Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Body fluid-derived stem cells — an untapped stem cell source in genitourinary regeneration

Abstract

Somatic stem cells have been obtained from solid organs and tissues, including the bone marrow, placenta, corneal stroma, periosteum, adipose tissue, dental pulp and skeletal muscle. These solid tissue-derived stem cells are often used for tissue repair, disease modelling and new drug development. In the past two decades, stem cells have also been identified in various body fluids, including urine, peripheral blood, umbilical cord blood, amniotic fluid, synovial fluid, breastmilk and menstrual blood. These body fluid-derived stem cells (BFSCs) have stemness properties comparable to those of other adult stem cells and, similarly to tissue-derived stem cells, show cell surface markers, multi-differentiation potential and immunomodulatory effects. However, BFSCs are more easily accessible through non-invasive or minimally invasive approaches than solid tissue-derived stem cells and can be isolated without enzymatic tissue digestion. Additionally, BFSCs have shown good versatility in repairing genitourinary abnormalities in preclinical models through direct differentiation or paracrine mechanisms such as pro-angiogenic, anti-apoptotic, antifibrotic, anti-oxidant and anti-inflammatory effects. However, optimization of protocols is needed to improve the efficacy and safety of BFSC therapy before therapeutic translation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Stem cell types and sources.
Fig. 2: USCs originating from detached parietal epithelial cells.
Fig. 3: Regenerative mechanisms of BFSCs.
Fig. 4: Cell-based therapy with BFSCs in genitourinary regeneration.

Similar content being viewed by others

References

  1. El-Taji, O. M., Khattak, A. Q. & Hussain, S. A. Bladder reconstruction: the past, present and future. Oncol. Lett. 10, 3–10 (2015).

    PubMed  PubMed Central  Google Scholar 

  2. Hautmann, R. E. et al. Functional outcome and complications following ileal neobladder reconstruction in male patients without tumor recurrence. more than 35 years of experience from a single center. J. Urol. 205, 174–182 (2021).

    PubMed  Google Scholar 

  3. Shekarriz, B., Upadhyay, J., Demirbilek, S., Barthold, J. S. & Gonzalez, R. Surgical complications of bladder augmentation: comparison between various enterocystoplasties in 133 patients. Urology 55, 123–128 (2000).

    CAS  PubMed  Google Scholar 

  4. Lin, H. K. et al. Biomatrices for bladder reconstruction. Adv. Drug Deliv. Rev. 82-83, 47–63 (2015).

    CAS  PubMed  Google Scholar 

  5. Hariharan, S., Israni, A. K. & Danovitch, G. Long-term survival after kidney transplantation. N. Engl. J. Med. 385, 729–743 (2021).

    CAS  PubMed  Google Scholar 

  6. Brannstrom, M. et al. Livebirth after uterus transplantation. Lancet 385, 607–616 (2015).

    PubMed  Google Scholar 

  7. Spechtl, P. & Oberbauer, R. More questions than answers: current limitations of kidney transplantation treatment. Eur. J. Clin. Invest. 51, e13513 (2021).

    PubMed  Google Scholar 

  8. Brännström, M., Belfort, M. A. & Ayoubi, J. M. Uterus transplantation worldwide: clinical activities and outcomes. Curr. Opin. Organ Transplant. 26, 616–626 (2021).

    PubMed  Google Scholar 

  9. Sun, D. Z., Abelson, B., Babbar, P. & Damaser, M. S. Harnessing the mesenchymal stem cell secretome for regenerative urology. Nat. Rev. Urol. 16, 363–375 (2019).

    PubMed  PubMed Central  Google Scholar 

  10. Baker, C. L. & Pera, M. F. Capturing totipotent stem cells. Cell Stem Cell 22, 25–34 (2018).

    CAS  PubMed  Google Scholar 

  11. Yamanaka, S. Pluripotent stem cell-based cell therapy-promise and challenges. Cell Stem Cell 27, 523–531 (2020).

    CAS  PubMed  Google Scholar 

  12. Zakrzewski, W., Dobrzynski, M., Szymonowicz, M. & Rybak, Z. Stem cells: past, present, and future. Stem Cell Res. Ther. 10, 68 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    CAS  PubMed  Google Scholar 

  14. Lee, A. S., Tang, C., Rao, M. S., Weissman, I. L. & Wu, J. C. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat. Med. 19, 998–1004 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Cunningham, J. J., Ulbright, T. M., Pera, M. F. & Looijenga, L. H. Lessons from human teratomas to guide development of safe stem cell therapies. Nat. Biotechnol. 30, 849–857 (2012).

    CAS  PubMed  Google Scholar 

  16. Mirzaei, H. et al. Therapeutic application of multipotent stem cells. J. Cell Physiol. 233, 2815–2823 (2018).

    CAS  PubMed  Google Scholar 

  17. Bacakova, L. et al. Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells — a review. Biotechnol. Adv. 36, 1111–1126 (2018).

    PubMed  Google Scholar 

  18. Li, N. et al. Synovial membrane mesenchymal stem cells: past life, current situation, and application in bone and joint diseases. Stem Cell Res. Ther. 11, 381 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Gargett, C. E., Schwab, K. E. & Deane, J. A. Endometrial stem/progenitor cells: the first 10 years. Hum. Reprod. Update 22, 137–163 (2016).

    CAS  PubMed  Google Scholar 

  20. Liu, Q. W. et al. Characteristics and therapeutic potential of human amnion-derived stem cells. Int. J. Mol. Sci. 22, 970 (2021).

    PubMed  PubMed Central  Google Scholar 

  21. Ding, D. C., Chang, Y. H., Shyu, W. C. & Lin, S. Z. Human umbilical cord mesenchymal stem cells: a new era for stem cell therapy. Cell Transpl. 24, 339–347 (2015).

    Google Scholar 

  22. Relaix, F. et al. Perspectives on skeletal muscle stem cells. Nat. Commun. 12, 692 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Charbord, P. Bone marrow mesenchymal stem cells: historical overview and concepts. Hum. Gene Ther. 21, 1045–1056 (2010).

    CAS  PubMed  Google Scholar 

  24. Stangel-Wojcikiewicz, K., Piwowar, M., Jach, R., Majka, M. & Basta, A. Quality of life assessment in female patients 2 and 4 years after muscle-derived cell transplants for stress urinary incontinence treatment. Ginekol. Pol. 87, 183–189 (2016).

    PubMed  Google Scholar 

  25. Garcia-Arranz, M. et al. Two phase I/II clinical trials for the treatment of urinary incontinence with autologous mesenchymal stem cells. Stem Cell Transl. Med. 9, 1500–1508 (2020).

    CAS  Google Scholar 

  26. Ratajczak, M. Z., Ratajczak, J. & Kucia, M. Very small embryonic-like stem cells (VSELs). Circ. Res. 124, 208–210 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Dominici, M. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315–317 (2006).

    CAS  PubMed  Google Scholar 

  28. Bartolucci, J. et al. Safety and efficacy of the intravenous infusion of umbilical cord mesenchymal stem cells in patients with heart failure: a phase 1/2 randomized controlled trial (RIMECARD trial [randomized clinical trial of intravenous infusion umbilical cord mesenchymal stem cells on cardiopathy]). Circ. Res. 121, 1192–1204 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zimran, E., Papa, L. & Hoffman, R. Ex vivo expansion of hematopoietic stem cells: finally transitioning from the lab to the clinic. Blood Rev. 50, 100853 (2021).

    CAS  PubMed  Google Scholar 

  30. Wilkinson, A. C., Igarashi, K. J. & Nakauchi, H. Haematopoietic stem cell self-renewal in vivo and ex vivo. Nat. Rev. Genet. 21, 541–554 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Rakian, R. et al. Native extracellular matrix preserves mesenchymal stem cell “stemness” and differentiation potential under serum-free culture conditions. Stem Cell Res. Ther. 6, 235 (2015).

    PubMed  PubMed Central  Google Scholar 

  32. Gentile, P. et al. Impact of the different preparation methods to obtain human adipose-derived stromal vascular fraction cells (AD-SVFs) and human adipose-derived mesenchymal stem cells (AD-MSCs): enzymatic digestion versus mechanical centrifugation. Int. J. Mol. Sci. 20, 5471 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Bora, P. & Majumdar, A. S. Adipose tissue-derived stromal vascular fraction in regenerative medicine: a brief review on biology and translation. Stem Cell Res. Ther. 8, 145 (2017).

    PubMed  PubMed Central  Google Scholar 

  34. Zhang, S. et al. Mid-term prognosis of the stromal vascular fraction for knee osteoarthritis: a minimum 5-year follow-up study. Stem Cell Res. Ther. 13, 105 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Carstens, M. H. et al. Treatment of chronic diabetic foot ulcers with adipose-derived stromal vascular fraction cell injections: safety and evidence of efficacy at 1 year. Stem Cell Transl. Med. 10, 1138–1147 (2021).

    CAS  Google Scholar 

  36. Daumas, A. et al. Adipose tissue-derived stromal vascular fraction for treating hands of patients with systemic sclerosis: a multicentre randomized trial autologous AD-SVF versus placebo in systemic sclerosis. Rheumatology 61, 1936–1947 (2022).

    CAS  PubMed  Google Scholar 

  37. Huang, R. L. et al. Engineering hypertrophic cartilage grafts from lipoaspirate for critical-sized calvarial bone defect reconstruction: an adipose tissue-based developmental engineering approach. Bioeng. Transl. Med. 7, e10312 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang, Y. et al. Urine derived cells are a potential source for urological tissue reconstruction. J. Urol. 180, 2226–2233 (2008).

    CAS  PubMed  Google Scholar 

  39. Lotfy, A., El-Sherbiny, Y. M., Cuthbert, R., Jones, E. & Badawy, A. Comparative study of biological characteristics of mesenchymal stem cells isolated from mouse bone marrow and peripheral blood. Biomed. Rep. 11, 165–170 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Meng, X. et al. Endometrial regenerative cells: a novel stem cell population. J. Transl. Med. 5, 57 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Pelosi, E., Castelli, G. & Testa, U. Human umbilical cord is a unique and safe source of various types of stem cells suitable for treatment of hematological diseases and for regenerative medicine. Blood Cell Mol. Dis. 49, 20–28 (2012).

    Google Scholar 

  42. Jones, E. A. et al. Enumeration and phenotypic characterization of synovial fluid multipotential mesenchymal progenitor cells in inflammatory and degenerative arthritis. Arthritis Rheum. 50, 817–827 (2004).

    PubMed  Google Scholar 

  43. Sun, Y., Wang, Y., Li, Z. & Guo, Z. Isolation and multiple differentiation of rat pericardial fluid cells. Front. Cell Dev. Biol. 9, 614826 (2021).

    PubMed  PubMed Central  Google Scholar 

  44. De Coppi, P. et al. Isolation of amniotic stem cell lines with potential for therapy. Nat. Biotechnol. 25, 100–106 (2007).

    PubMed  Google Scholar 

  45. Cregan, M. D. et al. Identification of nestin-positive putative mammary stem cells in human breastmilk. Cell Tissue Res. 329, 129–136 (2007).

    PubMed  Google Scholar 

  46. Harrell, C. R. et al. Therapeutic potential of amniotic fluid derived mesenchymal stem cells based on their differentiation capacity and immunomodulatory properties. Curr. Stem Cell Res. Ther. 14, 327–336 (2019).

    CAS  PubMed  Google Scholar 

  47. Zhang, W., Hu, J., Huang, Y., Wu, C. & Xie, H. Urine-derived stem cells: applications in skin, bone and articular cartilage repair. Burns Trauma 9, tkab039 (2021).

    PubMed  PubMed Central  Google Scholar 

  48. Allan, D. S. Using umbilical cord blood for regenerative therapy: proof or promise? Stem Cell 38, 590–595 (2020).

    Google Scholar 

  49. Wang, T. et al. Site-dependent lineage preference of adipose stem cells. Front. Cell Dev. Biol. 8, 237 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Xu, L. et al. Tissue source determines the differentiation potentials of mesenchymal stem cells: a comparative study of human mesenchymal stem cells from bone marrow and adipose tissue. Stem Cell Res. Ther. 8, 275 (2017).

    PubMed  PubMed Central  Google Scholar 

  51. Zhou, S., Chen, S., Jiang, Q. & Pei, M. Determinants of stem cell lineage differentiation toward chondrogenesis versus adipogenesis. Cell Mol. Life Sci. 76, 1653–1680 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang, H. et al. Characterization of rabbit urine-derived stem cells for potential application in lower urinary tract tissue regeneration. Cell Tissue Res. 374, 303–315 (2018).

    CAS  PubMed  Google Scholar 

  53. Liu, Y. et al. Urethral reconstruction with autologous urine-derived stem cells seeded in three-dimensional porous small intestinal submucosa in a rabbit model. Stem Cell Res. Ther. 8, 63 (2017).

    PubMed  PubMed Central  Google Scholar 

  54. Xu, Y. et al. Isolation and characterization of multipotent canine urine-derived stem cells. Stem Cell Int. 2020, 8894449 (2020).

    Google Scholar 

  55. Bharadwaj, S. et al. Multipotential differentiation of human urine-derived stem cells: potential for therapeutic applications in urology. Stem Cell 31, 1840–1856 (2013).

    CAS  Google Scholar 

  56. Miesen, L., Steenbergen, E. & Smeets, B. Parietal cells-new perspectives in glomerular disease. Cell Tissue Res. 369, 237–244 (2017).

    PubMed  PubMed Central  Google Scholar 

  57. Kaverina, N. V. et al. Dual lineage tracing shows that glomerular parietal epithelial cells can transdifferentiate toward the adult podocyte fate. Kidney Int. 96, 597–611 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Xiong, G. et al. Impaired regeneration potential in urinary stem cells diagnosed from the patients with diabetic nephropathy. Theranostics 9, 4221–4232 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Lang, R. et al. Self-renewal and differentiation capacity of urine-derived stem cells after urine preservation for 24 hours. PLoS ONE 8, e53980 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Bharadwaj, S. et al. Characterization of urine-derived stem cells obtained from upper urinary tract for use in cell-based urological tissue engineering. Tissue Eng. Part A 17, 2123–2132 (2011).

    PubMed  PubMed Central  Google Scholar 

  61. Gao, P. et al. Effects of the donor age on proliferation, senescence and osteogenic capacity of human urine-derived stem cells. Cytotechnology 69, 751–763 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Schosserer, M. et al. Urine is a novel source of autologous mesenchymal stem cells for patients with epidermolysis bullosa. BMC Res. Notes 8, 767 (2015).

    PubMed  PubMed Central  Google Scholar 

  63. LaRocco, M. T. et al. Effectiveness of preanalytic practices on contamination and diagnostic accuracy of urine cultures: a laboratory medicine best practices systematic review and meta-analysis. Clin. Microbiol. Rev. 29, 105–147 (2016).

    PubMed  Google Scholar 

  64. Shi, Y. et al. Differentiation capacity of human urine-derived stem cells to retain telomerase activity. Front. Cell Dev. Biol. 10, 890574 (2022).

    PubMed  PubMed Central  Google Scholar 

  65. Wu, R. et al. Functional characterization of the immunomodulatory properties of human urine-derived stem cells. Transl. Androl. Urol. 10, 3566–3578 (2021).

    PubMed  PubMed Central  Google Scholar 

  66. Zhang, C. et al. Reno-protection of urine-derived stem cells in a chronic kidney disease rat model induced by renal ischemia and nephrotoxicity. Int. J. Biol. Sci. 16, 435–446 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Culenova, M. et al. Isolation, culture and comprehensive characterization of biological properties of human urine-derived stem cells. Int. J. Mol. Sci. 22, 12503 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen, A. J. et al. Identification and characterization of two morphologically distinct stem cell subpopulations from human urine samples. Sci. China Life Sci. 63, 712–723 (2020).

    CAS  PubMed  Google Scholar 

  69. Rahman, M. S. et al. The FGF, TGFβ and WNT axis modulate self-renewal of human SIX2+ urine derived renal progenitor cells. Sci. Rep. 10, 739 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Choi, J. Y. et al. Potency of human urine-derived stem cells for renal lineage differentiation. Tissue Eng. Regen. Med. 14, 775–785 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Chen, W. et al. Skeletal myogenic differentiation of human urine-derived cells as a potential source for skeletal muscle regeneration. J. Tissue Eng. Regen. Med. 11, 334–341 (2017).

    CAS  PubMed  Google Scholar 

  72. Xing, F. et al. Nanotopographical 3D-printed poly(epsilon-caprolactone) scaffolds enhance proliferation and osteogenic differentiation of urine-derived stem cells for bone regeneration. Pharmaceutics 14, 1437 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Sun, J. et al. Comparison of chondrogenesis-related biological behaviors between human urine-derived stem cells and human bone marrow mesenchymal stem cells from the same individual. Stem Cell Res. Ther. 12, 366 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Liu, G. et al. Human urine-derived stem cell differentiation to endothelial cells with barrier function and nitric oxide production. Stem Cell Transl. Med. 7, 686–698 (2018).

    CAS  Google Scholar 

  75. Huang, L. L. et al. Integrin-linked kinase (ILK) regulates urinary stem cells differentiation into smooth muscle via NF-κB signal pathway. Stem Cell Int. 2021, 6633111 (2021).

    Google Scholar 

  76. Talmon, M. et al. Characterization of a functional Ca2+ toolkit in urine-derived stem cells and derived skeletal muscle cells. Cell Calcium 103, 102548 (2022).

    CAS  PubMed  Google Scholar 

  77. Liu, D. et al. Conversion of human urine-derived cells into neuron-like cells by small molecules. Mol. Biol. Rep. 47, 2713–2722 (2020).

    CAS  PubMed  Google Scholar 

  78. Zhou, M., Shen, L., Qiao, Y. & Sun, Z. Inducing differentiation of human urine-derived stem cells into hepatocyte-like cells by coculturing with human hepatocyte L02 cells. J. Cell Biochem. 121, 566–573 (2020).

    CAS  PubMed  Google Scholar 

  79. Hwang, Y., Cha, S. H., Hong, Y., Jung, A. R. & Jun, H. S. Direct differentiation of insulin-producing cells from human urine-derived stem cells. Int. J. Med. Sci. 16, 1668–1676 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Wan, Q. et al. Urothelium with barrier function differentiated from human urine-derived stem cells for potential use in urinary tract reconstruction. Stem Cell Res. Ther. 9, 304 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhou, C. et al. Immunomodulatory effect of urine-derived stem cells on inflammatory bowel diseases via downregulating Th1/Th17 immune responses in a PGE2-dependent Manner. J. Crohns Colitis 14, 654–668 (2020).

    PubMed  Google Scholar 

  82. Jiang, Z. Z. et al. Exosomes secreted by human urine-derived stem cells could prevent kidney complications from type I diabetes in rats. Stem Cell Res. Ther. 7, 24 (2016).

    PubMed  PubMed Central  Google Scholar 

  83. Kang, H. S. et al. Advanced properties of urine derived stem cells compared to adipose tissue derived stem cells in terms of cell proliferation, immune modulation and multi differentiation. J. Korean Med. Sci. 30, 1764–1776 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Zidan, A. A. et al. Urine stem cells are equipped to provide B cell survival signals. Stem Cell 39, 803–818 (2021).

    CAS  Google Scholar 

  85. Zidan, A. A. et al. Characterization of urine stem cell-derived extracellular vesicles reveals B cell stimulating cargo. Int. J. Mol. Sci. 22, 459 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhu, Q. et al. Extracellular vesicles secreted by human urine-derived stem cells promote ischemia repair in a mouse model of hind-limb ischemia. Cell Physiol. Biochem. 47, 1181–1192 (2018).

    CAS  PubMed  Google Scholar 

  87. Ouyang, B. et al. Extracellular vesicles from human urine-derived stem cells ameliorate erectile dysfunction in a diabetic rat model by delivering proangiogenic microRNA. Sex. Med. 7, 241–250 (2019).

    PubMed  PubMed Central  Google Scholar 

  88. Chen, C. Y. et al. Extracellular vesicles from human urine-derived stem cells inhibit glucocorticoid-induced osteonecrosis of the femoral head by transporting and releasing pro-angiogenic DMBT1 and anti-apoptotic TIMP1. Acta Biomater. 111, 208–220 (2020).

    CAS  PubMed  Google Scholar 

  89. Chen, C. Y. et al. Exosomal DMBT1 from human urine-derived stem cells facilitates diabetic wound repair by promoting angiogenesis. Theranostics 8, 1607–1623 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Cao, Y. et al. Local delivery of USC-derived exosomes harboring ANGPTL3 enhances spinal cord functional recovery after injury by promoting angiogenesis. Stem Cell Res. Ther. 12, 20 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhang, C. et al. Transplantation of human urine-derived stem cells ameliorates erectile function and cavernosal endothelial function by promoting autophagy of corpus cavernosal endothelial cells in diabetic erectile dysfunction rats. Stem Cell Int. 2019, 2168709 (2019).

    Google Scholar 

  92. Zhang, Y. et al. Transfer of microRNA-216a-5p from exosomes secreted by human urine-derived stem cells reduces renal ischemia/reperfusion injury. Front. Cell Dev. Biol. 8, 610587 (2020).

    PubMed  PubMed Central  Google Scholar 

  93. Li, X. et al. Human urine-derived stem cells protect against renal ischemia/reperfusion injury in a rat model via exosomal miR-146a-5p which targets IRAK1. Theranostics 10, 9561–9578 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Duan, Y. R. et al. Exosomal microRNA-16-5p from human urine-derived stem cells ameliorates diabetic nephropathy through protection of podocyte. J. Cell Mol. Med. 25, 10798–10813 (2021).

    CAS  PubMed  Google Scholar 

  95. Kim, S. H. et al. Urine-derived stem cell-secreted Klotho plays a crucial role in the HK-2 fibrosis model by inhibiting the TGF-β signaling pathway. Int. J. Mol. Sci. 23, 5012 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Mizushima, N. & Levine, B. Autophagy in human diseases. N. Engl. J. Med. 383, 1564–1576 (2020).

    CAS  PubMed  Google Scholar 

  97. Takahashi, A. et al. Autophagy inhibits the accumulation of advanced glycation end products by promoting lysosomal biogenesis and function in the kidney proximal tubules. Diabetes 66, 1359–1372 (2017).

    CAS  PubMed  Google Scholar 

  98. Moschidou, D. et al. Human mid-trimester amniotic fluid stem cells cultured under embryonic stem cell conditions with valproic acid acquire pluripotent characteristics. Stem Cell Dev. 22, 444–458 (2013).

    CAS  Google Scholar 

  99. Loukogeorgakis, S. P. & De Coppi, P. Concise review: amniotic fluid stem cells: the known, the unknown, and potential regenerative medicine applications. Stem Cell 35, 1663–1673 (2017).

    Google Scholar 

  100. Moschidou, D. et al. Valproic acid confers functional pluripotency to human amniotic fluid stem cells in a transgene-free approach. Mol. Ther. 20, 1953–1967 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Schiavo, A. A. et al. Endothelial properties of third-trimester amniotic fluid stem cells cultured in hypoxia. Stem Cell Res. Ther. 6, 209 (2015).

    PubMed  PubMed Central  Google Scholar 

  102. Spitzhorn, L. S. et al. Isolation and molecular characterization of amniotic fluid-derived mesenchymal stem cells obtained from Caesarean sections. Stem Cell Int. 2017, 5932706 (2017).

    Google Scholar 

  103. Ditadi, A. et al. Human and murine amniotic fluid c-Kit+Lin- cells display hematopoietic activity. Blood 113, 3953–3960 (2009).

    CAS  PubMed  Google Scholar 

  104. Gholizadeh-Ghaleh Aziz, S., Pashaei-Asl, F., Fardyazar, Z. & Pashaiasl, M. Isolation, characterization, cryopreservation of human amniotic stem cells and differentiation to osteogenic and adipogenic cells. PLoS ONE 11, e0158281 (2016).

    PubMed  PubMed Central  Google Scholar 

  105. Hamid, A. A. et al. Highly potent stem cells from full-term amniotic fluid: a realistic perspective. Reprod. Biol. 17, 9–18 (2017).

    PubMed  Google Scholar 

  106. Li, Y. et al. Differentiation of human amniotic fluid-derived mesenchymal stem cells into type II alveolar epithelial cells in vitro. Int. J. Mol. Med. 33, 1507–1513 (2014).

    CAS  PubMed  Google Scholar 

  107. Minocha, E., Chaturvedi, C. P. & Nityanand, S. Renogenic characterization and in vitro differentiation of rat amniotic fluid stem cells into renal proximal tubular- and juxtaglomerular-like cells. Vitr. Cell Dev. Biol. Anim. 55, 138–147 (2019).

    Google Scholar 

  108. Laowanitwattana, T. et al. Osteoblastic differentiation potential of human amniotic fluid-derived mesenchymal stem cells in different culture conditions. Acta Histochem. 120, 701–712 (2018).

    CAS  PubMed  Google Scholar 

  109. Da Sacco, S. et al. Human amniotic fluid as a potential new source of organ specific precursor cells for future regenerative medicine applications. J. Urol. 183, 1193–1200 (2010).

    PubMed  PubMed Central  Google Scholar 

  110. Roubelakis, M. G. et al. Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: comparison to bone marrow mesenchymal stem cells. Stem Cell Dev. 16, 931–952 (2007).

    CAS  Google Scholar 

  111. Walentowicz, P. et al. Human amniotic fluid as a source of stem cells. Open Med. 17, 648–660 (2022).

    Google Scholar 

  112. Bajek, A. et al. Human adipose-derived and amniotic fluid-derived stem cells: a preliminary in vitro study comparing myogenic differentiation capability. Med. Sci. Monit. 24, 1733–1741 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Zuliani, C. C. et al. Chondrogenesis of human amniotic fluid stem cells in chitosan-xanthan scaffold for cartilage tissue engineering. Sci. Rep. 11, 3063 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Lan, Y. W. et al. Predifferentiated amniotic fluid mesenxzchymal stem cells enhance lung alveolar epithelium regeneration and reverse elastase-induced pulmonary emphysema. Stem Cell Res. Ther. 10, 163 (2019).

    PubMed  PubMed Central  Google Scholar 

  115. Xinaris, C. et al. Functional human podocytes generated in organoids from amniotic fluid stem cells. J. Am. Soc. Nephrol. 27, 1400–1411 (2016).

    CAS  PubMed  Google Scholar 

  116. Basler, M. et al. Bioengineering of fetal skin: differentiation of amniotic fluid stem cells into keratinocytes. Fetal Diagn. Ther. 47, 198–204 (2020).

    PubMed  Google Scholar 

  117. Nawaz, S. et al. Molecular characterization of bovine amniotic fluid derived stem cells with an underlying focus on their comparative neuronal potential at different passages. Ann. Anat. 228, 151452 (2020).

    PubMed  Google Scholar 

  118. Gasiuniene, M. et al. Epigenetic alterations in amniotic fluid mesenchymal stem cells derived from normal and fetus-affected gestations: a focus on myogenic and neural differentiations. Cell Biol. Int. 43, 299–312 (2019).

    CAS  PubMed  Google Scholar 

  119. Romani, R. et al. Stem cells from human amniotic fluid exert immunoregulatory function via secreted indoleamine 2,3-dioxygenase1. J. Cell Mol. Med. 19, 1593–1605 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Maraldi, T., Beretti, F., Guida, M., Zavatti, M. & De Pol, A. Role of hepatocyte growth factor in the immunomodulation potential of amniotic fluid stem cells. Stem Cell Transl. Med. 4, 539–547 (2015).

    CAS  Google Scholar 

  121. Moorefield, E. C. et al. Cloned, CD117 selected human amniotic fluid stem cells are capable of modulating the immune response. PLoS ONE 6, e26535 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Di Trapani, M. et al. Comparative study of immune regulatory properties of stem cells derived from different tissues. Stem Cell Dev. 22, 2990–3002 (2013).

    Google Scholar 

  123. Romani, R. et al. S1P promotes migration, differentiation and immune regulatory activity in amniotic-fluid-derived stem cells. Eur. J. Pharmacol. 833, 173–182 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Mareschi, K. et al. Immunoregulatory effects on T lymphocytes by human mesenchymal stromal cells isolated from bone marrow, amniotic fluid, and placenta. Exp. Hematol. 44, 138–150.e1 (2016).

    CAS  PubMed  Google Scholar 

  125. Di Trapani, M. et al. Immune regulatory properties of CD117pos amniotic fluid stem cells vary according to gestational age. Stem Cell Dev. 24, 132–143 (2015).

    Google Scholar 

  126. Sato, Y. et al. Prophylactic therapy with human amniotic fluid stem cells improved survival in a rat model of lipopolysaccharide-induced neonatal sepsis through immunomodulation via aggregates with peritoneal macrophages. Stem Cell Res. Ther. 11, 300 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Abe, Y. et al. Human amniotic fluid stem cells ameliorate thioglycollate-induced peritonitis by increasing tregs in mice. Int. J. Mol. Sci. 23, 6433 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Abe, Y. et al. Prophylactic administration of human amniotic fluid stem cells suppresses inflammation-induced preterm birth via macrophage polarization. Mol. Cell Biochem. 478, 363–374 (2023).

    CAS  PubMed  Google Scholar 

  129. Um, S., Ha, J., Choi, S. J., Oh, W. & Jin, H. J. Prospects for the therapeutic development of umbilical cord blood-derived mesenchymal stem cells. World J. Stem Cell 12, 1511–1528 (2020).

    Google Scholar 

  130. Cha, B. et al. Safety and efficacy of allogeneic umbilical cord blood therapy for global development delay and intellectual disability. Stem Cell Dev. 32, 170–179 (2023).

    CAS  Google Scholar 

  131. Kim, H. J. et al. Intracerebroventricular injection of human umbilical cord blood mesenchymal stem cells in patients with Alzheimer’s disease dementia: a phase I clinical trial. Alzheimers Res. Ther. 13, 154 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Jaing, T. H. Umbilical cord blood: a trustworthy source of multipotent stem cells for regenerative medicine. Cell Transpl. 23, 493–496 (2014).

    Google Scholar 

  133. Matsuoka, Y. et al. The number of CD34+CD133+ hematopoietic stem cells residing in umbilical cord blood (UCB) units is not correlated with the numbers of total nucleated cells and CD34+ cells: a possible new indicator for quality evaluation of UCB units. Int. J. Hematol. 108, 571–579 (2018).

    CAS  PubMed  Google Scholar 

  134. Takahashi, M. et al. CD133 is a positive marker for a distinct class of primitive human cord blood-derived CD34-negative hematopoietic stem cells. Leukemia 28, 1308–1315 (2014).

    CAS  PubMed  Google Scholar 

  135. Lotfinejad, P. et al. Immunomodulatory effect of human umbilical cord blood-derived mesenchymal stem cells on activated T-lymphocyte. Iran. J. Allergy Asthma Immunol. 20, 711–720 (2021).

    PubMed  Google Scholar 

  136. Amati, E. et al. High-throughput immunophenotypic characterization of bone marrow- and cord blood-derived mesenchymal stromal cells reveals common and differentially expressed markers: identification of angiotensin-converting enzyme (CD143) as a marker differentially expressed between adult and perinatal tissue sources. Stem Cell Res. Ther. 9, 10 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Kwak, J. et al. Cobalt chloride enhances the anti-inflammatory potency of human umbilical cord blood-derived mesenchymal stem cells through the ERK-HIF-1α-microRNA-146a-mediated signaling pathway. Stem Cell Int. 2018, 4978763 (2018).

    Google Scholar 

  138. Demerdash, Z. et al. Cloning of human cord blood-mesenchymal stem cells for isolation of enriched cell population of higher proliferation and differentiation potential. Mol. Biol. Rep. 47, 3963–3972 (2020).

    CAS  PubMed  Google Scholar 

  139. Bana, N. et al. A comparative study to evaluate myogenic differentiation potential of human chorion versus umbilical cord blood-derived mesenchymal stem cells. Tissue Cell 49, 495–502 (2017).

    CAS  PubMed  Google Scholar 

  140. Jahan, S. et al. Neurotrophic factor mediated neuronal differentiation of human cord blood mesenchymal stem cells and their applicability to assess the developmental neurotoxicity. Biochem. Biophys. Res. Commun. 482, 961–967 (2017).

    CAS  PubMed  Google Scholar 

  141. Kamel, M. M. et al. Cord blood-derived mesenchymal stem cells with hepatogenic differentiation potential ameliorate chronic liver affection in experimental models. Adv. Clin. Exp. Med. 27, 1329–1339 (2018).

    PubMed  Google Scholar 

  142. El-Sherbiny, M., Eladl, M. A., Ranade, A. V., Guimei, M. & Gabr, H. Functional beta-cells derived from umbilical cord blood mesenchymal stem cells for curing rats with streptozotocin-induced diabetes mellitus. Singap. Med. J. 61, 39–45 (2020).

    Google Scholar 

  143. Peters, E. B. Endothelial progenitor cells for the vascularization of engineered tissues. Tissue Eng. Part B Rev. 24, 1–24 (2018).

    PubMed  PubMed Central  Google Scholar 

  144. Gao, X., Yourick, J. J. & Sprando, R. L. Comparative transcriptomic analysis of endothelial progenitor cells derived from umbilical cord blood and adult peripheral blood: implications for the generation of induced pluripotent stem cells. Stem Cell Res. 25, 202–212 (2017).

    CAS  PubMed  Google Scholar 

  145. Hirschi, K. K., Ingram, D. A. & Yoder, M. C. Assessing identity, phenotype, and fate of endothelial progenitor cells. Arterioscler. Thromb. Vasc. Biol. 28, 1584–1595 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Lahlil, R. et al. VSELs maintain their pluripotency and competence to differentiate after enhanced ex vivo expansion. Stem Cell Rev. Rep. 14, 510–524 (2018).

    CAS  PubMed  Google Scholar 

  147. Monti, M. et al. A novel method for isolation of pluripotent stem cells from human umbilical cord blood. Stem Cell Dev. 26, 1258–1269 (2017).

    CAS  Google Scholar 

  148. Jia, Y. et al. A modified ficoll-paque gradient method for isolating mononuclear cells from the peripheral and umbilical cord blood of humans for biobanks and clinical laboratories. Biopreserv. Biobank. 16, 82–91 (2018).

    CAS  PubMed  Google Scholar 

  149. Mata, M. F. et al. A modified CD34+ hematopoietic stem and progenitor cell isolation strategy from cryopreserved human umbilical cord blood. Transfusion 59, 3560–3569 (2019).

    CAS  PubMed  Google Scholar 

  150. Fujii, S. et al. Isolation of mesenchymal stromal/stem cells from cryopreserved umbilical cord blood cells. J. Clin. Exp. Hematop. 57, 1–8 (2017).

    PubMed  PubMed Central  Google Scholar 

  151. Sumide, K. et al. A revised road map for the commitment of human cord blood CD34-negative hematopoietic stem cells. Nat. Commun. 9, 2202 (2018).

    PubMed  PubMed Central  Google Scholar 

  152. Bieback, K., Kern, S., Kluter, H. & Eichler, H. Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cell 22, 625–634 (2004).

    Google Scholar 

  153. Ravishankar, P., Zeballos, M. A. & Balachandran, K. Isolation of endothelial progenitor cells from human umbilical cord blood. J. Vis. Exp. 127, 56021 (2017).

    Google Scholar 

  154. Lee, M. et al. Low immunogenicity of allogeneic human umbilical cord blood-derived mesenchymal stem cells in vitro and in vivo. Biochem. Biophys. Res. Commun. 446, 983–989 (2014).

    CAS  PubMed  Google Scholar 

  155. Jung, N. et al. Immunomodulatory effect of epidermal growth factor secreted by human umbilical cord blood-derived mesenchymal stem cells on atopic dermatitis. Int. J. Stem Cell 15, 311–323 (2022).

    CAS  Google Scholar 

  156. Shin, T. H. et al. Human umbilical cord blood-stem cells direct macrophage polarization and block inflammasome activation to alleviate rheumatoid arthritis. Cell Death Dis. 7, e2524 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Proust, R. et al. Cord blood-endothelial colony forming cells are immunotolerated and participate at post-ischemic angiogenesis in an original dorsal chamber immunocompetent mouse model. Stem Cell Res. Ther. 11, 172 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Oberoi, P. et al. Directed differentiation of mobilized hematopoietic stem and progenitor cells into functional NK cells with enhanced antitumor activity. Cells 9, 811 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Marycz, K. et al. Endurance exercise mobilizes developmentally early stem cells into peripheral blood and increases their number in bone marrow: implications for tissue regeneration. Stem Cell Int. 2016, 5756901 (2016).

    Google Scholar 

  160. Drukala, J. et al. Stem cells, including a population of very small embryonic-like stem cells, are mobilized into peripheral blood in patients after skin burn injury. Stem Cell Rev. Rep. 8, 184–194 (2012).

    CAS  PubMed  Google Scholar 

  161. Gupta, G. K., Perreault, S., Seropian, S. E., Tormey, C. A. & Hendrickson, J. E. Optimization of repeat plerixafor dosing for autologous peripheral blood stem-cell collection. Transfus. Apher. Sci. 60, 103069 (2021).

    PubMed  Google Scholar 

  162. Shah, H. et al. Clinical outcomes of multiple myeloma patients who undergo autologous hematopoietic stem cell transplant with G-CSF or G-CSF and plerixafor mobilized grafts. Am. J. Hematol. 95, 198–204 (2020).

    CAS  PubMed  Google Scholar 

  163. MacMillan, M. L. et al. First-in-human phase 1 trial of induced regulatory T cells for graft-versus-host disease prophylaxis in HLA-matched siblings. Blood Adv. 5, 1425–1436 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Anz, A. W. et al. Mobilized peripheral blood stem cells are pluripotent and can be safely harvested and stored for cartilage repair. Arthroscopy 37, 3347–3356 (2021).

    PubMed  Google Scholar 

  165. D’Souza, A. et al. Current use of and trends in hematopoietic cell transplantation in the United States. Biol. Blood Marrow Transpl. 26, e177–e182 (2020).

    Google Scholar 

  166. Amouzegar, A., Dey, B. R. & Spitzer, T. R. Peripheral blood or bone marrow stem cells? Practical considerations in hematopoietic stem cell transplantation. Transfus. Med. Rev. 33, 43–50 (2019).

    PubMed  Google Scholar 

  167. Patel, A. N. et al. Multipotent menstrual blood stromal stem cells: isolation, characterization, and differentiation. Cell Transpl. 17, 303–311 (2008).

    Google Scholar 

  168. Skliute, G. et al. Menstrual blood-derived endometrial stem cells’ impact for the treatment perspective of female infertility. Int. J. Mol. Sci. 22, 6774 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Bozorgmehr, M. et al. Endometrial and menstrual blood mesenchymal stem/stromal cells: biological properties and clinical application. Front. Cell Dev. Biol. 8, 497 (2020).

    PubMed  PubMed Central  Google Scholar 

  170. Liu, Y. et al. Biological characteristics of human menstrual blood-derived endometrial stem cells. J. Cell Mol. Med. 22, 1627–1639 (2018).

    CAS  PubMed  Google Scholar 

  171. Khanjani, S. et al. Comparative evaluation of differentiation potential of menstrual blood- versus bone marrow-derived stem cells into hepatocyte-like cells. PLoS ONE 9, e86075 (2014).

    PubMed  PubMed Central  Google Scholar 

  172. Wyatt, K. A. et al. Menstrual fluid endometrial stem/progenitor cell and supernatant protein content: cyclical variation and indicative range. Hum. Reprod. 36, 2215–2229 (2021).

    CAS  PubMed  Google Scholar 

  173. Khanmohammadi, M. et al. Modified protocol for improvement of differentiation potential of menstrual blood-derived stem cells into adipogenic lineage. Cell Prolif. 47, 615–623 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Rahimi, M. et al. Comparative effectiveness of three-dimensional scaffold, differentiation media and co-culture with native cardiomyocytes to trigger in vitro cardiogenic differentiation of menstrual blood and bone marrow stem cells. Biologicals 54, 13–21 (2018).

    CAS  PubMed  Google Scholar 

  175. Quintero-Espinosa, D. et al. Latent tri-lineage potential of human menstrual blood-derived mesenchymal stromal cells revealed by specific in vitro culture conditions. Mol. Neurobiol. 58, 5194–5209 (2021).

    CAS  PubMed  Google Scholar 

  176. Arasteh, S., Katebifar, S., Shirazi, R. & Kazemnejad, S. Differentiation of menstrual blood stem cells into keratinocyte-like cells on bilayer nanofibrous scaffold. Methods Mol. Biol. 2125, 129–156 (2020).

    CAS  PubMed  Google Scholar 

  177. Sheikholeslami, A., Kalhor, N., Sheykhhasan, M., Jannatifar, R. & Sahraei, S. S. Evaluating differentiation potential of the human menstrual blood-derived stem cells from infertile women into oocyte-like cells. Reprod. Biol. 21, 100477 (2021).

    PubMed  Google Scholar 

  178. Mo, Y. et al. Comparative study of three types of mesenchymal stem cell to differentiate into pancreatic β-like cells in vitro. Exp. Ther. Med. 22, 936 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Luz-Crawford, P. et al. The immunosuppressive signature of menstrual blood mesenchymal stem cells entails opposite effects on experimental arthritis and graft versus host diseases. Stem Cell 34, 456–469 (2016).

    CAS  Google Scholar 

  180. Bozorgmehr, M. et al. Menstrual blood-derived stromal stem cells inhibit optimal generation and maturation of human monocyte-derived dendritic cells. Immunol. Lett. 162, 239–246 (2014).

    CAS  PubMed  Google Scholar 

  181. Shokri, M. R. et al. Human menstrual blood-derived stromal/stem cells modulate functional features of natural killer cells. Sci. Rep. 9, 10007 (2019).

    PubMed  PubMed Central  Google Scholar 

  182. Martinez-Aguilar, R. et al. Menstrual blood-derived stromal cells modulate functional properties of mouse and human macrophages. Sci. Rep. 10, 21389 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. de Pedro, M. A. et al. IFN-gamma and TNF-alpha as a priming strategy to enhance the immunomodulatory capacity of secretomes from menstrual blood-derived stromal cells. Int. J. Mol. Sci. 22, 12177 (2021).

    PubMed  PubMed Central  Google Scholar 

  184. Santos, R. A. et al. Intrinsic angiogenic potential and migration capacity of human mesenchymal stromal cells derived from menstrual blood and bone marrow. Int. J. Mol. Sci. 21, 9563 (2020).

    PubMed  PubMed Central  Google Scholar 

  185. Chen, X. et al. Human menstrual blood-derived stem cells mitigate bleomycin-induced pulmonary fibrosis through anti-apoptosis and anti-inflammatory effects. Stem Cell Res. Ther. 11, 477 (2020).

    PubMed  PubMed Central  Google Scholar 

  186. Yang, Y. et al. Human menstrual blood-derived stem cell transplantation suppresses liver injury in DDC-induced chronic cholestasis. Stem Cell Res. Ther. 13, 57 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Zhuang, J. et al. Extracellular vesicles from human urine-derived stem cells merged in hyaluronic acid ameliorate erectile dysfunction in type 2 diabetic rats by glans administration. Andrology 10, 1673–1686 (2022).

    CAS  PubMed  Google Scholar 

  188. Miyasaki, D. M. et al. Treatment of chronic kidney disease with extracellular vesicles from mesenchymal stem cells and CD133+ expanded cells: a comparative preclinical analysis. Int. J. Mol. Sci. 23, 2521 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Sun, C. et al. Endometrial regenerative cell-derived conditioned medium alleviates experimental colitis. Stem Cell Int. 2022, 7842296 (2022).

    Google Scholar 

  190. Zhang, Y. et al. Endometrial stem cells repair injured endometrium and induce angiogenesis via AKT and ERK pathways. Reproduction 152, 389–402 (2016).

    CAS  PubMed  Google Scholar 

  191. Galhom, R. A. et al. Urine-derived stem cells versus their lysate in ameliorating erectile dysfunction in a rat model of type 2 diabetes. Front. Physiol. 13, 854949 (2022).

    PubMed  PubMed Central  Google Scholar 

  192. Jativa, S. et al. NGAL release from peripheral blood mononuclear cells protects against acute kidney injury and prevents AKI induced fibrosis. Biomed. Pharmacother. 153, 113415 (2022).

    CAS  PubMed  Google Scholar 

  193. Sun, Z., Wu, J., Bi, Q. & Wang, W. Exosomal lncRNA TUG1 derived from human urine-derived stem cells attenuates renal ischemia/reperfusion injury by interacting with SRSF1 to regulate ASCL4-mediated ferroptosis. Stem Cell Res. Ther. 13, 297 (2022).

    PubMed  PubMed Central  Google Scholar 

  194. Feng, L. X. et al. Role of Nrf2 in lipopolysaccharide-induced acute kidney injury: protection by human umbilical cord blood mononuclear cells. Oxid. Med. Cell Longev. 2020, 6123459 (2020).

    PubMed  PubMed Central  Google Scholar 

  195. Minocha, E., Sinha, R. A., Jain, M., Chaturvedi, C. P. & Nityanand, S. Amniotic fluid stem cells ameliorate cisplatin-induced acute renal failure through induction of autophagy and inhibition of apoptosis. Stem Cell Res. Ther. 10, 370 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Li, J. et al. Therapeutic effect of urine-derived stem cells for protamine/lipopolysaccharide-induced interstitial cystitis in a rat model. Stem Cell Res. Ther. 8, 107 (2017).

    PubMed  PubMed Central  Google Scholar 

  197. Ren, Y. et al. Human amniotic epithelial cells ameliorate kidney damage in ischemia-reperfusion mouse model of acute kidney injury. Stem Cell Res. Ther. 11, 410 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Mori da Cunha, M. G. et al. Vascular endothelial growth factor up-regulation in human amniotic fluid stem cell enhances nephroprotection after ischemia-reperfusion injury in the rat. Crit. Care Med. 45, e86–e96 (2017).

    CAS  PubMed  Google Scholar 

  199. Al-Husseiny, F. et al. Amniotic fluid-derived mesenchymal stem cells cut short the acuteness of cisplatin-induced nephrotoxicity in Sprague-Dawley rats. Int. J. Stem Cell 9, 70–78 (2016).

    CAS  Google Scholar 

  200. Ti, Y. et al. Comparison of the therapeutic effects of human umbilical cord blood-derived mesenchymal stem cells and adipose-derived stem cells on erectile dysfunction in a rat model of bilateral cavernous nerve injury. Front. Bioeng. Biotechnol. 10, 1019063 (2022).

    PubMed  PubMed Central  Google Scholar 

  201. Li, X. W. et al. Human umbilical cord blood mononuclear cells protect against renal tubulointerstitial fibrosis in cisplatin-treated rats. Biomed. Pharmacother. 121, 109662 (2020).

    CAS  PubMed  Google Scholar 

  202. Eirin, A. et al. Intrarenal delivery of mesenchymal stem cells and endothelial progenitor cells attenuates hypertensive cardiomyopathy in experimental renovascular hypertension. Cell Transpl. 24, 2041–2053 (2015).

    Google Scholar 

  203. Ashour, R. H. et al. Comparative study of allogenic and xenogeneic mesenchymal stem cells on cisplatin-induced acute kidney injury in Sprague-Dawley rats. Stem Cell Res. Ther. 7, 126 (2016).

    PubMed  PubMed Central  Google Scholar 

  204. Sun, B. et al. Therapeutic effects of human urine-derived stem cells in a rat model of cisplatin-induced acute kidney injury in vivo and in vitro. Stem Cell Int. 2019, 8035076 (2019).

    Google Scholar 

  205. Wang, J. et al. Protective effect of GDNF-engineered amniotic fluid-derived stem cells on the renal ischaemia reperfusion injury in vitro. Cell Prolif. 51, e12400 (2018).

    PubMed  Google Scholar 

  206. Liu, G. et al. A cocktail of growth factors released from a heparin hyaluronic-acid hydrogel promotes the myogenic potential of human urine-derived stem cells in vivo. Acta Biomater. 107, 50–64 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Ouyang, B. et al. Human urine-derived stem cells alone or genetically-modified with FGF2 improve type 2 diabetic erectile dysfunction in a rat model. PLoS ONE 9, e92825 (2014).

    PubMed  PubMed Central  Google Scholar 

  208. Liang, C. C., Shaw, S. S., Ko, Y. S., Huang, Y. H. & Lee, T. H. Effect of amniotic fluid stem cell transplantation on the recovery of bladder dysfunction in spinal cord-injured rats. Sci. Rep. 10, 10030 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Park, J. H., Hwang, I., Hwang, S. H., Han, H. & Ha, H. Human umbilical cord blood-derived mesenchymal stem cells prevent diabetic renal injury through paracrine action. Diabetes Res. Clin. Pract. 98, 465–473 (2012).

    CAS  PubMed  Google Scholar 

  210. Zhao, Z. et al. Ureter tissue engineering with vessel extracellular matrix and differentiated urine-derived stem cells. Acta Biomater. 88, 266–279 (2019).

    CAS  PubMed  Google Scholar 

  211. Li, J. et al. Cartilage regeneration using arthroscopic flushing fluid-derived mesenchymal stem cells encapsulated in a one-step rapid cross-linked hydrogel. Acta Biomater. 79, 202–215 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Lee, J. N. et al. Human urine-derived stem cells seeded surface modified composite scaffold grafts for bladder reconstruction in a rat model. J. Korean Med. Sci. 30, 1754–1763 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Malekpour, K., Hazrati, A., Soudi, S. & Hashemi, S. M. Mechanisms behind therapeutic potentials of mesenchymal stem cell mitochondria transfer/delivery. J. Control. Release 354, 755–769 (2023).

    CAS  PubMed  Google Scholar 

  214. Yue, Y. et al. Intrarenal arterial administration of human umbilical cord-derived mesenchymal stem cells effectively preserved the residual renal function of diabetic kidney disease in rat. Stem Cell Res. Ther. 13, 186 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Manshori, M., Kazemnejad, S. & Golshahi, H. Mitochondrial transfer from menstrual blood stromal/stem cells promotes survival of cardiomyocytes following myocardial infarction. Avicenna J. Med. Biotechnol. 14, 321–322 (2022).

    PubMed  PubMed Central  Google Scholar 

  216. Al-Jaghbeer, M., Dealmeida, D., Bilderback, A., Ambrosino, R. & Kellum, J. A. Clinical decision support for in-hospital AKI. J. Am. Soc. Nephrol. 29, 654–660 (2018).

    PubMed  Google Scholar 

  217. GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 395, 709–733 (2020).

    Google Scholar 

  218. Centers for Disease Control and Prevention. Chronic kidney disease in the United States, 2021 (CDC, 2021).

  219. Ronco, C., Bellomo, R. & Kellum, J. A. Acute kidney injury. Lancet 394, 1949–1964 (2019).

    CAS  PubMed  Google Scholar 

  220. Xiong, G. et al. Urine-derived stem cells for the therapy of diabetic nephropathy mouse model. Eur. Rev. Med. Pharmacol. Sci. 24, 1316–1324 (2020).

    CAS  PubMed  Google Scholar 

  221. Baulier, E. et al. Amniotic fluid-derived mesenchymal stem cells prevent fibrosis and preserve renal function in a preclinical porcine model of kidney transplantation. Stem Cell Transl. Med. 3, 809–820 (2014).

    CAS  Google Scholar 

  222. Monteiro Carvalho Mori da Cunha, M. G. et al. Amniotic fluid derived stem cells with a renal progenitor phenotype inhibit interstitial fibrosis in renal ischemia and reperfusion injury in rats. PLoS ONE 10, e0136145 (2015).

    PubMed  PubMed Central  Google Scholar 

  223. George, S. K. et al. Effect of human amniotic fluid stem cells on kidney function in a model of chronic kidney disease. Tissue Eng. Part A 25, 1493–1503 (2019).

    PubMed  PubMed Central  Google Scholar 

  224. Li, S. et al. Transplantation of amniotic fluid-derived stem cells preconditioned with glial cell line-derived neurotrophic factor gene alleviates renal fibrosis. Cell Transpl. 28, 65–78 (2019).

    Google Scholar 

  225. Sedrakyan, S. et al. Injection of amniotic fluid stem cells delays progression of renal fibrosis. J. Am. Soc. Nephrol. 23, 661–673 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Feng, J., Lu, C., Dai, Q., Sheng, J. & Xu, M. SIRT3 facilitates amniotic fluid stem cells to repair diabetic nephropathy through protecting mitochondrial homeostasis by modulation of mitophagy. Cell Physiol. Biochem. 46, 1508–1524 (2018).

    CAS  PubMed  Google Scholar 

  227. Rota, C. et al. Human amniotic fluid stem cell preconditioning improves their regenerative potential. Stem Cell Dev. 21, 1911–1923 (2012).

    CAS  Google Scholar 

  228. Beretti, F. et al. Amniotic fluid stem cell exosomes: therapeutic perspective. Biofactors 44, 158–167 (2018).

    CAS  PubMed  Google Scholar 

  229. Sedrakyan, S. et al. Amniotic fluid stem cell-derived vesicles protect from VEGF-induced endothelial damage. Sci. Rep. 7, 16875 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Abu Almaaty, A. H. et al. Impact of human umbilical cord blood mononuclear cells on gentamicin-induced renal injury and genotoxicity in rats. Front. Med. 8, 689691 (2021).

    Google Scholar 

  231. El-Ashmawy, N. E., Khedr, E. G., El-Bahrawy, H. A. & El-Berashy, S. A. Effect of human umbilical cord blood-derived mononuclear cells on diabetic nephropathy in rats. Biomed. Pharmacother. 97, 1040–1045 (2018).

    CAS  PubMed  Google Scholar 

  232. Mohamed, M. I., Attia, F. M. & Atwa, K. A. Effect of human umbilical cord blood progenitor cells versus mononuclear cells on acute renal failure rat model. Curr. Stem Cell Res. Ther. 6, 362–367 (2011).

    CAS  PubMed  Google Scholar 

  233. Burger, D. et al. Human cord blood CD133+ cells exacerbate ischemic acute kidney injury in mice. Nephrol. Dial. Transpl. 27, 3781–3789 (2012).

    CAS  Google Scholar 

  234. Liu, P. et al. Enhanced renoprotective effect of IGF-1 modified human umbilical cord-derived mesenchymal stem cells on gentamicin-induced acute kidney injury. Sci. Rep. 6, 20287 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Kilpinen, L. et al. Extracellular membrane vesicles from umbilical cord blood-derived MSC protect against ischemic acute kidney injury, a feature that is lost after inflammatory conditioning. J. Extracell. Vesicles 2, 21927 (2013).

    Google Scholar 

  236. Lee, S. J. et al. Mesenchymal stem cells contribute to improvement of renal function in a canine kidney injury model. In Vivo 31, 1115–1124 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Morello, W. et al. First clinical application of cord blood mesenchymal stromal cells in children with multi-drug resistant nephrotic syndrome. Stem Cell Res. Ther. 13, 420 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Suzuki, H. et al. Acute kidney injury successfully treated with autologous granulocyte colony-stimulating factor-mobilized peripheral blood CD34-positive cell transplantation: a first-in-human report. Stem Cell Transl. Med. 10, 1253–1257 (2021).

    CAS  Google Scholar 

  239. Yang, C. C. et al. Safety and efficacy of intrarenal arterial autologous CD34+ cell transfusion in patients with chronic kidney disease: a randomized, open-label, controlled phase II clinical trial. Stem Cell Transl. Med. 9, 827–838 (2020).

    CAS  Google Scholar 

  240. Lee, M. S. et al. Investigated the safety of intra-renal arterial transfusion of autologous CD34+ cells and time courses of creatinine levels, endothelial dysfunction biomarkers and micro-RNAs in chronic kidney disease patients-phase I clinical trial. Oncotarget 8, 17750–17762 (2017).

    PubMed  PubMed Central  Google Scholar 

  241. Ohtake, T. et al. Human peripheral blood mononuclear cells incubated in vasculogenic conditioning medium dramatically improve ischemia/reperfusion acute kidney injury in mice. Cell Transpl. 27, 520–530 (2018).

    Google Scholar 

  242. Qiao, J. et al. Infusion of endothelial progenitor cells ameliorates liver injury in mice after haematopoietic stem cell transplantation. Liver Int. 35, 2611–2620 (2015).

    CAS  PubMed  Google Scholar 

  243. Peng, X. et al. Noninvasive evaluation of the migration effect of transplanted endothelial progenitor cells in ischemic muscle using a multimodal imaging agent. Int. J. Nanomed. 13, 1819–1829 (2018).

    CAS  Google Scholar 

  244. Jang, H. N. et al. Human endothelial progenitor cells protect the kidney against ischemia-reperfusion injury via the NLRP3 inflammasome in mice. Int. J. Mol. Sci. 23, 1546 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  245. Huang, T. H. et al. Peripheral blood-derived endothelial progenitor cell therapy prevented deterioration of chronic kidney disease in rats. Am. J. Transl. Res. 7, 804–824 (2015).

    PubMed  PubMed Central  Google Scholar 

  246. Soler, R. et al. Stem cell therapy ameliorates bladder dysfunction in an animal model of Parkinson disease. J. Urol. 187, 1491–1497 (2012).

    PubMed  Google Scholar 

  247. Siddiquee, A. A. et al. Endothelial colony forming cells from human umbilical cord blood improved severe erectile dysfunction in obese type II diabetic rats. Life Sci. 207, 272–283 (2018).

    CAS  PubMed  Google Scholar 

  248. Fang, J. F. et al. Combined transplantation of mesenchymal stem cells and endothelial progenitor cells restores cavernous nerve injury-related erectile dysfunction. J. Sex. Med. 15, 284–295 (2018).

    PubMed  Google Scholar 

  249. Qiu, X. F. et al. Mobilisation of endothelial progenitor cells: one of the possible mechanisms involved in the chronic administration of melatonin preventing erectile dysfunction in diabetic rats. Asian J. Androl. 14, 481–486 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Liang, C. C., Shaw, S. S., Chou, H. H., Huang, Y. H. & Lee, T. H. Amniotic fluid stem cells improve rat bladder dysfunction after pelvic nerve transection. Cell Transpl. 29, 963689720909387 (2020).

    Google Scholar 

  251. Kaya-Sezginer, E., Yilmaz-Oral, D. & Gur, S. Administration of human umbilical cord blood mononuclear cells restores bladder dysfunction in streptozotocin-induced diabetic rats. Low. Urin. Tract Symptoms 11, 232–240 (2019).

    CAS  PubMed  Google Scholar 

  252. Liang, C. C., Shaw, S. W., Huang, Y. H., Lin, Y. H. & Lee, T. H. Bladder transplantation of amniotic fluid stem cell may ameliorate bladder dysfunction after focal cerebral ischemia in rat. Stem Cell Transl. Med. 6, 1227–1236 (2017).

    CAS  Google Scholar 

  253. Yang, Q. et al. Transplantation of human urine-derived stem cells transfected with pigment epithelium-derived factor to protect erectile function in a rat model of cavernous nerve injury. Cell Transpl. 25, 1987–2001 (2016).

    Google Scholar 

  254. Dong, X. et al. Beneficial effects of urine-derived stem cells on fibrosis and apoptosis of myocardial, glomerular and bladder cells. Mol. Cell Endocrinol. 427, 21–32 (2016).

    CAS  PubMed  Google Scholar 

  255. Liang, C. C., Lee, T. H. & Chang, S. D. Effect of umbilical cord blood stem cells transplantation on bladder dysfunction induced by cerebral ischemia in rats. Taiwan. J. Obstet. Gynecol. 55, 672–679 (2016).

    PubMed  Google Scholar 

  256. McCabe, M. P. et al. Definitions of sexual dysfunctions in women and men: a consensus statement from the fourth international consultation on sexual medicine 2015. J. Sex. Med. 13, 135–143 (2016).

    PubMed  Google Scholar 

  257. Yafi, F. A. et al. Erectile dysfunction. Nat. Rev. Dis. Primers 2, 16003 (2016).

    PubMed  PubMed Central  Google Scholar 

  258. Najari, B. B. & Kashanian, J. A. Erectile dysfunction. J. Am. Med. Assoc. 316, 1838 (2016).

    Google Scholar 

  259. Liu, G. et al. The effect of urine-derived stem cells expressing VEGF loaded in collagen hydrogels on myogenesis and innervation following after subcutaneous implantation in nude mice. Biomaterials 34, 8617–8629 (2013).

    CAS  PubMed  Google Scholar 

  260. Yang, Q. et al. Intratunical injection of human urine-derived stem cells derived exosomes prevents fibrosis and improves erectile function in a rat model of Peyronie’s disease. Andrologia 52, e13831 (2020).

    CAS  PubMed  Google Scholar 

  261. Bahk, J. Y., Jung, J. H., Han, H., Min, S. K. & Lee, Y. S. Treatment of diabetic impotence with umbilical cord blood stem cell intracavernosal transplant: preliminary report of 7 cases. Exp. Clin. Transpl. 8, 150–160 (2010).

    Google Scholar 

  262. Oztekin, C. V. et al. Beneficial effects of human umbilical cord blood mononuclear cells on persistent erectile dysfunction after treatment of 5-alpha reductase inhibitor in rats. J. Sex. Med. 18, 889–899 (2021).

    CAS  PubMed  Google Scholar 

  263. Cengiz, T. et al. Intracavernous injection of human umbilical cord blood mononuclear cells improves erectile dysfunction in streptozotocin-induced diabetic rats. J. Sex. Med. 14, 50–58 (2017).

    PubMed  Google Scholar 

  264. Gu, X. et al. Long-term therapeutic effect of cell therapy on improvement in erectile function in a rat model with pelvic neurovascular injury. BJU Int. 124, 145–154 (2019).

    CAS  PubMed  Google Scholar 

  265. Foresta, C. et al. Circulating endothelial progenitor cells in subjects with erectile dysfunction. Int. J. Impot. Res. 17, 288–290 (2005).

    CAS  PubMed  Google Scholar 

  266. Ichim, T. E. et al. Circulating endothelial progenitor cells and erectile dysfunction: possibility of nutritional intervention? Panminerva Med. 52, 75–80 (2010).

    CAS  PubMed  Google Scholar 

  267. Song, L. et al. BDNF-hypersecreting human umbilical cord blood mesenchymal stem cells promote erectile function in a rat model of cavernous nerve electrocautery injury. Int. Urol. Nephrol. 48, 37–45 (2016).

    CAS  PubMed  Google Scholar 

  268. D’Ancona, C. et al. The International Continence Society (ICS) report on the terminology for adult male lower urinary tract and pelvic floor symptoms and dysfunction. Neurourol. Urodyn. 38, 433–477 (2019).

    PubMed  Google Scholar 

  269. Abufaraj, M. et al. Prevalence and trends in urinary incontinence among women in the United States, 2005-2018. Am. J. Obstet. Gynecol. 225, 166.e1–166.e12 (2021).

    PubMed  Google Scholar 

  270. Wu, J. M. Stress incontinence in women. N. Engl. J. Med. 384, 2428–2436 (2021).

    PubMed  Google Scholar 

  271. Abdel-Fattah, M. et al. Single-incision mini-slings for stress urinary incontinence in women. N. Engl. J. Med. 386, 1230–1243 (2022).

    PubMed  Google Scholar 

  272. Hillary, C. J. et al. Regenerative medicine and injection therapies in stress urinary incontinence. Nat. Rev. Urol. 17, 151–161 (2020).

    PubMed  Google Scholar 

  273. Wu, R. et al. Exosomes secreted by urine-derived stem cells improve stress urinary incontinence by promoting repair of pubococcygeus muscle injury in rats. Stem Cell Res. Ther. 10, 80 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  274. Kim, B. S. et al. Human amniotic fluid stem cell injection therapy for urethral sphincter regeneration in an animal model. BMC Med. 10, 94 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  275. Chun, S. Y. et al. Human amniotic fluid stem cell-derived muscle progenitor cell therapy for stress urinary incontinence. J. Korean Med. Sci. 27, 1300–1307 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  276. Chun, S. Y. et al. Combined injection of three different lineages of early-differentiating human amniotic fluid-derived cells restores urethral sphincter function in urinary incontinence. BJU Int. 114, 770–783 (2014).

    PubMed  Google Scholar 

  277. Lim, J. J. et al. Human umbilical cord blood mononuclear cell transplantation in rats with intrinsic sphincter deficiency. J. Korean Med. Sci. 25, 663–670 (2010).

    PubMed  PubMed Central  Google Scholar 

  278. Lee, C. N. et al. Human cord blood stem cell therapy for treatment of stress urinary incontinence. J. Korean Med. Sci. 25, 813–816 (2010).

    PubMed  PubMed Central  Google Scholar 

  279. Shirvan, M. K. et al. A novel cell therapy for stress urinary incontinence, short-term outcome. Neurourol. Urodyn. 32, 377–382 (2013).

    CAS  PubMed  Google Scholar 

  280. Qin, C., Wang, Y. & Gao, Y. Overactive bladder symptoms within nervous system: a focus on etiology. Front. Physiol. 12, 747144 (2021).

    PubMed  PubMed Central  Google Scholar 

  281. Liang, C. C., Shaw, S. S., Lin, Y. H. & Lee, T. H. Amniotic fluid stem cells ameliorate bladder dysfunction induced by chronic bladder ischemia in rat. Neurourol. Urodyn. 37, 123–131 (2018).

    CAS  PubMed  Google Scholar 

  282. Tu, M. et al. Human urine-derived stem cells improve partial bladder outlet obstruction in rats: preliminary data and microRNA-mRNA expression profile. Stem Cell Rev. Rep. 18, 2403–2413 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  283. Wu, J. et al. Exosomes from human urine-derived stem cells carry NRF1 to alleviate bladder fibrosis via regulating miR-301b-3p/TGFβR1 pathway. Mol. Cell. Biochem. 478, 249–260 (2023).

    CAS  PubMed  Google Scholar 

  284. Wittig, L., Carlson, K. V., Andrews, J. M., Crump, R. T. & Baverstock, R. J. Diabetic bladder dysfunction: a review. Urology 123, 1–6 (2019).

    PubMed  Google Scholar 

  285. Liang, C. C., Shaw, S. S., Huang, Y. H., Lin, Y. H. & Lee, T. H. Improvement in bladder dysfunction after bladder transplantation of amniotic fluid stem cells in diabetic rats. Sci. Rep. 8, 2105 (2018).

    PubMed  PubMed Central  Google Scholar 

  286. Panicker, J. N. Neurogenic bladder: epidemiology, diagnosis, and management. Semin. Neurol. 40, 569–579 (2020).

    PubMed  PubMed Central  Google Scholar 

  287. Khavari, R. & Boone, T. Bladder dysfunction in 2015: novel findings continue to challenge researchers and clinicians. Nat. Rev. Urol. 13, 69–70 (2016).

    CAS  PubMed  Google Scholar 

  288. Wen, C., Xie, L. & Hu, C. Roles of mesenchymal stem cells and exosomes in interstitial cystitis/bladder pain syndrome. J. Cell Mol. Med. 26, 624–635 (2022).

    CAS  PubMed  Google Scholar 

  289. Kim, A. et al. Mesenchymal stem cells protect against the tissue fibrosis of ketamine-induced cystitis in rat bladder. Sci. Rep. 6, 30881 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  290. Song, M. et al. Mesenchymal stem cell therapy alleviates interstitial cystitis by activating Wnt signaling pathway. Stem Cell Dev. 24, 1648–1657 (2015).

    CAS  Google Scholar 

  291. Chung, J. W. et al. Verification of mesenchymal stem cell injection therapy for interstitial cystitis in a rat model. PLoS ONE 14, e0226390 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  292. Wang, Z. & Liao, L. Effectiveness and complications of augmentation cystoplasty with or without nonrefluxing ureteral reimplantation in patients with bladder dysfunction: a single center 11-year experience. J. Urol. 199, 200–205 (2018).

    PubMed  Google Scholar 

  293. Caneparo, C., Sorroza-Martinez, L., Chabaud, S., Fradette, J. & Bolduc, S. Considerations for the clinical use of stem cells in genitourinary regenerative medicine. World J. Stem Cell 13, 1480–1512 (2021).

    Google Scholar 

  294. Wu, S., Liu, Y., Bharadwaj, S., Atala, A. & Zhang, Y. Human urine-derived stem cells seeded in a modified 3D porous small intestinal submucosa scaffold for urethral tissue engineering. Biomaterials 32, 1317–1326 (2011).

    PubMed  Google Scholar 

  295. Wang, Z. et al. Single-cell RNA sequencing deconvolutes the in vivo heterogeneity of human bone marrow-derived mesenchymal stem cells. Int. J. Biol. Sci. 17, 4192–4206 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  296. Mo, C. et al. Single-cell transcriptomics of LepR-positive skeletal cells reveals heterogeneous stress-dependent stem and progenitor pools. EMBO J. 41, e108415 (2022).

    CAS  PubMed  Google Scholar 

  297. Zhang, X. R. et al. Hypoxic preconditioning of human urine-derived stem cell-laden small intestinal submucosa enhances wound healing potential. Stem Cell Res. Ther. 11, 150 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  298. Zhao, L. M. et al. Promotion of right ventricular outflow tract reconstruction using a novel cardiac patch incorporated with hypoxia-pretreated urine-derived stem cells. Bioact. Mater. 14, 206–218 (2022).

    CAS  PubMed  Google Scholar 

  299. Yu, Y. et al. Preconditioning with interleukin-1 beta and interferon-gamma enhances the efficacy of human umbilical cord blood-derived mesenchymal stem cells-based therapy via enhancing prostaglandin E2 secretion and indoleamine 2,3-dioxygenase activity in dextran sulfate sodium-induced colitis. J. Tissue Eng. Regen. Med. 13, 1792–1804 (2019).

    CAS  PubMed  Google Scholar 

  300. Liu, S. et al. Strategies to optimize adult stem cell therapy for tissue regeneration. Int. J. Mol. Sci. 17, 982 (2016).

    PubMed  PubMed Central  Google Scholar 

  301. Veys, K. et al. Urine-derived kidney progenitor cells in cystinosis. Cells 11, 1245 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  302. Dessouky, A. A. et al. Hypoxia-preconditioned human umbilical cord blood-derived mesenchymal stem cells mitigate hypoglycemic testicular injury induced by insulin in rats. Cell Tissues Organs 209, 83–100 (2020).

    CAS  Google Scholar 

  303. Widjaja, S. L., Salimo, H., Yulianto, I. & Soetrisno Proteomic analysis of hypoxia and non-hypoxia secretome mesenchymal stem-like cells from human breastmilk. Saudi J. Biol. Sci. 28, 4399–4407 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  304. Sun, P. et al. Human endometrial regenerative cells attenuate renal ischemia reperfusion injury in mice. J. Transl. Med. 14, 28 (2016).

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

R.L.H. researched data for the article. All authors contributed substantially to discussion of the content. Y.Z. and R.L.H. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Yuanyuan Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Tetsuro Tamaki, Margot Damaser and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, RL., Li, Q., Ma, JX. et al. Body fluid-derived stem cells — an untapped stem cell source in genitourinary regeneration. Nat Rev Urol 20, 739–761 (2023). https://doi.org/10.1038/s41585-023-00787-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-023-00787-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing