Res. 38, 66–71 (1992).

    Article  CAS  PubMed  Google Scholar 

  77. Carreau S. in: Payne, A. H. & Hardy, M. P. (eds) The Leydig Cell in Health and Disease. 189-195 (Contemporary Endocrinology, 2007).

  78. Sokwala, S. in: Rehman, R. & Sheikh, A. (eds) Subfertility: Recent Advances for Management and Prevention. 39-64 (Elsevier, 2021).

  79. Walker, W. H. Testosterone signaling and the regulation of spermatogenesis. Spermatogenesis 1, 116–120 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Walker, W. H. Non-classical actions of testosterone and spermatogenesis. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 365, 1557–1569 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rettew, J. A., Huet-Hudson, Y. M. & Marriott, I. Testosterone reduces macrophage expression in the mouse of Toll-like receptor 4, a trigger for inflammation and innate immunity. Biol. Reprod. 78, 432–437 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Griffeth, R. J., Bianda, V. & Nef, S. The emerging role of insulin-like growth factors in testis development and function. Basic Clin. Androl. 24, 12 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Jaworowski, A., Wilson, N. J., Christy, E., Byrne, R. & Hamilton, J. A. Roles of the mitogen-activated protein kinase family in macrophage responses to colony stimulating factor-1 addition and withdrawal. J. Biol. Chem. 274, 15127–15133 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Mohamad, N. V., Soelaiman, I.-N. & Chin, K.-Y. A concise review of testosterone and bone health. Clin. Interv. Aging 11, 1317–1324 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bachman, E. et al. Testosterone induces erythrocytosis via increased erythropoietin and suppressed hepcidin: evidence for a new erythropoietin/hemoglobin set point. J. Gerontol. A. Biol. Sci. Med. Sci. 69, 725–735 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Mahran, A. M., Elgamal, D. A., Ghafeer, H. H., Abdel-Maksoud, S. A. & Farrag, A. A. Histological alterations in Leydig cells and macrophages in azoospermic men. Andrologia 49, https://doi.org/10.1111/and.12714 (2016).

  87. Hauptman, D. et al. Leydig cells in patients with non-obstructive azoospermia: do they really proliferate? Life 11, 1266 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Holm, M., Rajpert-De Meyts, E., Andersson, A.-M. & Skakkebaek, N. E. Leydig cell micronodules are a common finding in testicular biopsies from men with impaired spermatogenesis and are associated with decreased testosterone/LH ratio. J. Pathol. 199, 378–386 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Adamczewska, D., Słowikowska-Hilczer, J. & Walczak-Jędrzejowska, R. The fate of Leydig cells in men with spermatogenic failure. Life 12, 570 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tang, X.-J. et al. Single-cell transcriptomics-based study of transcriptional regulatory features in the non-obstructive azoospermia testis. Front. Genet 13, 875762 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ghaffari Novin, M., Mirfakhraie, R. & Nazarian, H. Aberrant Wnt/β-catenin signaling pathway in testis of azoospermic men. Adv. Pharm. Bull. 5, 373–377 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Goluža, T. et al. Macrophages and Leydig cells in testicular biopsies of azoospermic men. Biomed. Res. Int. 2014, 828697 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Shiraishi, K., Oka, S. & Matsuyama, H. Testicular testosterone and estradiol concentrations and aromatase expression in men with nonobstructive azoospermia. J. Clin. Endocrinol. Metab. 106, 1803–1815 (2020).

    Article  Google Scholar 

  94. Lardone, M. C. et al. Leydig cell dysfunction is associated with post-transcriptional deregulation of CYP17A1 in men with Sertoli cell-only syndrome. Mol. Hum. Reprod. 24, 203–210 (2018).

    Article  CAS  PubMed  Google Scholar 

  95. Sato, Y. et al. A change in the steroid metabolic pathway in human testes showing deteriorated spermatogenesis. Reprod. Biol. 20, 210–219 (2020).

    Article  PubMed  Google Scholar 

  96. Sato, Y., Nozawa, S., Yoshiike, M., Otoi, T. & Iwamoto, T. Glycoconjugates recognized by peanut agglutinin lectin in the inner acellular layer of the lamina propria of seminiferous tubules in human testes showing impaired spermatogenesis. Hum. Reprod. 27, 659–668 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Yanaihara, T. & Troen, P. Studies of the human testis. I. Biosynthetic pathways for androgen formation in human testicular tissue in vitro. J. Clin. Endocrinol. Metab. 34, 783–792 (1972).

    Article  CAS  PubMed  Google Scholar 

  98. Bar-Shira Maymon, B. et al. Detection of calretinin expression in abnormal immature Sertoli cells in non-obstructive azoospermia. Acta Histochem. 107, 105–112 (2005).

    Article  PubMed  Google Scholar 

  99. Spiess, A.-N. et al. Cross-platform gene expression signature of human spermatogenic failure reveals inflammatory-like response. Hum. Reprod. 22, 2936–2946 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Wren, A. M. et al. The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology 141, 4325–4328 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Ishikawa, T., Fujioka, H., Ishimura, T., Takenaka, A. & Fujisawa, M. Ghrelin expression in human testis and serum testosterone level. J. Androl. 28, 320–324 (2006).

    Article  PubMed  Google Scholar 

  102. Ozkanli, S. et al. The ghrelin and orexin activity in testicular tissues of patients with idiopathic non-obstructive azoospermia. Kaohsiung J. Med. Sci. 34, 564–568 (2018).

    Article  PubMed  Google Scholar 

  103. Wynn, T. A. & Ramalingam, T. R. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat. Med. 18, 1028–1040 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Domke, L. M. & Franke, W. W. The cell–cell junctions of mammalian testes: II. the lamellar smooth muscle monolayer cells of the peritubular wall are laterally connected by vertical adherens junctions — a novel architectonic cell–cell junction system. Cell Tissue Res. 375, 451–482 (2018).

    Article  PubMed  Google Scholar 

  105. Flenkenthaler, F. et al. Secretome analysis of testicular peritubular cells: a window into the human testicular microenvironment and the spermatogonial stem cell niche in man. J. Proteome Res. 13, 1259–1269 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Spinnler, K., Kohn, F. M., Schwarzer, U. & Mayerhofer, A. Glial cell line-derived neurotrophic factor is constitutively produced by human testicular peritubular cells and may contribute to the spermatogonial stem cell niche in man. Hum. Reprod. 25, 2181–2187 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Hedger, M. P. & Winnall, W. R. Regulation of activin and inhibin in the adult testis and the evidence for functional roles in spermatogenesis and immunoregulation. Mol. Cell. Endocrinol. 359, 30–42 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Mayerhofer, A. Human testicular peritubular cells: more than meets the eye. Reproduction 145, R107–R116 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Di Persio, S. et al. Single-cell RNA-seq unravels alterations of the human spermatogonial stem cell compartment in patients with impaired spermatogenesis. Cell Rep. Med. 2, 100395 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Pop, O. T. et al. Histological and ultrastructural analysis of the seminiferous tubule wall in ageing testis. Rom. J. Morphol. Embryol. 52, 241–248 (2011).

    CAS  PubMed  Google Scholar 

  111. Sato, Y., Nozawa, S. & Iwamoto, T. Study of spermatogenesis and thickening of lamina propria in the human seminiferous tubules. Fertil. Steril. 90, 1310–1312 (2008).

    Article  PubMed  Google Scholar 

  112. Lan, K.-C. et al. Expression of androgen receptor co-regulators in the testes of men with azoospermia. Fertil. Steril. 89, 1397–1405 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Kikuchi, H. et al. Ara54 is involved in transcriptional regulation of the cyclin D1 gene in human cancer cells. Carcinogenesis 28, 1752–1758 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Hasirci, E. et al. Distribution and number of Cajal-like cells in testis tissue with azoospermia. Kaohsiung J. Med. Sci. 33, 181–186 (2017).

    Article  PubMed  Google Scholar 

  115. Briggs Boedtkjer, D. et al. Identification of interstitial Cajal-like cells in the human thoracic duct. Cell Tissues Organs 197, 145–158 (2012).

    Article  Google Scholar 

  116. Mossadegh-Keller, N. & Sieweke, M. H. Testicular macrophages: guardians of fertility. Cell. Immunol. 330, 120–125 (2018).

    Article  CAS  PubMed  Google Scholar 

  117. Mossadegh-Keller, N. et al. Developmental origin and maintenance of distinct testicular macrophage populations. J. Exp. Med. 214, 2829–2841 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Chen, J.-J., Lukyanenko, Y. & Hutson, J. C. 25-hydroxycholesterol is produced by testicular macrophages during the early postnatal period and influences differentiation of Leydig cells in vitro. Biol. Reprod. 66, 1336–1341 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Nes, W. D. et al. Identification of the lipophilic factor produced by macrophages that stimulates steroidogenesis. Endocrinology 141, 953–958 (2000).

    Article  CAS  PubMed  Google Scholar 

  120. Hales, D. B. Testicular macrophage modulation of Leydig cell steroidogenesis. J. Reprod. Immunol. 57, 3–18 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Kostić, T., Andrić, S., Kovačević, R. & Marić, D. The involvement of nitric oxide in stress-impaired testicular steroidogenesis. Eur. J. Pharmacol. 346, 267–273 (1998).

    Article  PubMed  Google Scholar 

  122. DeFalco, T. et al. Macrophages contribute to the spermatogonial niche in the adult testis. Cell Rep. 12, 1107–1119 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bhushan, S. et al. Immune cell subtypes and their function in the testis. Front. Immunol. 11, 583304 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gong, J., Zeng, Q., Yu, D. & Duan, Y.-G. T lymphocytes and testicular immunity: a new insight into immune regulation in testes. Int. J. Mol. Sci. 22, 57 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Ruiz-Argüelles, A. in: Anaya JM et al. (eds) Autoimmunity: From Bench to Bedside. 113–123 (El Rosario University Press, 2013).

  126. Krystel-Whittemore, M., Dileepan, K. N. & Wood, J. G. Mast cell: a multi-functional master cell. Front. Immunol. 6, 620 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Payne, V. & Kam, P. C. Mast cell tryptase: a review of its physiology and clinical significance. Anaesthesia 59, 695–703 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Haidl, G. et al. The role of mast cells in male infertility. Expert. Rev. Clin. Immunol. 7, 627–634 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Abdel-Hamid, A. A., Atef, H., Zalata, K. R. & Abdel-Latif, A. Correlation between testicular mast cell count and spermatogenic epithelium in non-obstructive azoospermia. Int. J. Exp. Pathol. 99, 22–28 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Klein, B. et al. Specific immune cell and cytokine characteristics of human testicular germ cell neoplasia. Hum. Reprod. 31, 2192–2202 (2016).

    Article  CAS  PubMed  Google Scholar 

  131. O’Bryan, M. K. & Hedger, M. P. Inflammatory networks in the control of spermatogenesis. Adv. Exp. Med. Biol. 636, 92–114 (2009).

    Article  Google Scholar 

  132. Loveland, K. L. et al. Cytokines in male fertility and reproductive pathologies: immunoregulation and beyond. Front. Endocrinol. 8, 307 (2017).

    Article  Google Scholar 

  133. Bott, R. C., McFee, R. M., Clopton, D. T., Toombs, C. & Cupp, A. S. Vascular endothelial growth factor and kinase domain region receptor are involved in both seminiferous cord formation and vascular development during testis morphogenesis in the RAT1. Biol. Reprod. 75, 56–67 (2006).

    Article  CAS  PubMed  Google Scholar 

  134. Ergün, S., Stingl, J. & Holstein, A. F. Microvasculature of the human testis in correlation to Leydig cells and seminiferous tubules. Andrologia 26, 255–262 (2009).

    Article  Google Scholar 

  135. Bhang, D. H. et al. Testicular endothelial cells are a critical population in the germline stem cell niche. Nat. Commun. 9, 4379 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  136. De Rooij, D. G. & Russell, L. D. All you wanted to know about spermatogonia but were afraid to ask. J. Androl. 21, 776–798 (2013).

    Article  Google Scholar 

  137. Guo, J. et al. The adult human testis transcriptional cell atlas. Cell Res. 28, 1141–1157 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Schwarzacher, T. Meiosis, recombination and chromosomes: a review of gene isolation and fluorescent in situ hybridization data in plants. J. Exp. Bot. 54, 11–23 (2003).

    Article  CAS  PubMed  Google Scholar 

  139. Cheng, C. Y. & Mruk, D. D. The blood-testis barrier and its implications for male contraception. Pharm. Rev. 64, 16–64 (2011).

    Article  PubMed  Google Scholar 

  140. Neto, F. T., Bach, P. V., Najari, B. B., Li, P. S. & Goldstein, M. Spermatogenesis in humans and its affecting factors. Semin. Cell Dev. Biol. 59, 10–26 (2016).

    Article  PubMed  Google Scholar 

  141. Yoshida, K. et al. Mapping of histone-binding sites in histone replacement-completed spermatozoa. Nat. Commun. 9, 3885 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Zhou, Y. et al. An epididymis-specific secretory protein HongrES1 critically regulates sperm capacitation and male fertility. PLoS One 3, e4106 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Du, L., Chen, W., Li, C., Cui, Y. & He, Z. RNF144B stimulates the proliferation and inhibits the apoptosis of human spermatogonial stem cells via the FCER2/NOTCH2/HES1 pathway and its abnormality is associated with azoospermia. J. Cell. Physiol. 237, 3565–3577 (2022).

    Article  CAS  PubMed  Google Scholar 

  144. He, H. et al. The novel key genes of non-obstructive azoospermia affect spermatogenesis: transcriptomic analysis based on RNA-seq and scRNA-seq data. Front. Genet. 12, 608629 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Yu, D., Lim, J., Wang, X., Liang, F. & Xiao, G. Enhanced construction of gene regulatory networks using hub gene information. BMC Bioinforma. 18, 186 (2017).

    Article  Google Scholar 

  146. Emiralioğlu, N. et al. Genotype and phenotype evaluation of patients with primary ciliary dyskinesia: first results from Turkey. Pediatr. Pulmonol. 55, 383–393 (2019).

    Article  PubMed  Google Scholar 

  147. Wang, X. et al. Testis-specific serine/threonine protein kinase 4 (TSSK4) phosphorylates ODF2 at ser-76. Sci. Rep. 6, 22861 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Wang, X.-L., Wei, Y.-H., Fu, G.-L. & Yu, L. Testis specific serine/threonine protein kinase 4 (TSSK4) leads to cell apoptosis relying on its kinase activity. J. Huazhong Univ. Sci. Tech. Med. Sci. 35, 235–240 (2015).

    Article  CAS  Google Scholar 

  149. Prabhu, S. M. et al. Expression of c-kit receptor mRNA and protein in the developing, adult and irradiated rodent testis. Reproduction 131, 489–499 (2006).

    Article  CAS  PubMed  Google Scholar 

  150. Mithraprabhu, S. & Loveland, K. L. Control of KIT signalling in male germ cells: what can we learn from other systems? Reproduction 138, 743–757 (2009).

    Article  CAS  PubMed  Google Scholar 

  151. Fu, H. et al. PAK1 promotes the proliferation and inhibits apoptosis of human spermatogonial stem cells via PDK1/KDR/Znf367 and ERK1/2 and Akt pathways. Mol. Ther. Nucleic Acids 12, 769–786 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Wang, M. et al. Deciphering the autophagy regulatory network via single-cell transcriptome analysis reveals a requirement for autophagy homeostasis in spermatogenesis. Theranostics 11, 5010–5027 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Sahani, M. H., Itakura, E. & Mizushima, N. Expression of the autophagy substrate SQSTM1/P62 is restored during prolonged starvation depending on transcriptional upregulation and autophagy-derived amino acids. Autophagy 10, 431–441 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Peeters, J. G. C. et al. Transcriptional and epigenetic profiling of nutrient-deprived cells to identify novel regulators of autophagy. Autophagy 15, 98–112 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Liu, C. et al. The interaction between cancer stem cell marker CD133 and SRC protein promotes focal adhesion kinase (FAK) phosphorylation and cell migration. J. Biol. Chem. 291, 15540–15550 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Wyrwoll, M. J. et al. Analysis of copy number variation in men with non‐obstructive azoospermia. Andrology 10, 1593–1604 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Aoki, N. & Matsui, Y. Comprehensive analysis of mouse cancer/testis antigen functions in cancer cells and roles of TEKT5 in cancer cells and testicular germ cells. Mol. Cell. Biol. 39, e00154-19 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Rastgar Rezaei, Y. et al. MicroRNAs in the pathogenesis of non-obstructive azoospermia: the underlying mechanisms and therapeutic potentials. Syst. Biol. Reprod. Med. 67, 337–353 (2021).

    Article  CAS  PubMed  Google Scholar 

  159. Zhou, F. et al. miRNA-122-5p stimulates the proliferation and DNA synthesis and inhibits the early apoptosis of human spermatogonial stem cells by targeting CBL and competing with lncRNA Casc7. Aging 12, 25528–25546 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Jaruzelska, J. et al. Conservation of a Pumilio-Nanos complex from Drosophila germ plasm to human germ cells. Dev. Genes. Evol. 213, 120–126 (2003).

    Article  CAS  PubMed  Google Scholar 

  161. Kusz-Zamelczyk, K. et al. Mutations of NANOS1, a human homologue of the Drosophila morphogen, are associated with a lack of germ cells in testes or severe oligo-astheno-teratozoospermia. J. Med. Genet. 50, 187–193 (2013).

    Article  CAS  PubMed  Google Scholar 

  162. Huang, Y., Bai, J. Y. & Ren, H. T. PiRNAs biogenesis and its functions. Bioorg. Khim. 40, 320–326 (2014).

    PubMed  Google Scholar 

  163. Nagirnaja, L. et al. Variant pnldc1, defective piRNA processing, and azoospermia. N. Engl. J. Med. 385, 707–719 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Nishimura, T. et al. PNLDC1, mouse pre‐piRNA trimmer, is required for meiotic and post‐meiotic male germ cell development. EMBO Rep. 19, e44957 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Nagirnaja, L. et al. Diverse monogenic subforms of human spermatogenic failure. Nat. Commun. 13, 7953 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Shoji, M. et al. The TDRD9-MIWI2 complex is essential for piRNA-mediated retrotransposon silencing in the mouse male germline. Dev. Cell 17, 775–787 (2009).

    Article  CAS  PubMed  Google Scholar 

  167. Arafat, M. et al. Mutation in TDRD9 causes non-obstructive azoospermia in infertile men. J. Med. Genet. 54, 633–639 (2017).

    Article  CAS  PubMed  Google Scholar 

  168. Kamaliyan, Z., Pouriamanesh, S., Amin-Beidokhti, M., Rezagholizadeh, A. & Mirfakhraie, R. HIWI2 rs508485 polymorphism is associated with non-obstructive azoospermia in Iranian patients. Rep. Biochem. Mol. Biol. 5, 108–111 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Gu, A. et al. Genetic variants in Piwi-interacting RNA pathway genes confer susceptibility to spermatogenic failure in a Chinese population. Hum. Reprod. 25, 2955–2961 (2010).

    Article  CAS  PubMed  Google Scholar 

  170. Kamaliyan, Z., Pouriamanesh, S., Soosanabadi, M., Gholami, M. & Mirfakhraie, R. Investigation of piwi-interacting RNA pathway genes role in idiopathic non-obstructive azoospermia. Sci. Rep. 8, 142 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Francavilla, S. Ultrastructural analysis of chromatin defects in testicular spermatids in azoospermic men submitted to Tese-ICSI. Hum. Reprod. 16, 1440–1448 (2001).

    Article  CAS  PubMed  Google Scholar 

  172. Adiga, S. K. et al. Reduced expression of DNMT3B in the germ cells of patients with bilateral spermatogenic arrest does not lead to changes in the global methylation status. Mol. Hum. Reprod. 17, 545–549 (2011).

    Article  CAS  PubMed  Google Scholar 

  173. Laurentino, S. et al. High-resolution analysis of germ cells from men with sex chromosomal aneuploidies reveals normal transcriptome but impaired imprinting. Clin. Epigenetics 11, 127 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Salido, E. C., Yen, P. H., Mohandas, T. K. & Shapiro, L. J. Expression of the X-inactivation-associated gene XIST during spermatogenesis. Nat. Genet. 2, 196–199 (1992).

    Article  CAS  PubMed  Google Scholar 

  175. Uysal, F., Akkoyunlu, G. & Ozturk, S. Decreased expression of DNA methyltransferases in the testes of patients with non-obstructive azoospermia leads to changes in global DNA methylation levels. Reprod. Fertil. Dev. 31, 1386 (2019).

    Article  CAS  PubMed  Google Scholar 

  176. Cui, X. et al. DNA methylation in spermatogenesis and male infertility. Exp. Ther. Med. 12, 1973–1979 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Han, F. et al. Epigenetic inactivation of SOX30 is associated with male infertility and offers a therapy target for non-obstructive azoospermia. Mol. Ther. Nucleic Acids 19, 72–83 (2020).

    Article  CAS  PubMed  Google Scholar 

  178. Han, F. et al. Epigenetic regulation of Sox30 is associated with testis development in mice. PLoS One 9, e97203 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Khazamipour, N., Noruzinia, M., Fatehmanesh, P., Keyhanee, M. & Pujol, P. MTHFR promoter hypermethylation in testicular biopsies of patients with non-obstructive azoospermia: the role of epigenetics in male infertility. Hum. Reprod. 24, 2361–2364 (2009).

    Article  CAS  PubMed  Google Scholar 

  180. Uhlen, M. et al. Towards a knowledge-based human protein atlas. Nat. Biotechnol. 28, 1248–1250 (2010).

    Article  CAS  PubMed  Google Scholar 

  181. Heyn, H. et al. Epigenetic disruption of the PIWI pathway in human spermatogenic disorders. PLoS One 7, e47892 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Bak, C. W., Yoon, T.-K. & Choi, Y. Functions of PIWI proteins in spermatogenesis. Clin. Exp. Reprod. Med. 38, 61 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Hadziselimovic, F., Hadziselimovic, N. O., Demougin, P., Krey, G. & Oakeley, E. Piwi-pathway alteration induces LINE-1 transposon derepression and infertility development in cryptorchidism. Sex. Dev. 9, 98–104 (2015).

    Article  CAS  PubMed  Google Scholar 

  184. Di Persio, S. et al. Whole-genome methylation analysis of testicular germ cells from cryptozoospermic men points to recurrent and functionally relevant DNA methylation changes. Clin. Epigenet. 13, 160 (2021).

    Article  Google Scholar 

  185. Niu, Y. et al. N6-methyl-adenosine (M6A) in RNA: an old modification with a novel epigenetic function. Genomics Proteom. Bioinforma. 11, 8–17 (2013).

    Article  CAS  Google Scholar 

  186. Cai, Z., Niu, Y. & Li, H. RNA N6-methyladenosine modification, spermatogenesis, and human male infertility. Mol. Hum. Reprod. 27, gaab020 (2021).

    Article  PubMed  Google Scholar 

  187. Ozturk, S. & Uysal, F. Potential roles of the poly(A)-binding proteins in translational regulation during spermatogenesis. J. Reprod. Dev. t 64, 289–296 (2018).

    Article  CAS  Google Scholar 

  188. Ozturk, S. et al. The poly(A)-binding protein genes, EPAB, PABPC1, and PABPC3 are differentially expressed in infertile men with non-obstructive azoospermia. J. Assist. Reprod. Genet. 33, 335–348 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Hammoud, S., Emery, B. R., Dunn, D., Weiss, R. B. & Carrell, D. T. Sequence alterations in the YBX2 gene are associated with male factor infertility. Fertil. Steril. 91, 1090–1095 (2009).

    Article  CAS  PubMed  Google Scholar 

  190. Yang, J. et al. Absence of the DNA-/RNA-binding protein MSY2 results in male and female infertility. Proc. Natl Acad. Sci. USA 102, 5755–5760 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Yang, J., Morales, C. R., Medvedev, S., Schultz, R. M. & Hecht, N. B. In the absence of the mouse DNA/RNA-binding protein MSY2, messenger RNA instability leads to spermatogenic arrest. Biol. Reprod. 76, 48–54 (2007).

    Article  CAS  PubMed  Google Scholar 

  192. McLaughlin, E. A., Sutherland, J. M., Siddall, N. A. & Hime, G. R. RNA binding proteins in spermatogenesis: an in depth focus on the Musashi family. Asian J. Androl. 17, 529 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Tesarik, J. et al. Differentiation of spermatogenic cells during in-vitro culture of testicular biopsy samples from patients with obstructive azoospermia: effect of recombinant follicle stimulating hormone. Hum. Reprod. 13, 2772–2781 (1998).

    Article  CAS  PubMed  Google Scholar 

  194. Tesarik, J., Guido, M., Mendoza, C. & Greco, E. Human spermatogenesis in vitro: respective effects of follicle-stimulating hormone and testosterone on meiosis, spermiogenesis, and Sertoli cell apoptosis. J. Clin. Endocrinol. Metab. 83, 4467–4473 (1998).

    Article  CAS  PubMed  Google Scholar 

  195. Tesarik, J., Bahceci, M., Özcan, C., Greco, E. & Mendoza, C. Restoration of fertility by in-vitro spermatogenesis. Lancet 353, 555–556 (1999).

    Article  CAS  PubMed  Google Scholar 

  196. Tanaka, A. et al. Completion of meiosis in human primary spermatocytes through in vitro coculture with Vero cells. Fertil. Steril. 79, 795–801 (2003).

    Article  PubMed  Google Scholar 

  197. Cremades, N. In-vitro maturation of round spermatids using co-culture on Vero cells. Hum. Reprod. 14, 1287–1293 (1999).

    Article  CAS  PubMed  Google Scholar 

  198. Lee, J.-H. et al. In vitro differentiation of germ cells from nonobstructive azoospermic patients using three-dimensional culture in a collagen gel matrix. Fertil. Steril. 87, 824–833 (2007).

    Article  CAS  PubMed  Google Scholar 

  199. Skylar-Scott, M. A. et al. Orthogonally induced differentiation of stem cells for the programmatic patterning of vascularized organoids and bioprinted tissues. Nat. Biomed. Eng. 6, 449–462 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Skylar-Scott, M. A. et al. Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Sci. Adv. 5, eaaw2459 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Ji, S. & Guvendiren, M. Complex 3D bioprinting methods. APL Bioeng. 5, 011508 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Kang, H.-W. et al. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotech. 34, 312–319 (2016).

    Article  CAS  Google Scholar 

  203. Robinson, M., Bedford, E., Witherspoon, L., Willerth, S. M. & Flannigan, R. Using clinically derived human tissue to 3-dimensionally bioprint personalized testicular tubules for in vitro culturing: first report. F. S Sci. 3, 130–139 (2022).

    PubMed  Google Scholar 

  204. Robinson, M., Sparanese, S., Witherspoon, L. & Flannigan, R. Human in vitro spermatogenesis as a regenerative therapy — where do we stand? Nat. Rev. Urol. 20, 461–479 (2023).

    Article  CAS  PubMed  Google Scholar 

  205. Schiebinger, G. et al. Optimal-transport analysis of single-cell gene expression identifies developmental trajectories in reprogramming. Cell 176, 928–943.e22 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Cinà, D. P., Phillips, D. & Flannigan, R. CRISPR/Cas9 in male factor infertility. Curr. Tissue Microenviron. Rep. 1, 89–97 (2020).

    Article  Google Scholar 

  207. Krausz, C. & Cioppi, F. Genetic factors of non-obstructive azoospermia: consequences on patients’ and offspring health. J. Clin. Med. 10, 4009 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Zhang, L. et al. c-kit and its related genes in spermatogonial differentiation. Spermatogenesis 1, 186–194 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Li, X., Sun, T., Wang, X., Tang, J. & Liu, Y. Restore natural fertility of KITW/Kitwv mouse with nonobstructive azoospermia through gene editing on SSCs mediated by CRISPR-Cas9. Stem Cell Res. Ther. 10, 271 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Gondo, Y. Trends in large-scale mouse mutagenesis: from genetics to functional genomics. Nat. Rev. Genet. 9, 803–810 (2008).

    Article  CAS  PubMed  Google Scholar 

  211. Yazawa, T. et al. Differentiation of adult stem cells derived from bone marrow stroma into Leydig or adrenocortical cells. Endocrinology 147, 4104–4111 (2006).

    Article  CAS  PubMed  Google Scholar 

  212. Crawford, P. A., Sadovsky, Y. & Milbrandt, J. Nuclear receptor steroidogenic factor 1 directs embryonic stem cells toward the steroidogenic lineage. Mol. Cell. Biol. 17, 3997–4006 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Jadhav, U. & Jameson, J. L. Steroidogenic factor-1 (SF-1)-driven differentiation of murine embryonic stem (ES) cells into a gonadal lineage. Endocrinology 152, 2870–2882 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Sonoyama, T. et al. Differentiation of human embryonic stem cells and human induced pluripotent stem cells into steroid-producing cells. Endocrinology 153, 4336–4345 (2012).

    Article  CAS  PubMed  Google Scholar 

  215. Yang, Y. et al. Directed mouse embryonic stem cells into Leydig-like cells rescue testosterone-deficient male rats in vivo. Stem Cell Dev. 24, 459–470 (2015).

    Article  CAS  Google Scholar 

  216. Shin, E.-Y., Park, S., Choi, W. Y. & Lee, D. R. Rapid differentiation of human embryonic stem cells into testosterone-producing Leydig cell-like cells in vitro. Tissue Eng. Regen. Med. 18, 651–662 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Robinson, M. et al. Differentiation of peritubular myoid‐like cells from human induced pluripotent stem cells. Adv. Biol. 7, e2200322 (2023). 2200322.

    Article  Google Scholar 

  218. Rodríguez Gutiérrez, D., Eid, W. & Biason-Lauber, A. A human gonadal cell model from induced pluripotent stem cells. Front. Genet. 9, 498 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Riggs, J. W. et al. Induced pluripotency and oncogenic transformation are related processes. Stem Cell Dev. 22, 37–50 (2013).

    Article  CAS  Google Scholar 

  220. Maan, Z., Masri, N. Z. & Willerth, S. M. Smart bioinks for the printing of human tissue models. Biomolecules 12, 141 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Ramsoomair, C. K., Alver, C. G., Flannigan, R., Ramasamy, R. & Agarwal, A. Spermatogonial stem cells and in vitro spermatogenesis: how far are we from a human testis on a chip? Eur. Urol. Focus. 9, 46–48 (2023).

    Article  PubMed  Google Scholar 

  222. Yuan, Y. et al. In vitro testicular organogenesis from human fetal gonads produces fertilization-competent spermatids. Cell Res. 30, 244–255 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Loai, S. et al. Clinical perspectives on 3D bioprinting paradigms for regenerative medicine. Regen. Med. Front. https://doi.org/10.20900/rmf20190004 (2019).

Download references

Acknowledgements

The authors thank the American Urologic Association Rising Star Award, Michael Smith Health Research Foundation Health Professional Investigator and Vancouver Coastal Health Research Institute for support related to R.F.’s work in this field.

Author information

Authors and Affiliations

Authors

Contributions

A.P., S.S. and R.F. researched data for the article. All authors contributed substantially to discussion of the content. All authors wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Ryan Flannigan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Ranjith Ramasamy, Elizabeth Bromfield and Kenneth Aston for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piechka, A., Sparanese, S., Witherspoon, L. et al. Molecular mechanisms of cellular dysfunction in testes from men with non-obstructive azoospermia. Nat Rev Urol 21, 67–90 (2024). https://doi.org/10.1038/s41585-023-00837-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-023-00837-9

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research