Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Intratumoural immunotherapy plus focal thermal ablation for localized prostate cancer

Abstract

Major advances have been made in the use of immunotherapy for the treatment of solid tumours, including the use of intratumourally injected immunotherapy instead of systemically delivered immunotherapy. The success of immunotherapy in prostate cancer treatment has been limited to specific populations with advanced disease, which is thought to be a result of prostate cancer being an immunologically ‘cold’ cancer. Accordingly, combining intratumoural immunotherapy with other treatments that would increase the immunological heat of prostate cancer is of interest. Thermal ablation therapy is currently one of the main strategies used for the treatment of localized prostate cancer and it causes immunological activation against prostate tissue. The use of intratumoural immunotherapy as an adjunct to thermal ablation offers the potential to elicit a systemic and lasting adaptive immune response to cancer-specific antigens, leading to a synergistic effect of combination therapy. The combination of thermal ablation and immunotherapy is currently in the early stages of investigation for the treatment of multiple solid tumour types, and the potential for this combination therapy to also offer benefit to prostate cancer patients is exciting.

Key points

  • Intratumourally delivered immunotherapy has less systemic adverse effects than systemically delivered immunotherapy. The structure of the prostate seems well-suited to the intratumoural delivery of immunotherapy.

  • Prostate cancer is typically an immunologically cold tumour, but thermal ablation treatment could make prostate cancer an immunologically hot tumour.

  • The combination of intratumoural immunotherapy with thermal ablation therapy for the treatment of prostate cancer could work synergistically because ablation therapy reveals prostate cancer-specific antigens to the immune system.

  • Animal models and early clinical trials have been used to investigate the combination of immunotherapy and thermal ablation for solid tumours, but further investigation is needed for the treatment of prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of immunologically cold tumours and immunologically hot tumours. This figure delineates the distinct immunological landscapes characteristic of cold and hot tumours.
Fig. 2: Benefits of intratumoural immunotherapy injection combined with ablation.

Similar content being viewed by others

References

  1. Carlino, M. S., Larkin, J. & Long, G. V. Immune checkpoint inhibitors in melanoma. Lancet 398, 1002–1014 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Kartolo, A., Kassouf, W. & Vera-Badillo, F. E. Adjuvant immune checkpoint inhibition in muscle-invasive bladder cancer: is it ready for prime time? Eur. Urol. 80, 679–681 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Handy, C. E. & Antonarakis, E. S. Sipuleucel-T for the treatment of prostate cancer: novel insights and future directions. Future Oncol. 14, 907–917 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Antonarakis, E. S. et al. Pembrolizumab for treatment-refractory metastatic castration-resistant prostate cancer: multicohort, open-label phase II KEYNOTE-199 study. J. Clin. Oncol. 38, 395–405 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Nair, S. S., Weil, R., Dovey, Z., Davis, A. & Tewari, A. K. The tumor microenvironment and immunotherapy in prostate and bladder cancer. Urol. Clin. North. Am. 47, e17–e54 (2020).

    Article  PubMed  Google Scholar 

  6. Bonaventura, P. et al. Cold tumors: a therapeutic challenge for immunotherapy. Front. Immunol. 10, 168 (2019). In this article the resistance of cold tumours to immune checkpoint inhibitors owing to low T cell infiltration is analysed, and therapies to transition these into hot tumours are explored, providing insights for overcoming immunotherapy challenges.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mahnken, A. H., König, A. M. & Figiel, J. H. Current technique and application of percutaneous cryotherapy. Rofo 190, 836–846 (2018).

    Article  PubMed  Google Scholar 

  8. Waitz, R. et al. Potent induction of tumor immunity by combining tumor cryoablation with anti-CTLA-4 therapy. Cancer Res. 72, 430–439 (2012). This article highlights the enhanced anti-tumour effect achieved by combining tumour cryoablation with anti-CTLA4 therapy, showcasing a promising method for augmenting immunotherapies against cancer.

    Article  CAS  PubMed  Google Scholar 

  9. Benzon, B. et al. Combining immune check-point blockade and cryoablation in an immunocompetent hormone sensitive murine model of prostate cancer. Prostate Cancer Prostatic Dis. 21, 126–136 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ross, A. E. et al. A pilot trial of pembrolizumab plus prostatic cryotherapy for men with newly diagnosed oligometastatic hormone-sensitive prostate cancer. Prostate Cancer Prostatic Dis. 23, 184–193 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Wang, A. et al. Focal therapy for prostate cancer: recent advances and future directions. Clin. Adv. Hematol. Oncol. 18, 116–125 (2020).

    PubMed  Google Scholar 

  12. Santucci, K. L., Baust, J. M., Snyder, K. K., Van Buskirk, R. G. & Baust, J. G. Dose escalation of vitamin D3 yields similar cryosurgical outcome to single dose exposure in a prostate cancer model. Cancer Control. 25, 1073274818757418 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kimura, M. et al. Role of vitamin D3 as a sensitizer to cryoablation in a murine prostate cancer model: preliminary in vivo study. Urology 76, 764.e14–20 (2010).

    Article  PubMed  Google Scholar 

  14. Arcot, R. & Polascik, T. J. Evolution of focal therapy in prostate cancer: past, present, and future. Urol. Clin. North Am. 49, 129–152 (2022).

    Article  PubMed  Google Scholar 

  15. Burbach, B. J. et al. Irreversible electroporation augments checkpoint immunotherapy in prostate cancer and promotes tumor antigen-specific tissue-resident memory CD8+ T cells. Nat. Commun. 12, 3862 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Savic, L. J., Chapiro, J., Hamm, B., Gebauer, B. & Collettini, F. Irreversible electroporation in interventional oncology: where we stand and where we go. Rofo 188, 735–745 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, T., Armstrong, A. J., George, D. J. & Huang, J. The promise of immunotherapy in genitourinary malignancies. Precis. Clin. Med. 1, 97–101 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rytlewski, J., Milhem, M. M. & Monga, V. Turning ‘Cold’ tumors ‘Hot’: immunotherapies in sarcoma. Ann. Transl. Med. 9, 1039 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mateo, J. et al. DNA-repair defects and olaparib in metastatic prostate cancer. N. Engl. J. Med. 373, 1697–1708 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Parker, C. et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N. Engl. J. Med. 369, 213–223 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Yakkala, C., Denys, A., Kandalaft, L. & Duran, R. Cryoablation and immunotherapy of cancer. Curr. Opin. Biotechnol. 65, 60–64 (2020). This review offers a clear and effective synthesis of the immunological implication of cryoablation.

    Article  CAS  PubMed  Google Scholar 

  22. Slovin, S. F. Immunotherapy for prostate cancer: is prostate an immune responsive tumor? Curr. Opin. Urol. 26, 529–534 (2016). This article demonstrates the immunological challenge surrounding the management of prostate cancer.

    Article  PubMed  Google Scholar 

  23. Vitkin, N., Nersesian, S., Siemens, D. R. & Koti, M. The tumor immune contexture of prostate cancer. Front. Immunol. 10, 603 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ness, N. et al. Infiltration of CD8+ lymphocytes is an independent prognostic factor of biochemical failure-free survival in prostate cancer. Prostate 74, 1452–1461 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Kiniwa, Y. et al. CD8+ Foxp3+ regulatory T cells mediate immunosuppression in prostate cancer. Clin. Cancer Res. 13, 6947–6958 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Mariathasan, S. et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544–548 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Patel, D., McKay, R. & Parsons, J. K. Immunotherapy for localized prostate cancer: the next frontier? Urol. Clin. North. Am. 47, 443–456 (2020).

    Article  PubMed  Google Scholar 

  28. Coccia, E. M. et al. Viral infection and Toll-like receptor agonists induce a differential expression of type I and λ interferons in human plasmacytoid and monocyte-derived dendritic cells. Eur. J. Immunol. 34, 796–805 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Peng, W. et al. Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov. 6, 202–216 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. O’Connor, M. J. Targeting the DNA damage response in cancer. Mol. Cell 60, 547–560 (2015).

    Article  PubMed  Google Scholar 

  31. Reits, E. A. et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J. Exp. Med. 203, 1259–1271 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sfanos, K. S., Yegnasubramanian, S., Nelson, W. G. & De Marzo, A. M. The inflammatory microenvironment and microbiome in prostate cancer development. Nat. Rev. Urol. 15, 11–24 (2018).

    Article  PubMed  Google Scholar 

  33. Guillaumier, S. et al. A multicentre study of 5-year outcomes following focal therapy in treating clinically significant nonmetastatic prostate cancer. Eur. Urol. 74, 422–429 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tan, W. P. et al. Utilization of focal therapy for patients discontinuing active surveillance of prostate cancer: recommendations of an international Delphi consensus. Urol. Oncol. 39, 781.e17–781.e24 (2021).

    Article  PubMed  Google Scholar 

  35. Valerio, M. et al. New and established technology in focal ablation of the prostate: a systematic review. Eur. Urol. 71, 17–34 (2017). A reference systematic review to encapsulate all concepts and results surrounding focal therapy for localized prostate cancer.

    Article  PubMed  Google Scholar 

  36. Mearini, L. & Porena, M. Pros and cons of focal therapy for localised prostate cancer. Prostate Cancer 2011, 584784 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rakauskas, A. et al. Focal therapy for prostate cancer: complications and their treatment. Front. Surg. 8, 696242 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hopstaken, J. S. et al. An updated systematic review on focal therapy in localized prostate cancer: what has changed over the past 5 years? Eur. Urol. 81, 5–33 (2022).

    Article  PubMed  Google Scholar 

  39. Le Nobin Julien et al. Image guided focal therapy for magnetic resonance imaging visible prostate cancer: defining a 3-dimensional treatment margin based on magnetic resonance imaging histology co-registration analysis. J. Urol. 194, 364–370 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Overduin, C. G., Jenniskens, S. F. M., Sedelaar, J. P. M., Bomers, J. G. R. & Fütterer, J. J. Percutaneous MR-guided focal cryoablation for recurrent prostate cancer following radiation therapy: retrospective analysis of iceball margins and outcomes. Eur. Radiol. 27, 4828–4836 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Baust, J. G. et al. Issues critical to the successful application of cryosurgical ablation of the prostate. Technol. Cancer Res. Treat. 6, 97–109 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Boutier, R. et al. Location of residual cancer after transrectal high-intensity focused ultrasound ablation for clinically localized prostate cancer. BJU Int. 108, 1776–1781 (2011).

    Article  PubMed  Google Scholar 

  43. Darnell, S. E. et al. Histotripsy of the prostate in a canine model: characterization of post-therapy inflammation and fibrosis. J. Endourol. 29, 810–815 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  44. De Marini, P. et al. Percutaneous MR-guided whole-gland prostate cancer cryoablation: safety considerations and oncologic results in 30 consecutive patients. Br. J. Radiol. 92, 20180965 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Burch, E. A. et al. Tumor and ablation margin visibility during cryoablation of musculoskeletal tumors: comparing intraprocedural PET/CT images with CT-only images. J. Vasc. Interv. Radiol. 34, 1311–1318 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Baust, J. M. et al. Assessment of cryosurgical device performance using a 3D tissue-engineered cancer model. Technol. Cancer Res. Treat. 16, 900–909 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Aarts, B. M. et al. Cryoablation and immunotherapy: an overview of evidence on its synergy. Insights Imaging 10, 53 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wu, Y. et al. Cryoablation reshapes the immune microenvironment in the distal tumor and enhances the anti-tumor immunity. Front. Immunol. 13, 930461 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yakkala, C., Chiang, C. L.-L., Kandalaft, L., Denys, A. & Duran, R. Cryoablation and immunotherapy: an enthralling synergy to confront the tumors. Front. Immunol. 10, 2283 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Finley, D. S. et al. Ultrasound-based combination therapy: potential in urologic cancer. Expert. Rev. Anticancer. Ther. 11, 107–113 (2011).

    Article  PubMed  Google Scholar 

  51. Mitragotri, S. & Kost, J. Low-frequency sonophoresis: a review. Adv. Drug. Deliv. Rev. 56, 589–601 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Kramer, G. et al. Response to sublethal heat treatment of prostatic tumor cells and of prostatic tumor infiltrating T-cells. Prostate 58, 109–120 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Melcher, A. et al. Tumor immunogenicity is determined by the mechanism of cell death via induction of heat shock protein expression. Nat. Med. 4, 581–587 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Baust, J. G. et al. Re-purposing cryoablation: a combinatorial ‘therapy’ for the destruction of tissue. Prostate Cancer Prostatic Dis. 18, 87–95 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Koushafar, H., Pham, L., Lee, C. & Rubinsky, B. Chemical adjuvant cryosurgery with antifreeze proteins. J. Surg. Oncol. 66, 114–121 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Ikekawa, S., Ishihara, K., Tanaka, S. & Ikeda, S. Basic studies of cryochemotherapy in a murine tumor system. Cryobiology 22, 477–483 (1985).

    Article  CAS  PubMed  Google Scholar 

  57. Baust, J. M. et al. Vitamin D3 cryosensitization increases prostate cancer susceptibility to cryoablation via mitochondrial-mediated apoptosis and necrosis. BJU Int. 109, 949–958 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Gupta, S. L., Basu, S., Soni, V. & Jaiswal, R. K. Immunotherapy: an alternative promising therapeutic approach against cancers. Mol. Biol. Rep. 49, 9903–9913 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chauvin, J.-M. & Zarour, H. M. TIGIT in cancer immunotherapy. J. Immunother. Cancer 8, e000957 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hua, J. et al. Current strategies for tumor photodynamic therapy combined with immunotherapy. Front. Oncol. 11, 738323 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Burkhardt, O. et al. Prostatic artery embolization in patients with prostate cancer: a systematic review. Eur. Urol. Focus. https://doi.org/10.1016/j.euf.2023.02.005 (2023).

    Article  PubMed  Google Scholar 

  62. Frandon, J. et al. Early results of unilateral prostatic artery embolization as a focal therapy in patients with prostate cancer under active surveillance: cancer prostate embolisation, a pilot study. J. Vasc. Interv. Radiol. 32, 247–255 (2021).

    Article  PubMed  Google Scholar 

  63. Kasivisvanathan, V., Emberton, M. & Ahmed, H. U. Focal therapy for prostate cancer: rationale and treatment opportunities. Clin. Oncol. 25, 461–473 (2013).

    Article  CAS  Google Scholar 

  64. van den Bijgaart, R. J. E. et al. Thermal and mechanical high-intensity focused ultrasound: perspectives on tumor ablation, immune effects and combination strategies. Cancer Immunol. Immunother. 66, 247–258 (2017).

    Article  PubMed  Google Scholar 

  65. Qian, L., Shen, Y., Xie, J. & Meng, Z. Immunomodulatory effects of ablation therapy on tumors: potentials for combination with immunotherapy. Biochim. Biophys. Acta Rev. Cancer 1874, 188385 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. Green, D. R., Ferguson, T., Zitvogel, L. & Kroemer, G. Immunogenic and tolerogenic cell death. Nat. Rev. Immunol. 9, 353–363 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ablin, R. J., Gonder, M. J. & Soanes, W. A. Elution of cell-bound anti-prostatic epithelial antibodies after multiple cryotherapy of carcinoma of the prostate. Cryobiology 11, 218–221 (1974).

    Article  CAS  PubMed  Google Scholar 

  68. Alblin, R. J., Soanes, W. A. & Gonder, M. J. Prospects for cryo-immunotherapy in cases of metastasizing carcinoma of the prostate. Cryobiology 8, 271–279 (1971).

    Article  CAS  PubMed  Google Scholar 

  69. Lou, Y. et al. Downregulated TNF-α levels after cryo-thermal therapy drive Tregs fragility to promote long-term antitumor immunity. Int. J. Mol. Sci. 22, 9951 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li, L.-Y. et al. Prospective comparison of five mediators of the systemic response after high-intensity focused ultrasound and targeted cryoablation for localized prostate cancer. BJU Int. 104, 1063–1067 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Hancock, H. A. et al. Investigations into pulsed high-intensity focused ultrasound-enhanced delivery: preliminary evidence for a novel mechanism. Ultrasound Med. Biol. 35, 1722–1736 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Van Leenders, G. J., Beerlage, H. P., Ruijter, E. T., de la Rosette, J. J. & van de Kaa, C. A. Histopathological changes associated with high intensity focused ultrasound (HIFU) treatment for localised adenocarcinoma of the prostate. J. Clin. Pathol. 53, 391–394 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Takahashi, Y. et al. Immunological effect of local ablation combined with immunotherapy on solid malignancies. Chin. J. Cancer 36, 49 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Schueller, G. et al. Heat shock protein expression induced by percutaneous radiofrequency ablation of hepatocellular carcinoma in vivo. Int. J. Oncol. 24, 609–613 (2004).

    CAS  PubMed  Google Scholar 

  75. Hoogenboom, M. et al. Development of a high-field MR-guided HIFU setup for thermal and mechanical ablation methods in small animals. J. Ther. Ultrasound 3, 14 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Li, C. et al. Combining mechanical high-intensity focused ultrasound ablation with chemotherapy for augmentation of anticancer immune responses. Mol. Pharm. 18, 2091–2103 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Abe, S. et al. Combination of ultrasound-based mechanical disruption of tumor with immune checkpoint blockade modifies tumor microenvironment and augments systemic antitumor immunity. J. Immunother. Cancer 10, e003717 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Eranki, A. et al. High-intensity focused ultrasound (HIFU) triggers immune sensitization of refractory murine neuroblastoma to checkpoint inhibitor therapy. Clin. Cancer Res. 26, 1152–1161 (2020).

    Article  CAS  PubMed  Google Scholar 

  79. Sidana, A. Cancer immunotherapy using tumor cryoablation. Immunotherapy 6, 85–93 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. den Brok, M. H. M. G. M. et al. Synergy between in situ cryoablation and TLR9 stimulation results in a highly effective in vivo dendritic cell vaccine. Cancer Res. 66, 7285–7292 (2006).

    Article  Google Scholar 

  81. den Brok, M. H. M. G. M. et al. Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity. Br. J. Cancer 95, 896–905 (2006).

    Article  Google Scholar 

  82. Redondo, P. et al. Imiquimod enhances the systemic immunity attained by local cryosurgery destruction of melanoma lesions. J. Invest. Dermatol. 127, 1673–1680 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. den Brok, M. H. et al. Saponin-based adjuvants create a highly effective anti-tumor vaccine when combined with in situ tumor destruction. Vaccine 30, 737–744 (2012).

    Article  Google Scholar 

  84. Levy, M. Y. et al. Cyclophosphamide unmasks an antimetastatic effect of local tumor cryoablation. J. Pharmacol. Exp. Ther. 330, 596–601 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zou, N., Lai, Q., Ding, W., Li, X. & Zhang, J. [Efficacy of cryoablation combined with CpG oligonucleotides in the treatment of murine transplanted colon carcinoma]. Zhonghua Wei Chang. Wai Ke Za Zhi 13, 532–535 (2010).

    PubMed  Google Scholar 

  86. Kim, D. W. et al. Pilot study of intratumoral (IT) cryoablation (cryo) in combination with systemic checkpoint blockade in patients with metastatic melanoma (MM). J. Immunother. Cancer 3, P137 (2015).

    Article  PubMed Central  Google Scholar 

  87. McArthur, H. L. et al. A pilot study of preoperative single-dose ipilimumab and/or cryoablation in women with early-stage breast cancer with comprehensive immune profiling. Clin. Cancer Res. 22, 5729–5737 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Marabelle, A., Tselikas, L., de Baere, T. & Houot, R. Intratumoral immunotherapy: using the tumor as the remedy. Ann. Oncol. 28, xii33–xii43 (2017).

    Article  CAS  PubMed  Google Scholar 

  89. Brody, J. D. et al. In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: a phase I/II study. J. Clin. Oncol. 28, 4324–4332 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Andtbacka, R. H. I. et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J. Clin. Oncol. 33, 2780–2788 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Weide, B. et al. High response rate after intratumoral treatment with interleukin-2: results from a phase 2 study in 51 patients with metastasized melanoma. Cancer 116, 4139–4146 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Hong, W. X. et al. Intratumoral immunotherapy for early-stage solid tumors. Clin. Cancer Res. 26, 3091–3099 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Puzanov, I. et al. Talimogene IIIB-IV laherparepvec in combination with ipilimumab in previously untreated, unresectable stage melanoma. J. Clin. Oncol. 34, 2619–2626 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Baust, J. G., Gage, A. A., Bjerklund Johansen, T. E. & Baust, J. M. Mechanisms of cryoablation: clinical consequences on malignant tumors. Cryobiology 68, 1–11 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Zappasodi, R., Merghoub, T. & Wolchok, J. D. Emerging concepts for immune checkpoint blockade-based combination therapies. Cancer Cell 33, 581–598 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sandin, L. C. et al. Local CTLA4 blockade effectively restrains experimental pancreatic adenocarcinoma growth in vivo. Oncoimmunology 3, e27614 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Hamid, O., Ismail, R. & Puzanov, I. Intratumoral immunotherapy-update 2019. Oncologist 25, e423–e438 (2020).

    Article  PubMed  Google Scholar 

  99. Liang, M. Oncorine, the world first oncolytic virus medicine and its update in China. Curr. Cancer Drug. Targets 18, 171–176 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Yuan, J. et al. Current strategies for intratumoural immunotherapy — beyond immune checkpoint inhibition. Eur. J. Cancer 157, 493–510 (2021).

    Article  CAS  PubMed  Google Scholar 

  101. Priceman, S. J. et al. Regional delivery of chimeric antigen receptor-engineered T cells effectively targets HER2+ breast cancer metastasis to the brain. Clin. Cancer Res. 24, 95–105 (2018).

    Article  CAS  PubMed  Google Scholar 

  102. Tchou, J. et al. Safety and efficacy of intratumoral injections of chimeric antigen receptor (CAR) T cells in metastatic breast cancer. Cancer Immunol. Res. 5, 1152–1161 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hebb, J. P. O. et al. Administration of low-dose combination anti-CTLA4, anti-CD137, and anti-OX40 into murine tumor or proximal to the tumor draining lymph node induces systemic tumor regression. Cancer Immunol. Immunother. 67, 47–60 (2018).

    Article  CAS  PubMed  Google Scholar 

  104. Rodríguez-Ruiz, M. E. et al. Combined immunotherapy encompassing intratumoral poly-ICLC, dendritic-cell vaccination and radiotherapy in advanced cancer patients. Ann. Oncol. 29, 1312–1319 (2018).

    Article  PubMed  Google Scholar 

  105. Salazar, A. M., Erlich, R. B., Mark, A., Bhardwaj, N. & Herberman, R. B. Therapeutic in situ autovaccination against solid cancers with intratumoral poly-ICLC: case report, hypothesis, and clinical trial. Cancer Immunol. Res. 2, 720–724 (2014).

    Article  PubMed  Google Scholar 

  106. de la Torre, A. N. et al. A Phase I trial using local regional treatment, nonlethal irradiation, intratumoral and systemic polyinosinic-polycytidylic acid polylysine carboxymethylcellulose to treat liver cancer: in search of the abscopal effect. J. Hepatocell. Carcinoma 4, 111–121 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Kassouf, W. et al. An in vivo orthotopic canine model to evaluate distribution of intraprostatic injectate: implications for gene therapy and drug delivery for prostate cancer. Urology 70, 822–825 (2007).

    Article  PubMed  Google Scholar 

  108. Wientjes, M. G., Zheng, J. H., Hu, L., Gan, Y. & Au, J. L.-S. Intraprostatic chemotherapy: distribution and transport mechanisms. Clin. Cancer Res. 11, 4204–4211 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Ortiz, R., Au, J. L.-S., Lu, Z., Gan, Y. & Wientjes, M. G. Biodegradable intraprostatic doxorubicin implants. AAPS J. 9, E241–E250 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Brady, M. L. et al. A pilot study in intraparenchymal therapy delivery in the prostate: a comparison of delivery with a porous needle vs standard needle. BMC Urol. 18, 66 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Chowning, S. L. et al. A preliminary analysis and model of prostate injection distributions. Prostate 66, 344–357 (2006).

    Article  PubMed  Google Scholar 

  112. Morales, A., Johnston, B., Emerson, L. & Heaton, J. W. Intralesional administration of biological response modifiers in the treatment of localized cancer of the prostate: a feasibility study. Urology 50, 495–502 (1997).

    Article  CAS  PubMed  Google Scholar 

  113. Belldegrun, A. et al. Interleukin 2 gene therapy for prostate cancer: phase I clinical trial and basic biology. Hum. Gene Ther. 12, 883–892 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Tewari, A. K. Phase I study of in situ autologous vaccination against prostate cancer with intratumoral and systemic Hiltonol® (Poly-ICLC) prior to radical prostatectomy. https://clinicaltrials.gov/ct2/show/NCT03262103 (2022).

  115. University of Utah. Perioperative atezolizumab with MVA-BN-Brachyury and PROSTVAC for intermediate-risk and high-risk localized prostate cancer. https://clinicaltrials.gov/ct2/show/NCT04020094 (2021).

  116. Vical. Phase II study evaluating the safety and efficacy of neoadjuvant leuvectin immunotherapy for the treatment of prostate cancer. https://clinicaltrials.gov/ct2/show/NCT00004050 (2014).

  117. Lin, M. et al. Cryoablation combined with allogenic natural killer cell immunotherapy improves the curative effect in patients with advanced hepatocellular cancer. Oncotarget 8, 81967–81977 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Rosenberg, M. A. & Williams, J. Image guided cryoablation of cancer with intra-tumoral injection of anti-CTLA-4 and PD-1 immune check-point inhibitors. J. Immunother. Cancer 3, P142 (2015).

    Article  PubMed Central  Google Scholar 

  119. Rampart Health, L.L.C. A phase II trial of cryosurgical freezing and intratumoral combination immunotherapy in men with metastatic prostatic adenocarcinoma. https://clinicaltrials.gov/ct2/show/NCT04090775 (2022).

  120. Thomsen, L. C. V. et al. A prospective phase I trial of dendritic cell-based cryoimmunotherapy in metastatic castration-resistant prostate cancer. J. Clin. Oncol. 38, 3029–3029 (2020).

    Article  Google Scholar 

  121. King, A. Could immunotherapy finally break through in prostate cancer? Nature 609, S42–S44 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

D.S., E.S.A. and S.K. researched data for the article. D.S., E.S.A., S.K., V.D.’A., Z.D.M., C.H. and T.J.P. contributed substantially to discussion of the content. D.S., E.S.A., S.K., V.D.’A., Z.D.M. and C.H. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Denis Séguier.

Ethics declarations

Competing interests

Thomas J. Polascik is a consultant for AngioDynamics. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Susan F. Slovin, Matthijs Scheltema, Stephanie Glavaris, Andre Abreu and Masatomo Kanekofor their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Séguier, D., Adams, E.S., Kotamarti, S. et al. Intratumoural immunotherapy plus focal thermal ablation for localized prostate cancer. Nat Rev Urol 21, 290–302 (2024). https://doi.org/10.1038/s41585-023-00834-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-023-00834-y

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer