Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The potential role of the microbiota in prostate cancer pathogenesis and treatment

Abstract

The human body hosts a complex and dynamic population of trillions of microorganisms — the microbiota — which influences the body in homeostasis and disease, including cancer. Several epidemiological studies have associated specific urinary and gut microbial species with increased risk of prostate cancer; however, causal mechanistic data remain elusive. Studies have associated bacterial generation of genotoxins with the occurrence of TMPRSS2–ERG gene fusions, a common, early oncogenic event during prostate carcinogenesis. A subsequent study demonstrated the role of the gut microbiota in prostate cancer endocrine resistance, which occurs, at least partially, through the generation of androgenic steroids fuelling oncogenic signalling via the androgen receptor. These studies present mechanistic evidence of how the host microbiota might be implicated in prostate carcinogenesis and tumour progression. Importantly, these findings also reveal potential avenues for the detection and treatment of prostate cancer through the profiling and modulation of the host microbiota. The latter could involve approaches such as the use of faecal microbiota transplantation, prebiotics, probiotics, postbiotics or antibiotics, which can be used independently or combined with existing treatments to reverse therapeutic resistance and improve clinical outcomes in patients with prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The potential role of the host microbiota in prostate carcinogenesis and growth.
Fig. 2: A specific microbiota composition has been associated with pathological conditions.

Similar content being viewed by others

References

  1. Lynch, S. V. & Pedersen, O. The human intestinal microbiome in health and disease. N. Engl. J. Med. 375, 2369–2379 (2016).

    CAS  PubMed  Google Scholar 

  2. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Valdes, A. M., Walter, J., Segal, E. & Spector, T. D. Role of the gut microbiota in nutrition and health. Br. Med. J. 361, k2179 (2018).

    Google Scholar 

  4. Calcinotto, A. et al. IL-23 secreted by myeloid cells drives castration-resistant prostate cancer. Nature https://doi.org/10.1038/s41586-018-0266-0 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cryan, J. F., O’Riordan, K. J., Sandhu, K., Peterson, V. & Dinan, T. G. The gut microbiome in neurological disorders. Lancet Neurol. 19, 179–194 (2020).

    CAS  PubMed  Google Scholar 

  6. Davis, C. D. The gut microbiome and its role in obesity. Nutr. Today 51, 167–174 (2016).

    PubMed  PubMed Central  Google Scholar 

  7. Du Toit, A. The gut microbiome and mental health. Nat. Rev. Microbiol. 17, 196 (2019).

    PubMed  Google Scholar 

  8. Sfanos, K. S., Yegnasubramanian, S., Nelson, W. G. & De Marzo, A. M. The inflammatory microenvironment and microbiome in prostate cancer development. Nat. Rev. Urol. 15, 11–24 (2018).

    PubMed  Google Scholar 

  9. Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).

    CAS  PubMed  Google Scholar 

  10. Porter, C. M., Shrestha, E., Peiffer, L. B. & Sfanos, K. S. The microbiome in prostate inflammation and prostate cancer. Prostate Cancer Prostatic Dis. https://doi.org/10.1038/s41391-018-0041-1 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. de Bono, J. S. et al. Prostate carcinogenesis: inflammatory storms. Nat. Rev. Cancer 20, 455–469 (2020).

    PubMed  Google Scholar 

  12. Bertocchi, A. et al. Gut vascular barrier impairment leads to intestinal bacteria dissemination and colorectal cancer metastasis to liver. Cancer Cell 39, 708–724 e711 (2021).

    CAS  PubMed  Google Scholar 

  13. Fu, A. et al. Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer. Cell 185, 1356–1372 e1326 (2022).

    CAS  PubMed  Google Scholar 

  14. Golombos, D. M. et al. The role of gut microbiome in the pathogenesis of prostate cancer: a prospective, pilot study. Urology 111, 122–128 (2018).

    PubMed  Google Scholar 

  15. Gopalakrishnan, V., Helmink, B. A., Spencer, C. N., Reuben, A. & Wargo, J. A. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell 33, 570–580 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Shrestha, E. et al. Profiling the urinary microbiome in men with positive versus negative biopsies for prostate cancer. J. Urol. 199, 161–171 (2018).

    PubMed  Google Scholar 

  17. Nejman, D. et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 368, 973–980 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Polk, D. B. & Peek, R. M. Helicobacter pylori: gastric cancer and beyond. Nat. Rev. Cancer 10, 403–414 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Uemura, N. et al. Helicobacter pylori infection and the development of gastric cancer. N. Engl. J. Med. 345, 784–789 (2001).

    CAS  PubMed  Google Scholar 

  20. Zucca, E. et al. Molecular analysis of the progression from Helicobacter pylori-associated chronic gastritis to mucosa-associated lymphoid-tissue lymphoma of the stomach. N. Engl. J. Med. 338, 804–810 (1998).

    CAS  PubMed  Google Scholar 

  21. Chiang, T.-H. et al. Mass eradication of Helicobacter pylori to reduce gastric cancer incidence and mortality: a long-term cohort study on Matsu Islands. Gut 70, 243–250 (2021).

    CAS  PubMed  Google Scholar 

  22. Chang, W. L., Yeh, Y. C. & Sheu, B. S. The impacts of H. pylori virulence factors on the development of gastroduodenal diseases. J. Biomed. Sci. 25, 68 (2018).

    PubMed  PubMed Central  Google Scholar 

  23. Scanu, T. et al. Salmonella manipulation of host signaling pathways provokes cellular transformation associated with gallbladder carcinoma. Cell. Host Microbe 17, 763–774 (2015).

    CAS  PubMed  Google Scholar 

  24. Koshiol, J. et al. Salmonella enterica serovar Typhi and gallbladder cancer: a case-control study and meta-analysis. Cancer Med. 5, 3310–3235 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Pleguezuelos-Manzano, C. et al. Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli. Nature 580, 269–273 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Shrestha, E. et al. Oncogenic gene fusions in nonneoplastic precursors as evidence that bacterial infection can initiate prostate cancer. Proc. Natl Acad. Sci. USA 118, e2018976118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Chagneau, C. V. et al. Uropathogenic E. coli induces DNA damage in the bladder. PLoS Pathog. 17, e1009310 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Krieger, J. N., Dobrindt, U., Riley, D. E. & Oswald, E. Acute Escherichia coli prostatitis in previously healthy young men: bacterial virulence factors, antimicrobial resistance, and clinical outcomes. Urology 77, 1420–1425 (2011).

    PubMed  Google Scholar 

  29. Boleij, A. et al. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin. Infect. Dis. 60, 208–215 (2015).

    CAS  PubMed  Google Scholar 

  30. Rubinstein, M. R. et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe 14, 195–206 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Cao, Y. et al. Commensal microbiota from patients with inflammatory bowel disease produce genotoxic metabolites. Science 378, eabm3233 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Huet, M. A. L., Lee, C. Z. & Rahman, S. A review on association of fungi with the development and progression of carcinogenesis in the human body. Curr. Res. Microb. Sci. 3, 100090 (2022).

    CAS  PubMed  Google Scholar 

  33. Aykut, B. et al. The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL. Nature 574, 264–267 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Flavell, K. J. & Murray, P. G. Hodgkin’s disease and the Epstein-Barr virus. Mol. Pathol. 53, 262–269 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Chene, A. et al. Endemic Burkitt’s lymphoma as a polymicrobial disease: new insights on the interaction between Plasmodium falciparum and Epstein-Barr virus. Semin. Cancer Biol. 19, 411–420 (2009).

    CAS  PubMed  Google Scholar 

  36. Goossens, N. & Hoshida, Y. Hepatitis C virus-induced hepatocellular carcinoma. Clin. Mol. Hepatol. 21, 105–114 (2015).

    PubMed  PubMed Central  Google Scholar 

  37. de Villiers, E. M. et al. Human papillomavirus infections in women with and without abnormal cervical cytology. Lancet 2, 703–706 (1987).

    PubMed  Google Scholar 

  38. Yim, E. K. & Park, J. S. The role of HPV E6 and E7 oncoproteins in HPV-associated cervical carcinogenesis. Cancer Res. Treat. 37, 319–324 (2005).

    PubMed  PubMed Central  Google Scholar 

  39. McLaughlin-Drubin, M. E. & Munger, K. Viruses associated with human cancer. Biochim. Biophys. Acta 1782, 127–150 (2008).

    CAS  PubMed  Google Scholar 

  40. Narunsky-Haziza, L. et al. Pan-cancer analyses reveal cancer-type-specific fungal ecologies and bacteriome interactions. Cell 185, 3789–3806 e3717 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Galeano Nino, J. L. et al. Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer. Nature 611, 810–817 (2022).

    PubMed  PubMed Central  Google Scholar 

  42. Kim, Y. S., Kim, J. & Park, S.-J. High-throughput 16S rRNA gene sequencing reveals alterations of mouse intestinal microbiota after radiotherapy. Anaerobe 33, 1–7 (2015).

    CAS  PubMed  Google Scholar 

  43. Nam, Y.-D., Kim, H. J., Seo, J.-G., Kang, S. W. & Bae, J.-W. Impact of pelvic radiotherapy on gut microbiota of gynecological cancer patients revealed by massive pyrosequencing. PLoS ONE 8, e82659 (2013).

    PubMed  PubMed Central  Google Scholar 

  44. Alexander, J. L. et al. Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat. Rev. Gastroenterol. Hepatol. 14, 356–365 (2017).

    CAS  PubMed  Google Scholar 

  45. Iida, N. et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342, 967–970 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Viaud, S. et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342, 971–976 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Sivan, A. et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350, 1084–1089 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Vetizou, M. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350, 1079–1084 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Sfanos, K. S. et al. Compositional differences in gastrointestinal microbiota in prostate cancer patients treated with androgen axis-targeted therapies. Prostate Cancer Prostatic Dis. 21, 539–548 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Daisley, B. A. et al. Abiraterone acetate preferentially enriches for the gut commensal Akkermansia muciniphila in castrate-resistant prostate cancer patients. Nat. Commun. 11, 4822 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).

    CAS  PubMed  Google Scholar 

  52. Peiffer, L. B. et al. Composition of gastrointestinal microbiota in association with treatment response in individuals with metastatic castrate resistant prostate cancer progressing on enzalutamide and initiating treatment with anti-PD-1 (pembrolizumab). Neoplasia 32, 100822 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Vich Vila, A. et al. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nat. Commun. 11, 362 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Vande Voorde, J. et al. Nucleoside-catabolizing enzymes in mycoplasma-infected tumor cell cultures compromise the cytostatic activity of the anticancer drug gemcitabine*. J. Biol. Chem. 289, 13054–13065 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Wallace, B. D. et al. Structure and inhibition of microbiome β-glucuronidases essential to the alleviation of cancer drug toxicity. Chem. Biol. 22, 1238–1249 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Frankel, A. E. et al. Metagenomic shotgun sequencing and unbiased metabolomic profiling identify specific human gut microbiota and metabolites associated with immune checkpoint therapy efficacy in melanoma patients. Neoplasia 19, 848–855 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Jin, Y. et al. The diversity of gut microbiome is associated with favorable responses to anti-programmed death 1 immunotherapy in Chinese patients with NSCLC. J. Thorac. Oncol. 14, 1378–1389 (2019).

    CAS  PubMed  Google Scholar 

  58. Chaput, N. et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann. Oncol. 28, 1368–1379 (2017).

    CAS  PubMed  Google Scholar 

  59. Matson, V. et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359, 104–108 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Lee, S. H. et al. Bifidobacterium bifidum strains synergize with immune checkpoint inhibitors to reduce tumour burden in mice. Nat. Microbiol. 6, 277–288 (2021).

    CAS  PubMed  Google Scholar 

  61. Antonarakis, E. S. et al. Pembrolizumab for treatment-refractory metastatic castration-resistant prostate cancer: multicohort, open-label phase II KEYNOTE-199 study. J. Clin. Oncol. 38, 395–405 (2020).

    CAS  PubMed  Google Scholar 

  62. Beer, T. M. et al. Randomized, double-blind, phase III trial of ipilimumab versus placebo in asymptomatic or minimally symptomatic patients with metastatic chemotherapy-naive castration-resistant prostate cancer. J. Clin. Oncol. 35, 40–47 (2017).

    CAS  PubMed  Google Scholar 

  63. Kwon, E. D. et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 15, 700–712 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ge, Y., Shi, Q., Yao, W., Cheng, Y. & Ma, G. The association between inflammatory bowel disease and prostate cancer risk: a meta-analysis. Prostate Cancer Prostatic Dis. 23, 53–58 (2020).

    PubMed  Google Scholar 

  65. Burns, J. A. et al. Inflammatory bowel disease and the risk of prostate cancer. Eur. Urol. 75, 846–852 (2019).

    PubMed  Google Scholar 

  66. Wilson, J. C., Furlano, R. I., Jick, S. S. & Meier, C. R. A population-based study examining the risk of malignancy in patients diagnosed with inflammatory bowel disease. J. Gastroenterol. 51, 1050–1062 (2016).

    CAS  PubMed  Google Scholar 

  67. Jess, T., Horváth-Puhó, E., Fallingborg, J., Rasmussen, H. H. & Jacobsen, B. A. Cancer risk in inflammatory bowel disease according to patient phenotype and treatment: a Danish population-based cohort study. Am. J. Gastroenterol. 108, 1869–1876 (2013).

    CAS  PubMed  Google Scholar 

  68. Freedland, S. J. & Aronson, W. J. Examining the relationship between obesity and prostate cancer. Rev. Urol. 6, 73–81 (2004).

    PubMed  PubMed Central  Google Scholar 

  69. Cook, L. S., Goldoft, M., Schwartz, S. M. & Weiss, N. S. Incidence of adenocarcinoma of the prostate in Asian immigrants to the United States and their descendants. J. Urol. 161, 152–155 (1999).

    CAS  PubMed  Google Scholar 

  70. Whittemore, A. S. et al. Prostate cancer in relation to diet, physical activity, and body size in blacks, whites, and Asians in the United States and Canada. J. Natl Cancer Inst. 87, 652–661 (1995).

    CAS  PubMed  Google Scholar 

  71. Richman, E. L., Kenfield, S. A., Stampfer, M. J., Giovannucci, E. L. & Chan, J. M. Egg, red meat, and poultry intake and risk of lethal prostate cancer in the prostate-specific antigen-era: incidence and survival. Cancer Prev. Res. 4, 2110–2121 (2011).

    CAS  Google Scholar 

  72. Meyer, F., Bairati, I., Shadmani, R., Fradet, Y. & Moore, L. Dietary fat and prostate cancer survival. Cancer Causes Control. 10, 245–251 (1999).

    CAS  PubMed  Google Scholar 

  73. Liss, M. A. et al. Metabolic biosynthesis pathways identified from fecal microbiome associated with prostate cancer. Eur. Urol. 74, 575–582 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Pernigoni, N. et al. Commensal bacteria promote endocrine resistance in prostate cancer through androgen biosynthesis. Science 374, 216–224 (2021).

    CAS  PubMed  Google Scholar 

  75. Sokol, H. et al. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm. Bowel Dis. 15, 1183–1189 (2009).

    CAS  PubMed  Google Scholar 

  76. Huang, P. Y. et al. Increase in Akkermansiaceae in gut microbiota of prostate cancer-bearing mice. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22179626 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Matsushita, M. et al. Gut microbiota-derived short-chain fatty acids promote prostate cancer growth via IGF1 signaling. Cancer Res. 81, 4014–4026 (2021).

    CAS  PubMed  Google Scholar 

  78. Macdonald, I. A., Bokkenheuser, V. D., Winter, J., McLernon, A. M. & Mosbach, E. H. Degradation of steroids in the human gut. J. Lipid Res. 24, 675–700 (1983).

    CAS  PubMed  Google Scholar 

  79. Ridlon, J. M. et al. Clostridium scindens: a human gut microbe with a high potential to convert glucocorticoids into androgens. J. Lipid Res. 54, 2437–2449 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Adlercreutz, H., Pulkkinen, M. O., Hamalainen, E. K. & Korpela, J. T. Studies on the role of intestinal bacteria in metabolism of synthetic and natural steroid hormones. J. Steroid Biochem. 20, 217–229 (1984).

    CAS  PubMed  Google Scholar 

  81. Dai, C., Heemers, H. & Sharifi, N. Androgen signaling in prostate cancer. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a030452 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Chang, K. H. et al. A gain-of-function mutation in DHT synthesis in castration-resistant prostate cancer. Cell 154, 1074–1084 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Chang, K. H. et al. Dihydrotestosterone synthesis bypasses testosterone to drive castration-resistant prostate cancer. Proc. Natl Acad. Sci. USA 108, 13728–13733 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Markle, J. G. et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 339, 1084–1088 (2013).

    CAS  PubMed  Google Scholar 

  85. Gurel, B. et al. Chronic inflammation in benign prostate tissue is associated with high-grade prostate cancer in the placebo arm of the prostate cancer prevention trial. Cancer Epidemiol. Biomark. Prev. 23, 847–856 (2014).

    Google Scholar 

  86. De Marzo, A. M. et al. Inflammation in prostate carcinogenesis. Nat. Rev. Cancer 7, 256–269 (2007).

    PubMed  PubMed Central  Google Scholar 

  87. Irani, J. et al. High-grade inflammation in prostate cancer as a prognostic factor for biochemical recurrence after radical prostatectomy. Pathologist Multi Center Study Group. Urology 54, 467–472 (1999).

    CAS  PubMed  Google Scholar 

  88. Roberts, R. O., Bergstralh, E. J., Bass, S. E., Lieber, M. M. & Jacobsen, S. J. Prostatitis as a risk factor for prostate cancer. Epidemiology 15, 93–99 (2004).

    PubMed  Google Scholar 

  89. Dennis, L. K., Lynch, C. F. & Torner, J. C. Epidemiologic association between prostatitis and prostate cancer. Urology 60, 78–83 (2002).

    PubMed  Google Scholar 

  90. Platz, E. A. et al. A prospective study of chronic inflammation in benign prostate tissue and risk of prostate cancer: linked PCPT and SELECT cohorts. Cancer Epidemiol. Biomark. Prev. 26, 1549–1557 (2017).

    Google Scholar 

  91. De Marzo, A. M., Marchi, V. L., Epstein, J. I. & Nelson, W. G. Proliferative inflammatory atrophy of the prostate: implications for prostatic carcinogenesis. Am. J. Pathol. 155, 1985–1992 (1999).

    PubMed  PubMed Central  Google Scholar 

  92. Sfanos, K. S. & De Marzo, A. M. Prostate cancer and inflammation: the evidence. Histopathology 60, 199–215 (2012).

    PubMed  PubMed Central  Google Scholar 

  93. Brede, C. M. & Shoskes, D. A. The etiology and management of acute prostatitis. Nat. Rev. Urol. 8, 207–212 (2011).

    CAS  PubMed  Google Scholar 

  94. Sfanos, K. S. et al. A molecular analysis of prokaryotic and viral DNA sequences in prostate tissue from patients with prostate cancer indicates the presence of multiple and diverse microorganisms. Prostate 68, 306–320 (2008).

    CAS  PubMed  Google Scholar 

  95. Keay, S., Zhang, C. O., Baldwin, B. R. & Alexander, R. B. Polymerase chain reaction amplification of bacterial 16s rRNA genes in prostate biopsies from men without chronic prostatitis. Urology 53, 487–491 (1999).

    CAS  PubMed  Google Scholar 

  96. Hochreiter, W. W., Duncan, J. L. & Schaeffer, A. J. Evaluation of the bacterial flora of the prostate using a 16S rRNA gene based polymerase chain reaction. J. Urol. 163, 127–130 (2000).

    CAS  PubMed  Google Scholar 

  97. Krieger, J. N. et al. Bacterial DNA sequences in prostate tissue from patients with prostate cancer and chronic prostatitis. J. Urol. 164, 1221–1228 (2000).

    CAS  PubMed  Google Scholar 

  98. Feng, Y. et al. Metagenomic and metatranscriptomic analysis of human prostate microbiota from patients with prostate cancer. BMC Genom. 20, 146 (2019).

    Google Scholar 

  99. Hurst, R. et al. Microbiomes of urine and the prostate are linked to Human Prostate Cancer Risk Groups. Eur. Urol. Oncol. https://doi.org/10.1016/j.euo.2022.03.006 (2022).

    Article  PubMed  Google Scholar 

  100. Leskinen, M. J. et al. Negative bacterial polymerase chain reaction (PCR) findings in prostate tissue from patients with symptoms of chronic pelvic pain syndrome (CPPS) and localized prostate cancer. Prostate 55, 105–110 (2003).

    PubMed  Google Scholar 

  101. Cavarretta, I. et al. The microbiome of the prostate tumor microenvironment. Eur. Urol. 72, 625–631 (2017).

    CAS  PubMed  Google Scholar 

  102. Sfanos, K. S. & Isaacs, W. B. An evaluation of PCR primer sets used for detection of Propionibacterium acnes in prostate tissue samples. Prostate 68, 1492–1495 (2008).

    CAS  PubMed  Google Scholar 

  103. Banerjee, S. et al. Microbiome signatures in prostate cancer. Carcinogenesis 40, 749–764 (2019).

    CAS  PubMed  Google Scholar 

  104. Cohen, R. J., Shannon, B. A., McNeal, J. E., Shannon, T. & Garrett, K. L. Propionibacterium acnes associated with inflammation in radical prostatectomy specimens: a possible link to cancer evolution? J. Urol. 173, 1969–1974 (2005).

    PubMed  Google Scholar 

  105. Haffner, M. C. et al. Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nat. Genet. 42, 668–675 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Tomlins, S. A. et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310, 644–648 (2005).

    CAS  PubMed  Google Scholar 

  107. Perner, S. et al. TMPRSS2-ERG fusion prostate cancer: an early molecular event associated with invasion. Am. J. Surg. Pathol. 31, 882–888 (2007).

    PubMed  Google Scholar 

  108. Mani, R. S. et al. Induced chromosomal proximity and gene fusions in prostate cancer. Science 326, 1230 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Yoshimoto, M. et al. Three-color FISH analysis of TMPRSS2/ERG fusions in prostate cancer indicates that genomic microdeletion of chromosome 21 is associated with rearrangement. Neoplasia 8, 465–469 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Soller, M. J. et al. Confirmation of the high frequency of the TMPRSS2/ERG fusion gene in prostate cancer. Genes Chromosomes Cancer 45, 717–719 (2006).

    CAS  PubMed  Google Scholar 

  111. Mani, R. S. et al. Inflammation-induced oxidative stress mediates gene fusion formation in prostate cancer. Cell Rep. 17, 2620–2631 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Lin, C. et al. Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell 139, 1069–1083 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Furusato, B. et al. ERG oncoprotein expression in prostate cancer: clonal progression of ERG-positive tumor cells and potential for ERG-based stratification. Prostate Cancer Prostatic Dis. 13, 228–237 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Morais, C. L. et al. ERG and PTEN status of isolated high-grade PIN occurring in cystoprostatectomy specimens without invasive prostatic adenocarcinoma. Hum. Pathol. 55, 117–125 (2016).

    PubMed  PubMed Central  Google Scholar 

  115. Young, A. et al. Correlation of urine TMPRSS2:ERG and PCA3 to ERG+ and total prostate cancer burden. Am. J. Clin. Pathol. 138, 685–696 (2012).

    PubMed  Google Scholar 

  116. Grasso, F. & Frisan, T. Bacterial genotoxins: merging the DNA damage response into infection biology. Biomolecules 5, 1762–1782 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Anker, J. F. et al. Multi-faceted immunomodulatory and tissue-tropic clinical bacterial isolate potentiates prostate cancer immunotherapy. Nat. Commun. 9, 1591 (2018).

    PubMed  PubMed Central  Google Scholar 

  118. Tang, Q. et al. Current sampling methods for gut microbiota: a call for more precise devices. Front. Cell Infect. Microbiol. 10, 151 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Sun, S. et al. On the robustness of inference of association with the gut microbiota in stool, rectal swab and mucosal tissue samples. Sci. Rep. 11, 14828 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Choudhury, R., Middelkoop, A., Bolhuis, J. E. & Kleerebezem, M. Legitimate and reliable determination of the age-related intestinal microbiome in young piglets; rectal swabs and fecal samples provide comparable insights. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.01886 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Bassis, C. M. et al. Comparison of stool versus rectal swab samples and storage conditions on bacterial community profiles. BMC Microbiol. 17, 78 (2017).

    PubMed  PubMed Central  Google Scholar 

  122. Jones, J., Reinke, S. N., Ali, A., Palmer, D. J. & Christophersen, C. T. Fecal sample collection methods and time of day impact microbiome composition and short chain fatty acid concentrations. Sci. Rep. 11, 13964 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Turner, G. et al. Rectal swabs are a reliable method of assessing the colonic microbiome. Int. J. Med. Microbiol. 312, 151549 (2022).

    CAS  PubMed  Google Scholar 

  124. Perez-Carrasco, V., Soriano-Lerma, A., Soriano, M., Gutiérrez-Fernández, J. & Garcia-Salcedo, J. A. Urinary microbiome: Yin and Yang of the urinary tract. Front. Cell. Infect. Microbiol. https://doi.org/10.3389/fcimb.2021.617002 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Salachan, P. V. & Sørensen, K. D. Dysbiotic microbes and how to find them: a review of microbiome profiling in prostate cancer. J. Exp. Clin. Cancer Res. 41, 31 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Karstens, L. et al. Community profiling of the urinary microbiota: considerations for low-biomass samples. Nat. Rev. Urol. 15, 735–749 (2018).

    PubMed  PubMed Central  Google Scholar 

  127. Clarridge, J. E. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin. Microbiol. Rev. 17, 840–862 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Matsuo, Y. et al. Full-length 16S rRNA gene amplicon analysis of human gut microbiota using MinION™ nanopore sequencing confers species-level resolution. BMC Microbiol. 21, 35 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Johnson, J. S. et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 10, 5029 (2019).

    PubMed  PubMed Central  Google Scholar 

  130. Debelius, J. W. et al. A comparison of approaches to scaffolding multiple regions along the 16S rRNA gene for improved resolution. Preprint at bioRxiv https://doi.org/10.1101/2021.03.23.436606 (2021).

    Article  Google Scholar 

  131. Jones, C. B., White, J. R., Ernst, S. E., Sfanos, K. S. & Peiffer, L. B. Incorporation of data from multiple hypervariable regions when analyzing bacterial 16S rRNA gene sequencing data. Front. Genet. 13, 799615 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Fuks, G. et al. Combining 16S rRNA gene variable regions enables high-resolution microbial community profiling. Microbiome 6, 17 (2018).

    PubMed  PubMed Central  Google Scholar 

  133. Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).

    PubMed  PubMed Central  Google Scholar 

  134. Yang, C. et al. A review of computational tools for generating metagenome-assembled genomes from metagenomic sequencing data. Comput. Struct. Biotechnol. J. 19, 6301–6314 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Weinstein, J. N. et al. The cancer genome atlas pan-cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).

    PubMed  PubMed Central  Google Scholar 

  136. Poore, G. D. et al. Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature 579, 567–574 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Dreyfus, M. & Régnier, P. The Poly(A) tail of mRNAs: bodyguard in eukaryotes, scavenger in bacteria. Cell 111, 611–613 (2002).

    CAS  PubMed  Google Scholar 

  138. Giannoukos, G. et al. Efficient and robust RNA-seq process for cultured bacteria and complex community transcriptomes. Genome Biol. 13, R23 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Simner, P. J. & Salzberg, S. L. The human “Contaminome” and understanding infectious disease. N. Engl. J. Med. 387, 943–946 (2022).

    PubMed  Google Scholar 

  140. Lu, J. & Salzberg, S. L. Removing contaminants from databases of draft genomes. PLoS Comput. Biol. 14, e1006277 (2018).

    PubMed  PubMed Central  Google Scholar 

  141. Short, M. I. et al. Comparison of rectal swab, glove tip, and participant-collected stool techniques for gut microbiome sampling. BMC Microbiol. 21, 26 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Radhakrishnan, S. T. et al. Rectal swabs as a viable alternative to faecal sampling for the analysis of gut microbiota functionality and composition. Sci. Rep. 13, 493 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Flores, G. E. et al. Temporal variability is a personalized feature of the human microbiome. Genome Biol. 15, 531 (2014).

    PubMed  PubMed Central  Google Scholar 

  144. Hong, P.-Y., Croix, J. A., Greenberg, E., Gaskins, H. R. & Mackie, R. I. Pyrosequencing-based analysis of the mucosal microbiota in healthy individuals reveals ubiquitous bacterial groups and micro-heterogeneity. PLoS ONE 6, e25042 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Pollock, J., Glendinning, L., Wisedchanwet, T. & Watson, M. The madness of microbiome: attempting to find consensus “Best practice” for 16S microbiome studies. Appl. Environ. Microbiol. https://doi.org/10.1128/aem.02627-17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Nearing, J. T. et al. Microbiome differential abundance methods produce different results across 38 datasets. Nat. Commun. 13, 342 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Escobar-Zepeda, A. et al. Analysis of sequencing strategies and tools for taxonomic annotation: defining standards for progressive metagenomics. Sci. Rep. 8, 12034 (2018).

    PubMed  PubMed Central  Google Scholar 

  148. Knight, R. et al. Best practices for analysing microbiomes. Nat. Rev. Microbiol. 16, 410–422 (2018).

    CAS  PubMed  Google Scholar 

  149. US Preventive Services Task Force. Prostate Cancer: Screening. US Preventive Services Task Force https://www.uspreventiveservicestaskforce.org/uspstf/recommendation/prostate-cancer-screening (2018).

  150. Amaria, R. N. et al. Neoadjuvant immune checkpoint blockade in high-risk resectable melanoma. Nat. Med. 24, 1649–1654 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Sanders, M. E., Merenstein, D. J., Reid, G., Gibson, G. R. & Rastall, R. A. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat. Rev. Gastroenterol. Hepatol. 16, 605–616 (2019).

    PubMed  Google Scholar 

  152. Deleemans, J. M. et al. The use of prebiotic and probiotic interventions for treating gastrointestinal and psychosocial health symptoms in cancer patients and survivors: a systematic review. Integr. Cancer Ther. 20, 15347354211061733 (2021).

    PubMed  PubMed Central  Google Scholar 

  153. Rosli, D. et al. Randomized controlled trial on the effect of partially hydrolyzed guar gum supplementation on diarrhea frequency and gut microbiome count among pelvic radiation patients. JPEN J. Parenter. Enter. Nutr. 45, 277–286 (2021).

    CAS  Google Scholar 

  154. Sasidharan, B. K. et al. A phase 2 randomized controlled trial of oral resistant starch supplements in the prevention of acute radiation proctitis in patients treated for cervical cancer. J. Cancer Res. Ther. 15, 1383–1391 (2019).

    PubMed  Google Scholar 

  155. Laigaard, A. et al. Dietary prebiotics promote intestinal Prevotella in association with a low-responding phenotype in a murine oxazolone-induced model of atopic dermatitis. Sci. Rep. 10, 21204 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Flores-Mireles, A. L., Walker, J. N., Caparon, M. & Hultgren, S. J. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 13, 269–284 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Barbut, F. & Meynard, J. L. Managing antibiotic associated diarrhoea. Br. Med. J. 324, 1345–1346 (2002).

    Google Scholar 

  158. Loh, G. & Blaut, M. Role of commensal gut bacteria in inflammatory bowel diseases. Gut Microbes 3, 544–555 (2012).

    PubMed  PubMed Central  Google Scholar 

  159. Schwabe, R. F. & Jobin, C. The microbiome and cancer. Nat. Rev. Cancer 13, 800–812 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Goodman, C., Keating, G., Georgousopoulou, E., Hespe, C. & Levett, K. Probiotics for the prevention of antibiotic-associated diarrhoea: a systematic review and meta-analysis. BMJ Open 11, e043054 (2021).

    PubMed  PubMed Central  Google Scholar 

  161. Guo, Q., Goldenberg, J. Z., Humphrey, C., El Dib, R. & Johnston, B. C. Probiotics for the prevention of pediatric antibiotic-associated diarrhea. Cochrane Database Syst. Rev. 4, Cd004827 (2019).

    PubMed  Google Scholar 

  162. Sihra, N., Goodman, A., Zakri, R., Sahai, A. & Malde, S. Nonantibiotic prevention and management of recurrent urinary tract infection. Nat. Rev. Urol. 15, 750–776 (2018).

    PubMed  Google Scholar 

  163. Dizman, N. et al. Nivolumab plus ipilimumab with or without live bacterial supplementation in metastatic renal cell carcinoma: a randomized phase 1 trial. Nat. Med. 28, 704–712 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Aguilar-Toala, J. E. et al. Postbiotics — when simplification fails to clarify. Nat. Rev. Gastroenterol. Hepatol. 18, 825–826 (2021).

    CAS  PubMed  Google Scholar 

  165. Kim, S., Kim, G.-H. & Cho, H. Postbiotics for cancer prevention and treatment. Korean J. Microbiol. 57, 142–153 (2021).

    Google Scholar 

  166. Mosca, A. et al. The clinical evidence for postbiotics as microbial therapeutics. Gut Microbes 14, 2117508 (2022).

    PubMed  PubMed Central  Google Scholar 

  167. Algieri, F. et al. Lactobacillus paracasei CNCM I-5220-derived postbiotic protects from the leaky-gut. Front. Microbiol. 14, 1157164 (2023).

    PubMed  PubMed Central  Google Scholar 

  168. Davar, D. et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science 371, 595–602 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. NICE. Faecal microbiota transplant for recurrent Clostridioides difficile infection. NICE https://www.nice.org.uk/guidance/mtg71/resources/faecal-microbiota-transplant-for-recurrent-clostridioides-difficile-infection-pdf-64372232137669 (2022).

  170. Baunwall, S. M. D. et al. Faecal microbiota transplantation for recurrent Clostridioides difficile infection: an updated systematic review and meta-analysis. eClinicalMedicine https://doi.org/10.1016/j.eclinm.2020.100642 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Kantoff, P. W. et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 363, 411–422 (2010).

    CAS  PubMed  Google Scholar 

  172. Venturini, N. J. & Drake, C. G. Immunotherapy for prostate cancer. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a030627 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Stultz, J. & Fong, L. How to turn up the heat on the cold immune microenvironment of metastatic prostate cancer. Prostate Cancer Prostatic Dis. 24, 697–717 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Wolf, P., Alzubi, J., Gratzke, C. & Cathomen, T. The potential of CAR T cell therapy for prostate cancer. Nat. Rev. Urol. 18, 556–571 (2021).

    PubMed  Google Scholar 

  175. Shenderov, E. et al. Neoadjuvant enoblituzumab in localized prostate cancer: a single-arm, phase 2 trial. Nat. Med. 29, 888–897 (2023).

    CAS  PubMed  Google Scholar 

  176. Bono, J. S. D. et al. Results of an ongoing phase 1/2a dose escalation study of HPN424, a tri-specific half-life extended PSMA-targeting T-cell engager, in patients with metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol. 39, 5013–5013 (2021).

    Google Scholar 

  177. Lim, E. A. et al. Phase 1 study of safety and preliminary clinical activity of JNJ-63898081, a PSMA and CD3 bispecific antibody, for metastatic castration-resistant prostate cancer. Clin. Genitourin. Cancer 21, 366–375 (2023).

    PubMed  Google Scholar 

  178. Narayan, V. et al. PSMA-targeting TGFβ-insensitive armored CAR T cells in metastatic castration-resistant prostate cancer: a phase 1 trial. Nat. Med. 28, 724–734 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Li, X., Zhang, S., Guo, G., Han, J. & Yu, J. Gut microbiome in modulating immune checkpoint inhibitors. eBioMedicine https://doi.org/10.1016/j.ebiom.2022.104163 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.A., N.P., C.G., L.G., W.Y., D.M. and J.d.B. researched data for the article. A.A., N.P., C.G., W.Y., D.M. and J.d.B. contributed substantially to discussion of the content. A.A., N.P., C.G., L.G., W.Y., D.M. and J.d.B. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Andrea Alimonti.

Ethics declarations

Competing interests

J.d.B. is a National Institute for Health Research (NIHR) Senior Investigator. The views expressed in this article are those of the authors and not necessarily those of the NHS, the NIHR, or the Department of Health. J.d.B. is an employee of the ICR, and has received funding or other support for his research work from AZ, Astellas, Bayer, Cellcentric, Daiichi, Genentech, Genmab, GSK, Janssen, Merck Serono, Merck Sharp & Dohme, Menarini/Silicon Biosystems, Orion, Sanofi Aventis, Sierra Oncology, Taiho, Pfizer and Vertex, with a commercial interest in abiraterone, PARP inhibition in DNA repair–defective cancers, and PI3K/AKT pathway inhibitors (no personal income). J.d.B. is an inventor, with no financial interest, on patent 8,822,438 submitted by Janssen, which covers the use of abiraterone acetate with corticosteroids. N.P., M.T. and A.A. are inventors on patent application 102021000021974 submitted by the Institute of Oncology Research (IOR), which covers the use of antibiotics, FMT and probiotics in prostate cancer therapy. D.M. is an inventor on patents related to CAR T cell therapy, filed by the University of Pennsylvania and the University of Geneva, the Università della Svizzera Italiana, and is scientific co-founder of Cellula Therapeutics. D.M. has been a consultant for Limula Therapeutics and MPC Therapeutics. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Karen Sfanos, Anglica Cruz Lebron and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pernigoni, N., Guo, C., Gallagher, L. et al. The potential role of the microbiota in prostate cancer pathogenesis and treatment. Nat Rev Urol 20, 706–718 (2023). https://doi.org/10.1038/s41585-023-00795-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-023-00795-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing