Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Obesity and prostate cancer — microenvironmental roles of adipose tissue

Abstract

Obesity is known to have important roles in driving prostate cancer aggressiveness and increased mortality. Multiple mechanisms have been postulated for these clinical observations, including effects of diet and lifestyle, systemic changes in energy balance and hormonal regulation and activation of signalling by growth factors and cytokines and other components of the immune system. Over the past decade, research on obesity has shifted towards investigating the role of peri-prostatic white adipose tissue as an important source of locally produced factors that stimulate prostate cancer progression. Cells that comprise white adipose tissue, the adipocytes and their progenitor adipose stromal cells (ASCs), which proliferate to accommodate white adipose tissue expansion in obesity, have been identified as important drivers of obesity-associated cancer progression. Accumulating evidence suggests that adipocytes are a source of lipids that are used by adjacent prostate cancer cells. However, results of preclinical studies indicate that ASCs promote tumour growth by remodelling extracellular matrix and supporting neovascularization, contributing to the recruitment of immunosuppressive cells, and inducing epithelial–mesenchymal transition through paracrine signalling. Because epithelial–mesenchymal transition is associated with cancer chemotherapy resistance and metastasis, ASCs are considered to be potential targets of therapies that could be developed to suppress cancer aggressiveness in patients with obesity.

Key points

  • Obesity is associated with aggressive and high-grade prostate cancer, as well as increased mortality.

  • Peri-prostatic white adipose tissue expansion in obesity leads to induced secretion of adipokines, cytokines and chemokines from adipocytes, adipose stromal cells (ASCs) and other cells in the tumour stroma.

  • ASCs recruited to tumours act as cancer-associated fibroblasts in the tumour microenvironment to promote vascularization, recruit immunosuppressive leukocytes, remodel extracellular matrix and induce epithelial–mesenchymal transition, which promotes cancer aggressiveness and therapy resistance.

  • The prevalence of obesity continues to increase; thus, manipulating events associated with white adipose tissue overgrowth that promote cancer progression could mitigate the increased risk of prostate cancer aggressiveness associated with obesity. However, the potentially negative consequences of therapies aimed at white adipose tissue need to be carefully considered.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Obesity-associated changes in adipose tissue and prostate tumours.
Fig. 2: Mechanisms of prostate cancer aggressiveness in obesity.
Fig. 3: Histology of mouse prostate cancer in obese mice.
Fig. 4: WAT component drives EMT, invasion, metastasis and therapy resistance.

Similar content being viewed by others

References

  1. Panuganti, K. K., Nguyen, M. & Kshirsagar, R. K. Obesity. StatPearls https://www.ncbi.nlm.nih.gov/books/NBK459357/ (2022).

  2. Stierman B, et al. National Health and Nutrition Examination Survey 2017–March 2020 prepandemic data files — development of files and prevalence estimates for selected health outcomes (National Center for Health Statistics, 2021).

  3. World Health Organization. Obesity and overweight. WHO https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (2021).

  4. Kelly, T., Yang, W., Chen, C. S., Reynolds, K. & He, J. Global burden of obesity in 2005 and projections to 2030. Int. J. Obes. 32, 1431–1437 (2008).

    Article  CAS  Google Scholar 

  5. Jo, J. et al. Hypertrophy and/or hyperplasia: dynamics of adipose tissue growth. PLoS Comput. Biol. 5, e1000324 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Longo, M. et al. Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. Int. J. Mol. Sci. 20, 2358 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lionetti, L. et al. From chronic overnutrition to insulin resistance: the role of fat-storing capacity and inflammation. Nutr. Metab. Cardiovasc. Dis. 19, 146–152 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Jo, J. et al. Hypertrophy-driven adipocyte death overwhelms recruitment under prolonged weight gain. Biophys. J. 99, 3535–3544 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Park, Y. W. et al. The metabolic syndrome: prevalence and associated risk factor findings in the US population from the Third National Health and Nutrition Examination Survey, 1988–1994. Arch. Intern. Med. 163, 427–436 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gariballa, S., Alkaabi, J., Yasin, J. & Al Essa, A. Total adiponectin in overweight and obese subjects and its response to visceral fat loss. BMC Endocr. Disord. 19, 55 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hursting, S. D. et al. Obesity, energy balance, and cancer: new opportunities for prevention. Cancer Prev. Res. 5, 1260–1272 (2012).

    Article  CAS  Google Scholar 

  12. Nijhawans, P., Behl, T. & Bhardwaj, S. Angiogenesis in obesity. Biomed. Pharmacother. 126, 110103 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Saha, A. et al. Proinflammatory CXCL12-CXCR4/CXCR7 signaling axis drives Myc-induced prostate cancer in obese mice. Cancer Res. 77, 5158–5168 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Blando, J., Saha, A., Kiguchi, K. & DiGiovanni, J. in Obesity, Inflammation and Cancer Vol. 7 (eds Dannenberg, A. J. & Berger, N. A.) 235–256 (Springer, 2013).

  15. Hursting, S. D. & Berger, N. A. Energy balance, host-related factors, and cancer progression. J. Clin. Oncol. 28, 4058–4065 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Poirier, P. et al. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss. Arterioscler. Thromb. Vasc. Biol. 26, 968–976 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. American Cancer Society. Global Cancer Facts & Figures 4th edn (American Cancer Society, 2018).

  18. Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 72, 7–33 (2022).

    Article  PubMed  Google Scholar 

  19. American Cancer Society. Key statistics for prostate cancer. American Cancer Society https://www.cancer.org/cancer/prostate-cancer/about/key-statistics.html (2023).

  20. Roberts, D. L., Dive, C. & Renehan, A. G. Biological mechanisms linking obesity and cancer risk: new perspectives. Annu. Rev. Med. 61, 301–316 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Renehan, A. G., Roberts, D. L. & Dive, C. Obesity and cancer: pathophysiological and biological mechanisms. Arch. Physiol. Biochem. 114, 71–83 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Pischon, T., Nothlings, U. & Boeing, H. Obesity and cancer. Proc. Nutr. Soc. 67, 128–145 (2008).

    Article  PubMed  Google Scholar 

  23. Strom, S. S. et al. Influence of obesity on biochemical and clinical failure after external-beam radiotherapy for localized prostate cancer. Cancer 107, 631–639 (2006).

    Article  PubMed  Google Scholar 

  24. Strom, S. S. et al. Obesity, weight gain, and risk of biochemical failure among prostate cancer patients following prostatectomy. Clin. Cancer Res. 11, 6889–6894 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Nomura, A. M. Body size and prostate cancer. Epidemiol. Rev. 23, 126–131 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Calle, E. E., Rodriguez, C., Walker-Thurmond, K. & Thun, M. J. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N. Engl. J. Med. 348, 1625–1638 (2003).

    Article  PubMed  Google Scholar 

  27. Park, J., Euhus, D. M. & Scherer, P. E. Paracrine and endocrine effects of adipose tissue on cancer development and progression. Endocr. Rev. 32, 550–570 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Park, J., Morley, T. S., Kim, M., Clegg, D. J. & Scherer, P. E. Obesity and cancer–mechanisms underlying tumour progression and recurrence. Nat. Rev. Endocrinol. 10, 455–465 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fujita, K., Hayashi, T., Matsushita, M., Uemura, M. & Nonomura, N. Obesity, inflammation, and prostate cancer. J. Clin. Med. 8, 201 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hsing, A. W., Sakoda, L. C. & Chua, S. Jr Obesity, metabolic syndrome, and prostate cancer. Am. J. Clin. Nutr. 86, s843–s857 (2007).

    Article  PubMed  Google Scholar 

  32. Ouchi, N., Parker, J. L., Lugus, J. J. & Walsh, K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 11, 85–97 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Toren, P. & Venkateswaran, V. Periprostatic adipose tissue and prostate cancer progression: new insights into the tumor microenvironment. Clin. Genitourin. Cancer 12, 21–26 (2014).

    Article  PubMed  Google Scholar 

  34. Zhang, T. et al. CXCL1 mediates obesity-associated adipose stromal cell trafficking and function in the tumour microenvironment. Nat. Commun. 7, 11674 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Laurent, V. et al. Periprostatic adipocytes act as a driving force for prostate cancer progression in obesity. Nat. Commun. 7, 10230 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ramos-Nino, M. E. The role of chronic inflammation in obesity-associated cancers. ISRN Oncol. 2013, 697521 (2013).

    PubMed  PubMed Central  Google Scholar 

  37. Lauby-Secretan, B. et al. Body fatness and cancer — viewpoint of the IARC Working Group. N. Engl. J. Med. 375, 794–798 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Renehan, A. G., Tyson, M., Egger, M., Heller, R. F. & Zwahlen, M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 371, 569–578 (2008).

    Article  PubMed  Google Scholar 

  39. Stocks, T. et al. Cohort profile: the metabolic syndrome and cancer project (Me-Can). Int. J. Epidemiol. 39, 660–667 (2010).

    Article  PubMed  Google Scholar 

  40. Eheman, C. et al. Annual Report to the Nation on the status of cancer, 1975–2008, featuring cancers associated with excess weight and lack of sufficient physical activity. Cancer 118, 2338–2366 (2012).

    Article  PubMed  Google Scholar 

  41. Flegal, K. M., Carroll, M. D., Kit, B. K. & Ogden, C. L. Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010. JAMA 307, 491–497 (2012).

    Article  PubMed  Google Scholar 

  42. Finucane, M. M. et al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet 377, 557–567 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Fryar, C. D., Carroll, M. D. & Afful J. Prevalence of overweight, obesity, and severe obesity among adults aged 20 and over: United States, 1960–1962 through 2017–2018 (National Center for Health Statistics, 2021).

  44. Ogden, C.L. & Carroll, M. D. Prevalence of overweight, obesity, and extreme obesity among adults: United States, trends 1960–1962 through 2007–2008 (CDC, 2010).

  45. Porter, M. P. & Stanford, J. L. Obesity and the risk of prostate cancer. Prostate 62, 316–321 (2005).

    Article  PubMed  Google Scholar 

  46. Flavin, R., Zadra, G. & Loda, M. Metabolic alterations and targeted therapies in prostate cancer. J. Pathol. 223, 283–294 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Wright, M. E. et al. Prospective study of adiposity and weight change in relation to prostate cancer incidence and mortality. Cancer 109, 675–684 (2007).

    Article  PubMed  Google Scholar 

  48. Bassett, J. K. et al. Weight change and prostate cancer incidence and mortality. Int. J. Cancer 131, 1711–1719 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Rodriguez, C. et al. Body mass index, weight change, and risk of prostate cancer in the Cancer Prevention Study II Nutrition Cohort. Cancer Epidemiol. Biomark. Prev. 16, 63–69 (2007).

    Article  Google Scholar 

  50. Rodriguez, C. et al. Body mass index, height, and prostate cancer mortality in two large cohorts of adult men in the United States. Cancer Epidemiol. Biomark. Prev. 10, 345–353 (2001).

    CAS  Google Scholar 

  51. Perez-Cornago, A., Dunneram, Y., Watts, E. L., Key, T. J. & Travis, R. C. Adiposity and risk of prostate cancer death: a prospective analysis in UK Biobank and meta-analysis of published studies. BMC Med. 20, 143 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dickerman, B. A. et al. Weight change, obesity and risk of prostate cancer progression among men with clinically localized prostate cancer. Int. J. Cancer 141, 933–944 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hsing, A. W. et al. Body size and prostate cancer: a population-based case-control study in China. Cancer Epidemiol. Biomark. Prev. 9, 1335–1341 (2000).

    CAS  Google Scholar 

  54. Guerrios-Rivera, L. et al. Is Body Mass Index the best adiposity measure for prostate cancer risk? Results from a veterans affairs biopsy cohort. Urology 105, 129–135 (2017).

    Article  PubMed  Google Scholar 

  55. Spitz, M. R. et al. Epidemiologic determinants of clinically relevant prostate cancer. Int. J. Cancer 89, 259–264 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Mandair, D., Rossi, R. E., Pericleous, M., Whyand, T. & Caplin, M. E. Prostate cancer and the influence of dietary factors and supplements: a systematic review. Nutr. Metab. 11, 30 (2014).

    Article  Google Scholar 

  57. Yang, M. et al. Dietary patterns after prostate cancer diagnosis in relation to disease-specific and total mortality. Cancer Prev. Res. 8, 545–551 (2015).

    Article  CAS  Google Scholar 

  58. Aronson, W. J. et al. Growth inhibitory effect of low fat diet on prostate cancer cells: results of a prospective, randomized dietary intervention trial in men with prostate cancer. J. Urol. 183, 345–350 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Venkateswaran, V. & Klotz, L. H. Diet and prostate cancer: mechanisms of action and implications for chemoprevention. Nat. Rev. Urol. 7, 442–453 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Michaud, D. S. et al. A prospective study on intake of animal products and risk of prostate cancer. Cancer Causes Control 12, 557–567 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Richman, E. L. et al. Fat intake after diagnosis and risk of lethal prostate cancer and all-cause mortality. JAMA Intern. Med. 173, 1318–1326 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pelser, C., Mondul, A. M., Hollenbeck, A. R. & Park, Y. Dietary fat, fatty acids, and risk of prostate cancer in the NIH-AARP diet and health study. Cancer Epidemiol. Biomark. Prev. 22, 697–707 (2013).

    Article  CAS  Google Scholar 

  63. Strom, S. S. et al. Saturated fat intake predicts biochemical failure after prostatectomy. Int. J. Cancer 122, 2581–2585 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Allott, E. H. et al. Saturated fat intake and prostate cancer aggressiveness: results from the population-based North Carolina-Louisiana prostate cancer project. Prostate Cancer Prostatic Dis. 20, 48–54 (2017).

    Article  CAS  PubMed  Google Scholar 

  65. Freedland, S. J. & Aronson, W. J. Examining the relationship between obesity and prostate cancer. Rev. Urol. 6, 73–81 (2004).

    PubMed  PubMed Central  Google Scholar 

  66. Giovannucci, E. & Michaud, D. The role of obesity and related metabolic disturbances in cancers of the colon, prostate, and pancreas. Gastroenterology 132, 2208–2225 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Gong, Z. et al. Obesity, diabetes, and risk of prostate cancer: results from the prostate cancer prevention trial. Cancer Epidemiol. Biomark. Prev. 15, 1977–1983 (2006).

    Article  Google Scholar 

  68. Giovannucci, E., Rimm, E. B., Stampfer, M. J., Colditz, G. A. & Willett, W. C. Height, body weight, and risk of prostate cancer. Cancer Epidemiol. Biomark. Prev. 6, 557–563 (1997).

    CAS  Google Scholar 

  69. Engeland, A., Tretli, S. & Bjorge, T. Height, body mass index, and prostate cancer: a follow-up of 950000 Norwegian men. Br. J. Cancer 89, 1237–1242 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Giovannucci, E. et al. Body mass index and risk of prostate cancer in U.S. health professionals. J. Natl Cancer Inst. 95, 1240–1244 (2003).

    Article  PubMed  Google Scholar 

  71. Pasquali, R. et al. Effect of obesity and body fat distribution on sex hormones and insulin in men. Metabolism 40, 101–104 (1991).

    Article  CAS  PubMed  Google Scholar 

  72. Banez, L. L. et al. Obesity-related plasma hemodilution and PSA concentration among men with prostate cancer. JAMA 298, 2275–2280 (2007).

    Article  PubMed  Google Scholar 

  73. Freedland, S. J. Obesity and prostate cancer: a growing problem. Clin. Cancer Res. 11, 6763–6766 (2005).

    Article  PubMed  Google Scholar 

  74. Baillargeon, J. et al. The association of body mass index and prostate-specific antigen in a population-based study. Cancer 103, 1092–1095 (2005).

    Article  PubMed  Google Scholar 

  75. Walsh, P. C. Observed effect of age and body mass index on total and complexed PSA: analysis from a National Screening Program. J. Urol. 174, 1825–1826 (2005).

    PubMed  Google Scholar 

  76. Barrington, W. E. et al. Difference in association of obesity with prostate cancer risk between US African American and non-Hispanic white men in the selenium and vitamin E cancer prevention trial (SELECT). JAMA Oncol. 1, 342–349 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Chornokur, G. et al. Variation in HNF1B and obesity may influence prostate cancer risk in African American men: a pilot study. Prostate Cancer 2013, 384594 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Dasari, S. S. et al. Circadian rhythm disruption as a contributor to racial disparities in prostate cancer. Cancers 14, 5116 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Farrell, J., Petrovics, G., McLeod, D. G. & Srivastava, S. Genetic and molecular differences in prostate carcinogenesis between African American and Caucasian American men. Int. J. Mol. Sci. 14, 15510–15531 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Powell, I. J. & Bollig-Fischer, A. Minireview: the molecular and genomic basis for prostate cancer health disparities. Mol. Endocrinol. 27, 879–891 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bradbury, B. D., Wilk, J. B. & Kaye, J. A. Obesity and the risk of prostate cancer (United States). Cancer Causes Control 16, 637–641 (2005).

    Article  PubMed  Google Scholar 

  82. Golabek, T. et al. Obesity and prostate cancer incidence and mortality: a systematic review of prospective cohort studies. Urol. Int. 92, 7–14 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Moller, H. et al. Prostate cancer incidence, clinical stage and survival in relation to obesity: a prospective cohort study in Denmark. Int. J. Cancer 136, 1940–1947 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Tzenios, N., Tazanios, M. E. & Chahine, M. The impact of body mass index on prostate cancer: an updated systematic review and meta-analysis. Medicine 101, e30191 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Vidal, A. C. et al. Obesity and prostate cancer-specific mortality after radical prostatectomy: results from the Shared Equal Access Regional Cancer Hospital (SEARCH) database. Prostate Cancer Prostatic Dis. 20, 72–78 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. Keto, C. J. et al. Obesity is associated with castration-resistant disease and metastasis in men treated with androgen deprivation therapy after radical prostatectomy: results from the SEARCH database. BJU Int. 110, 492–498 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Cao, Y. & Ma, J. Body mass index, prostate cancer-specific mortality, and biochemical recurrence: a systematic review and meta-analysis. Cancer Prev. Res. 4, 486–501 (2011).

    Article  CAS  Google Scholar 

  88. Efstathiou, J. A., Chen, M. H., Renshaw, A. A., Loffredo, M. J. & D’Amico, A. V. Influence of body mass index on prostate-specific antigen failure after androgen suppression and radiation therapy for localized prostate cancer. Cancer 109, 1493–1498 (2007).

    Article  PubMed  Google Scholar 

  89. Jayachandran, J. et al. Obesity as a predictor of adverse outcome across black and white race: results from the shared equal access regional cancer hospital (SEARCH) database. Cancer 115, 5263–5271 (2009).

    Article  PubMed  Google Scholar 

  90. Hisasue, S. et al. Influence of body mass index and total testosterone level on biochemical recurrence following radical prostatectomy. Jpn. J. Clin. Oncol. 38, 129–133 (2008).

    Article  PubMed  Google Scholar 

  91. Spangler, E. et al. Association of obesity with tumor characteristics and treatment failure of prostate cancer in African-American and European American men. J. Urol. 178, 1939–1944 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Tourinho-Barbosa, R. et al. Biochemical recurrence after radical prostatectomy: what does it mean. Int. Braz. J. Urol. 44, 14–21 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Taplin, M. E. Biochemical (prostate-specific antigen) relapse: an oncologist’s perspective. Rev. Urol. 5, S3–S13 (2003).

    PubMed  PubMed Central  Google Scholar 

  94. Pound, C. R. et al. Natural history of progression after PSA elevation following radical prostatectomy. JAMA 281, 1591–1597 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Manna, F. et al. Metastases in prostate cancer. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a033688 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Nuhn, P. et al. Update on systemic prostate cancer therapies: management of metastatic castration-resistant prostate cancer in the era of precision oncology. Eur. Urol. 75, 88–99 (2019).

    Article  PubMed  Google Scholar 

  97. Damodaran, S., Lang, J. M. & Jarrard, D. F. Targeting metastatic hormone sensitive prostate cancer: chemohormonal therapy and new combinatorial approaches. J. Urol. 201, 876–885 (2019).

    Article  PubMed  Google Scholar 

  98. Wang, L. S. et al. Impact of obesity on outcomes after definitive dose-escalated intensity-modulated radiotherapy for localized prostate cancer. Cancer 121, 3010–3017 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Hanley, M. J., Abernethy, D. R. & Greenblatt, D. J. Effect of obesity on the pharmacokinetics of drugs in humans. Clin. Pharmacokinet. 49, 71–87 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Sheng, X. et al. Adipocytes sequester and metabolize the chemotherapeutic daunorubicin. Mol. Cancer Res. 15, 1704–1713 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lavalette, C. et al. Abdominal obesity and prostate cancer risk: epidemiological evidence from the EPICAP study. Oncotarget 9, 34485–34494 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  102. De Nunzio, C. et al. Abdominal obesity as risk factor for prostate cancer diagnosis and high grade disease: a prospective multicenter Italian cohort study. Urol. Oncol. 31, 997–1002 (2013).

    Article  PubMed  Google Scholar 

  103. Giovannucci, E. et al. A prospective study of dietary fat and risk of prostate cancer. J. Natl Cancer Inst. 85, 1571–1579 (1993).

    Article  CAS  PubMed  Google Scholar 

  104. Trayhurn, P. & Wood, I. S. Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br. J. Nutr. 92, 347–355 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Corvera, S. Cellular heterogeneity in adipose tissues. Annu. Rev. Physiol. 83, 257–278 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Khandekar, M. J., Cohen, P. & Spiegelman, B. M. Molecular mechanisms of cancer development in obesity. Nat. Rev. Cancer 11, 886–895 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Ribeiro, R. et al. Human periprostatic adipose tissue promotes prostate cancer aggressiveness in vitro. J. Exp. Clin. Cancer Res. 31, 32 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. van Roermund, J. G. et al. Periprostatic fat correlates with tumour aggressiveness in prostate cancer patients. BJU Int. 107, 1775–1779 (2011).

    Article  PubMed  Google Scholar 

  109. Bi, S. & Li, L. Browning of white adipose tissue: role of hypothalamic signaling. Ann. NY Acad. Sci. 1302, 30–34 (2013).

    Article  CAS  PubMed  Google Scholar 

  110. Tilg, H. & Moschen, A. R. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat. Rev. Immunol. 6, 772–783 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Friedman, J. M. Obesity: causes and control of excess body fat. Nature 459, 340–342 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Nagle, C. M. et al. Obesity and survival among women with ovarian cancer: results from the Ovarian Cancer Association Consortium. Br. J. Cancer 113, 817–826 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sun, K., Kusminski, C. M. & Scherer, P. E. Adipose tissue remodeling and obesity. J. Clin. Invest. 121, 2094–2101 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhang, Y. et al. Stromal progenitor cells from endogenous adipose tissue contribute to pericytes and adipocytes that populate the tumor microenvironment. Cancer Res. 72, 5198–5208 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Ribeiro, R. et al. Human periprostatic white adipose tissue is rich in stromal progenitor cells and a potential source of prostate tumor stroma. Exp. Biol. Med. 237, 1155–1162 (2012).

    Article  CAS  Google Scholar 

  116. Ribeiro, R. J. et al. Tumor cell-educated periprostatic adipose tissue acquires an aggressive cancer-promoting secretory profile. Cell Physiol. Biochem. 29, 233–240 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Finley, D. S. et al. Periprostatic adipose tissue as a modulator of prostate cancer aggressiveness. J. Urol. 182, 1621–1627 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Nassar, Z. D. et al. Peri-prostatic adipose tissue: the metabolic microenvironment of prostate cancer. BJU Int. 121, 9–21 (2018).

    Article  PubMed  Google Scholar 

  119. Cozzo, A. J., Fuller, A. M. & Makowski, L. Contribution of adipose tissue to development of cancer. Compr. Physiol. 8, 237–282 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Uehara, H. et al. Adipose tissue: critical contributor to the development of prostate cancer. J. Med. Invest. 65, 9–17 (2018).

    Article  PubMed  Google Scholar 

  121. Bissell, M. J. & Radisky, D. Putting tumours in context. Nat. Rev. Cancer 1, 46–54 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Walz, J. et al. A critical analysis of the current knowledge of surgical anatomy related to optimization of cancer control and preservation of continence and erection in candidates for radical prostatectomy. Eur. Urol. 57, 179–192 (2010).

    Article  PubMed  Google Scholar 

  123. Sung, M. T., Eble, J. N. & Cheng, L. Invasion of fat justifies assignment of stage pT3a in prostatic adenocarcinoma. Pathology 38, 309–311 (2006).

    Article  PubMed  Google Scholar 

  124. Strong, A. L., Burow, M. E., Gimble, J. M. & Bunnell, B. A. Concise review: the obesity cancer paradigm: exploration of the interactions and crosstalk with adipose stem cells. Stem Cell 33, 318–326 (2015).

    Article  CAS  Google Scholar 

  125. Sun, K., Tordjman, J., Clement, K. & Scherer, P. E. Fibrosis and adipose tissue dysfunction. Cell Metab. 18, 470–477 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Trayhurn, P. Hypoxia and adipose tissue function and dysfunction in obesity. Physiol. Rev. 93, 1–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  127. Hammarstedt, A., Gogg, S., Hedjazifar, S., Nerstedt, A. & Smith, U. Impaired adipogenesis and dysfunctional adipose tissue in human hypertrophic obesity. Physiol. Rev. 98, 1911–1941 (2018).

    Article  CAS  PubMed  Google Scholar 

  128. Nishimura, S. et al. In vivo imaging in mice reveals local cell dynamics and inflammation in obese adipose tissue. J. Clin. Invest. 118, 710–721 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Murano, I. et al. Dead adipocytes, detected as crown-like structures, are prevalent in visceral fat depots of genetically obese mice. J. Lipid Res. 49, 1562–1568 (2008).

    Article  CAS  PubMed  Google Scholar 

  130. Carroll, V. A. & Ashcroft, M. Targeting the molecular basis for tumour hypoxia. Expert Rev. Mol. Med. 7, 1–16 (2005).

    Article  PubMed  Google Scholar 

  131. Cao, Y. Angiogenesis modulates adipogenesis and obesity. J. Clin. Invest. 117, 2362–2368 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Lijnen, H. R. Angiogenesis and obesity. Cardiovasc. Res. 78, 286–293 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Takeda, K., Sowa, Y., Nishino, K., Itoh, K. & Fushiki, S. Adipose-derived stem cells promote proliferation, migration, and tube formation of lymphatic endothelial cells in vitro by secreting lymphangiogenic factors. Ann. Plast. Surg. 74, 728–736 (2015).

    Article  CAS  PubMed  Google Scholar 

  134. Himbert, C. et al. Signals from the adipose microenvironment and the obesity-cancer link — a systematic review. Cancer Prev. Res. 10, 494–506 (2017).

    Article  CAS  Google Scholar 

  135. Ribeiro, R. et al. Obesity and prostate cancer: gene expression signature of human periprostatic adipose tissue. BMC Med. 10, 108 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Bourin, P. et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy 15, 641–648 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Catalan, V., Gomez-Ambrosi, J., Rodriguez, A. & Fruhbeck, G. Adipose tissue immunity and cancer. Front. Physiol. 4, 275 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Gomez-Ambrosi, J. et al. Body mass index classification misses subjects with increased cardiometabolic risk factors related to elevated adiposity. Int. J. Obes. 36, 286–294 (2012).

    Article  CAS  Google Scholar 

  139. Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Xu, H. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112, 1821–1830 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. McLaughlin, T., Ackerman, S. E., Shen, L. & Engleman, E. Role of innate and adaptive immunity in obesity-associated metabolic disease. J. Clin. Invest. 127, 5–13 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Cancello, R. et al. Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes 54, 2277–2286 (2005).

    Article  CAS  PubMed  Google Scholar 

  143. Bruun, J. M., Lihn, A. S., Pedersen, S. B. & Richelsen, B. Monocyte chemoattractant protein-1 release is higher in visceral than subcutaneous human adipose tissue (AT): implication of macrophages resident in the AT. J. Clin. Endocrinol. Metab. 90, 2282–2289 (2005).

    Article  CAS  PubMed  Google Scholar 

  144. Khodabandehloo, H., Gorgani-Firuzjaee, S., Panahi, G. & Meshkani, R. Molecular and cellular mechanisms linking inflammation to insulin resistance and β-cell dysfunction. Transl. Res. 167, 228–256 (2016).

    Article  CAS  PubMed  Google Scholar 

  145. Ramkhelawon, B. et al. Netrin-1 promotes adipose tissue macrophage retention and insulin resistance in obesity. Nat. Med. 20, 377–384 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Parisi, L. et al. Macrophage polarization in chronic inflammatory diseases: killers or builders? J. Immunol. Res. 2018, 8917804 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Lumeng, C. N., Bodzin, J. L. & Saltiel, A. R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117, 175–184 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Seijkens, T., Kusters, P., Chatzigeorgiou, A., Chavakis, T. & Lutgens, E. Immune cell crosstalk in obesity: a key role for costimulation? Diabetes 63, 3982–3991 (2014).

    Article  CAS  PubMed  Google Scholar 

  149. Gordon, S. & Taylor, P. R. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 5, 953–964 (2005).

    Article  CAS  PubMed  Google Scholar 

  150. Castoldi, A., Naffah de Souza, C., Camara, N. O. & Moraes-Vieira, P. M. The macrophage switch in obesity development. Front. Immunol. 6, 637 (2015).

    PubMed  Google Scholar 

  151. Phieler, J. et al. The complement anaphylatoxin C5a receptor contributes to obese adipose tissue inflammation and insulin resistance. J. Immunol. 191, 4367–4374 (2013).

    Article  CAS  PubMed  Google Scholar 

  152. Choe, S. S., Huh, J. Y., Hwang, I. J., Kim, J. I. & Kim, J. B. Adipose tissue remodeling: its role in energy metabolism and metabolic disorders. Front. Endocrinol. 7, 30 (2016).

    Article  Google Scholar 

  153. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994).

    Article  CAS  PubMed  Google Scholar 

  154. Conde, J. et al. Adipokines: biofactors from white adipose tissue. A complex hub among inflammation, metabolism, and immunity. Biofactors 37, 413–420 (2011).

    Article  CAS  PubMed  Google Scholar 

  155. Lehr, S., Hartwig, S. & Sell, H. Adipokines: a treasure trove for the discovery of biomarkers for metabolic disorders. Proteomics Clin. Appl. 6, 91–101 (2012).

    Article  CAS  PubMed  Google Scholar 

  156. Deng, Y. & Scherer, P. E. Adipokines as novel biomarkers and regulators of the metabolic syndrome. Ann. NY Acad. Sci. 1212, E1–E19 (2010).

    Article  PubMed  Google Scholar 

  157. Mistry, T., Digby, J. E., Desai, K. M. & Randeva, H. S. Obesity and prostate cancer: a role for adipokines. Eur. Urol. 52, 46–53 (2007).

    Article  CAS  PubMed  Google Scholar 

  158. Nunemaker, C. S. et al. Increased serum CXCL1 and CXCL5 are linked to obesity, hyperglycemia, and impaired islet function. J. Endocrinol. 222, 267–276 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Miyake, M., Lawton, A., Goodison, S., Urquidi, V. & Rosser, C. J. Chemokine (C-X-C motif) ligand 1 (CXCL1) protein expression is increased in high-grade prostate cancer. Pathol. Res. Pract. 210, 74–78 (2014).

    Article  CAS  PubMed  Google Scholar 

  160. Straczkowski, M. et al. Plasma interleukin-8 concentrations are increased in obese subjects and related to fat mass and tumor necrosis factor-α system. J. Clin. Endocrinol. Metab. 87, 4602–4606 (2002).

    Article  CAS  PubMed  Google Scholar 

  161. Araki, S. et al. Interleukin-8 is a molecular determinant of androgen independence and progression in prostate cancer. Cancer Res. 67, 6854–6862 (2007).

    Article  CAS  PubMed  Google Scholar 

  162. Polimera, H. V. et al. Plasma IL-8 and PD-L1 and overall survival in metastatic castration-resistant prostate cancer patients (mCRPC). J. Clin. Oncol. 38, e1755 (2020).

    Article  Google Scholar 

  163. Maynard, J. P. et al. IL8 expression is associated with prostate cancer aggressiveness and androgen receptor loss in primary and metastatic prostate cancer. Mol. Cancer Res. 18, 153–165 (2020).

    Article  CAS  PubMed  Google Scholar 

  164. Walz, A., Peveri, P., Aschauer, H. & Baggiolini, M. Purification and amino acid sequencing of NAF, a novel neutrophil-activating factor produced by monocytes. Biochem. Biophys. Res. Commun. 149, 755–761 (1987).

    Article  CAS  PubMed  Google Scholar 

  165. Hebert, C. A. & Baker, J. B. Interleukin-8: a review. Cancer Invest. 11, 743–750 (1993).

    Article  CAS  PubMed  Google Scholar 

  166. Holmes, W. E., Lee, J., Kuang, W. J., Rice, G. C. & Wood, W. I. Structure and functional expression of a human interleukin-8 receptor. Science. 1991. 253: 1278–1280. J. Immunol. 183, 2895–2897 (2009).

    CAS  PubMed  Google Scholar 

  167. Morohashi, H. et al. Expression of both types of human interleukin-8 receptors on mature neutrophils, monocytes, and natural killer cells. J. Leukoc. Biol. 57, 180–187 (1995).

    Article  CAS  PubMed  Google Scholar 

  168. Kim, S. J. et al. Expression of interleukin-8 correlates with angiogenesis, tumorigenicity, and metastasis of human prostate cancer cells implanted orthotopically in nude mice. Neoplasia 3, 33–42 (2001).

    Article  CAS  PubMed  Google Scholar 

  169. Domanska, U. M. et al. A review on CXCR4/CXCL12 axis in oncology: no place to hide. Eur. J. Cancer 49, 219–230 (2013).

    Article  CAS  PubMed  Google Scholar 

  170. Sun, X. et al. CXCL12/CXCR4/CXCR7 chemokine axis and cancer progression. Cancer Metastasis Rev. 29, 709–722 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Su, F., Ahn, S., Saha, A., DiGiovanni, J. & Kolonin, M. G. Adipose stromal cell targeting suppresses prostate cancer epithelial-mesenchymal transition and chemoresistance. Oncogene 38, 1979–1988 (2019).

    Article  CAS  PubMed  Google Scholar 

  172. Ahn, S., Saha, A., Kolonin, M. G., DiGiovanni, J. Signaling via both CXCR4 and CXCR7 in prostate cancer cells promotes tumor progression and underlies obesity-associated epithelial-mesenchymal transition. Oncogene 41, 4633-4644 (2022).

  173. Wang, J. et al. The role of CXCR7/RDC1 as a chemokine receptor for CXCL12/SDF-1 in prostate cancer. J. Biol. Chem. 283, 4283–4294 (2008).

    Article  CAS  PubMed  Google Scholar 

  174. Santos-Alvarez, J., Goberna, R. & Sanchez-Margalet, V. Human leptin stimulates proliferation and activation of human circulating monocytes. Cell. Immunol. 194, 6–11 (1999).

    Article  CAS  PubMed  Google Scholar 

  175. Fruhbeck, G. Intracellular signalling pathways activated by leptin. Biochem. J. 393, 7–20 (2006).

    Article  CAS  PubMed  Google Scholar 

  176. Kiguchi, N., Maeda, T., Kobayashi, Y., Fukazawa, Y. & Kishioka, S. Leptin enhances CC-chemokine ligand expression in cultured murine macrophage. Biochem. Biophys. Res. Commun. 384, 311–315 (2009).

    Article  CAS  PubMed  Google Scholar 

  177. Fong, G. H., Rossant, J., Gertsenstein, M. & Breitman, M. L. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376, 66–70 (1995).

    Article  CAS  PubMed  Google Scholar 

  178. Weidner, N., Carroll, P. R., Flax, J., Blumenfeld, W. & Folkman, J. Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am. J. Pathol. 143, 401–409 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Duque, J. L. et al. Plasma levels of vascular endothelial growth factor are increased in patients with metastatic prostate cancer. Urology 54, 523–527 (1999).

    Article  CAS  PubMed  Google Scholar 

  180. Woollard, D. J. et al. Differential expression of VEGF ligands and receptors in prostate cancer. Prostate 73, 563–572 (2013).

    Article  CAS  PubMed  Google Scholar 

  181. Simpson, A. J., Booth, N. A., Moore, N. R. & Bennett, B. Distribution of plasminogen activator inhibitor (PAI-1) in tissues. J. Clin. Pathol. 44, 139–143 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Wang, W. & Seale, P. Control of brown and beige fat development. Nat. Rev. Mol. Cell Biol. 17, 691–702 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Gao, Z., Daquinag, A. C., Su, F., Snyder, B. & Kolonin, M. G. PDGFR/PDGFRβ signaling balance modulates progenitor cell differentiation into white and beige adipocytes. Development 145, dev155861 (2018).

    PubMed  PubMed Central  Google Scholar 

  184. Eckel-Mahan, K., Ribas Latre, A. & Kolonin, M. G. Adipose stromal cell expansion and exhaustion: mechanisms and consequences. Cells 9, 863 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Magi-Galluzzi, C. et al. International Society of Urological Pathology (ISUP) Consensus Conference on Handling and Staging of Radical Prostatectomy Specimens. Working group 3: extraprostatic extension, lymphovascular invasion and locally advanced disease. Mod. Pathol. 24, 26–38 (2011).

    Article  PubMed  Google Scholar 

  186. Kapoor, J. et al. Extraprostatic extension into periprostatic fat is a more important determinant of prostate cancer recurrence than an invasive phenotype. J. Urol. 190, 2061–2066 (2013).

    Article  PubMed  Google Scholar 

  187. Wan, X. et al. Prostate cancer cell-stromal cell crosstalk via FGFR1 mediates antitumor activity of dovitinib in bone metastases. Sci. Transl Med. 6, 122–125 (2014).

    Article  Google Scholar 

  188. Hagglof, C. & Bergh, A. The stroma — a key regulator in prostate function and malignancy. Cancers 4, 531–548 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Dawson, M. R., Chae, S. S., Jain, R. K. & Duda, D. G. Direct evidence for lineage-dependent effects of bone marrow stromal cells on tumor progression. Am. J. Cancer Res. 1, 144–154 (2011).

    CAS  PubMed  Google Scholar 

  190. Du, R. et al. HIF1α induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13, 206–220 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Quante, M. et al. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell 19, 257–272 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Hanahan, D. & Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309–322 (2012).

    Article  CAS  PubMed  Google Scholar 

  193. Galie, M. et al. Mesenchymal stem cells share molecular signature with mesenchymal tumor cells and favor early tumor growth in syngeneic mice. Oncogene 27, 2542–2545 (2007).

    Article  PubMed  Google Scholar 

  194. Karnoub, A. E. et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449, 557–563 (2007).

    Article  CAS  PubMed  Google Scholar 

  195. Bhowmick, N. A., Neilson, E. G. & Moses, H. L. Stromal fibroblasts in cancer initiation and progression. Nature 432, 332–337 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Peng, Y. C., Levine, C. M., Zahid, S., Wilson, E. L. & Joyner, A. L. Sonic hedgehog signals to multiple prostate stromal stem cells that replenish distinct stromal subtypes during regeneration. Proc. Natl Acad. Sci. USA 110, 20611–20616 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Kolonin, M. G. Progenitor cell mobilization from extramedullary organs. Methods Mol. Biol. 904, 243–252 (2012).

    Article  CAS  PubMed  Google Scholar 

  198. Kidd, S. et al. Origins of the tumor microenvironment: quantitative assessment of adipose-derived and bone marrow-derived stroma. PLoS ONE 7, e30563 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Placencio, V. R., Li, X., Sherrill, T. P., Fritz, G. & Bhowmick, N. A. Bone marrow derived mesenchymal stem cells incorporate into the prostate during regrowth. PLoS ONE 5, e12920 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Jung, Y. et al. Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis. Nat. Commun. 4, 1795 (2013).

    Article  PubMed  Google Scholar 

  201. Fukumura, D. & Jain, R. K. Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization. Microvasc. Res. 74, 72–84 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Borriello, L. & DeClerck, Y. A. Tumor microenvironment and therapeutic resistance process. Med. Sci. 30, 445–451 (2014).

    Google Scholar 

  203. Wels, J., Kaplan, R. N., Rafii, S. & Lyden, D. Migratory neighbors and distant invaders: tumor-associated niche cells. Genes Dev. 22, 559–574 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. San Martin, R. et al. Recruitment of CD34+ fibroblasts in tumor-associated reactive stroma: the reactive microvasculature hypothesis. Am. J. Pathol. 184, 1860–1870 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  206. Kiskowski, M. A. et al. Role for stromal heterogeneity in prostate tumorigenesis. Cancer Res. 71, 3459–3470 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Lu, P., Weaver, V. M. & Werb, Z. The extracellular matrix: a dynamic niche in cancer progression. J. Cell Biol. 196, 395–406 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Kolonin, M. G., Evans, K. W., Mani, S. A. & Gomer, R. H. Alternative origins of stroma in normal organs and disease. Stem Cell Res. 8, 312–323 (2012).

    Article  CAS  PubMed  Google Scholar 

  209. Nieman, K. M., Romero, I. L., Van Houten, B. & Lengyel, E. Adipose tissue and adipocytes support tumorigenesis and metastasis. Biochim. Biophys. Acta 1831, 1533–15341 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Zhu, K., Cai, L., Cui, C., de Los Toyos, J. R. & Anastassiou, D. Single-cell analysis reveals the pan-cancer invasiveness-associated transition of adipose-derived stromal cells into COL11A1-expressing cancer-associated fibroblasts. PLoS Comput. Biol. 17, e1009228 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Zhu, Q. et al. Adipocyte mesenchymal transition contributes to mammary tumor progression. Cell Rep. 40, 111362 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Bellows, C. F., Zhang, Y., Chen, J., Frazier, M. L. & Kolonin, M. G. Circulation of progenitor cells in obese and lean colorectal cancer patients. Cancer Epidemiol. Biomark. Prev. 20, 2461–2468 (2011).

    Article  CAS  Google Scholar 

  213. Bellows, C. F., Zhang, Y., Simmons, P. J., Khalsa, A. S. & Kolonin, M. G. Influence of BMI on level of circulating progenitor cells. Obesity 19, 1722–1726 (2011).

    Article  PubMed  Google Scholar 

  214. Zhang, Y. et al. White adipose tissue cells are recruited by experimental tumors and promote cancer progression in mouse models. Cancer Res. 69, 5259–5266 (2009).

    Article  CAS  PubMed  Google Scholar 

  215. Klopp, A. H. et al. Omental adipose tissue-derived stromal cells promote vascularization and growth of endometrial tumors. Clin. Cancer Res. 18, 771–782 (2012).

    Article  CAS  PubMed  Google Scholar 

  216. Sirin, O. & Kolonin, M. G. Treatment of obesity as a potential complementary approach to cancer therapy. Drug Discov. Today 18, 567–573 (2013).

    Article  PubMed  Google Scholar 

  217. Bertolini, F., Lohsiriwat, V., Petit, J. Y. & Kolonin, M. G. Adipose tissue cells, lipotransfer and cancer: a challenge for scientists, oncologists and surgeons. Biochim. Biophys. Acta 1826, 209–214 (2012).

    CAS  PubMed  Google Scholar 

  218. Bertolini, F., Petit, J. Y. & Kolonin, M. G. Stem cells from adipose tissue and breast cancer: hype, risks and hope. Br. J. Cancer 112, 419–423 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Nie, J. et al. Combinatorial peptides identify α5β1 integrin as a receptor for the matricellular protein SPARC on adipose stromal cells. Stem Cell 26, 2735–2745 (2008).

    Article  CAS  Google Scholar 

  220. Tseng, C. & Kolonin, M. G. Proteolytic isoforms of SPARC induce adipose stromal cell mobilization in obesity. Stem Cell 34, 174–190 (2015).

    Article  Google Scholar 

  221. Rossi, D. & Zlotnik, A. The biology of chemokines and their receptors. Annu. Rev. Immunol. 18, 217–242 (2000).

    Article  CAS  PubMed  Google Scholar 

  222. Laird, D. J., von Andrian, U. H. & Wagers, A. J. Stem cell trafficking in tissue development, growth, and disease. Cell 132, 612–630 (2008).

    Article  CAS  PubMed  Google Scholar 

  223. Kolonin, M. G. & DiGiovanni, J. The role of adipose stroma in prostate cancer aggressiveness. Transl. Androl. Urol. 8, S348–S350 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Ahn, S., Saha, A., Clark, R., Kolonin, M. G. & DiGiovanni, J. CXCR4 and CXCR7 signaling promotes tumor progression and obesity-associated epithelial-mesenchymal transition in prostate cancer cells. Oncogene 41, 4633–4644 (2022).

    Article  CAS  PubMed  Google Scholar 

  225. Zhang, Y. & Kolonin, M. G. Cytokine signaling regulating adipose stromal cell trafficking. Adipocyte 5, 369–374 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Kaplan, J. L. et al. Adipocyte progenitor cells initiate monocyte chemoattractant protein-1-mediated macrophage accumulation in visceral adipose tissue. Mol. Metab. 4, 779–794 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Murdoch, C., Muthana, M., Coffelt, S. B. & Lewis, C. E. The role of myeloid cells in the promotion of tumour angiogenesis. Nat. Rev. Cancer 8, 618–631 (2008).

    Article  CAS  PubMed  Google Scholar 

  228. Iyengar, N. M. et al. Metabolic obesity, adipose inflammation and elevated breast aromatase in women with normal body mass index. Cancer Prev. Res. 10, 235–243 (2017).

    Article  CAS  Google Scholar 

  229. Lengyel, E., Makowski, L., DiGiovanni, J. & Kolonin, M. G. Cancer as a matter of fat: the crosstalk between adipose tissue and tumors. Trends Cancer 4, 374–384 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Ling, L. et al. Obesity-associated adipose stromal cells promote breast cancer invasion through direct cell contact and ECM remodeling. Adv. Funct. Mater. 30, 1910650 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Zyromski, N. J. et al. Obesity potentiates the growth and dissemination of pancreatic cancer. Surgery 146, 258–263 (2009).

    Article  PubMed  Google Scholar 

  232. Orecchioni, S. et al. Complementary populations of human adipose CD34+ progenitor cells promote growth, angiogenesis, and metastasis of breast cancer. Cancer Res. 73, 5880–5891 (2013).

    Article  CAS  PubMed  Google Scholar 

  233. Rowan, B. G. et al. Human adipose tissue-derived stromal/stem cells promote migration and early metastasis of triple negative breast cancer xenografts. PLoS ONE 9, e89595 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Martin-Padura, I. et al. The white adipose tissue used in lipotransfer procedures is a rich reservoir of CD34+ progenitors able to promote cancer progression. Cancer Res. 72, 325–334 (2012).

    Article  CAS  PubMed  Google Scholar 

  235. Zhao, M., Dumur, C. I., Holt, S. E., Beckman, M. J. & Elmore, L. W. Multipotent adipose stromal cells and breast cancer development: think globally, act locally. Mol. Carcinog. 49, 923–927 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Picon-Ruiz, M. et al. Interactions between adipocytes and breast cancer cells stimulate cytokine production and drive Src/Sox2/miR-302b-mediated malignant progression. Cancer Res. 76, 491–504 (2016).

    Article  CAS  PubMed  Google Scholar 

  237. Nowicka, A. et al. Human omental-derived adipose stem cells increase ovarian cancer proliferation, migration, and chemoresistance. PLoS ONE 8, e81859 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  238. Salimian Rizi, B. et al. Nitric oxide mediates metabolic coupling of omentum-derived adipose stroma to ovarian and endometrial cancer cells. Cancer Res. 75, 456–4571 (2015).

    Article  CAS  PubMed  Google Scholar 

  239. Duong, M. N. et al. Adipose cells promote resistance of breast cancer cells to trastuzumab-mediated antibody-dependent cellular cytotoxicity. Breast Cancer Res. 17, 57–63 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Houthuijzen, J. M., Daenen, L. G., Roodhart, J. M. & Voest, E. E. The role of mesenchymal stem cells in anti-cancer drug resistance and tumour progression. Br. J. Cancer 106, 1901–1906 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Chen, D. et al. Paracrine factors from adipose-mesenchymal stem cells enhance metastatic capacity through Wnt signaling pathway in a colon cancer cell co-culture model. Cancer Cell Int. 15, 42–47 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Meurette, O. & Mehlen, P. Notch signaling in the tumor microenvironment. Cancer Cell 34, 536–548 (2018).

    Article  CAS  PubMed  Google Scholar 

  243. Danza, G. et al. Notch3 is activated by chronic hypoxia and contributes to the progression of human prostate cancer. Int. J. Cancer 133, 2577–2586 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Kwon, O. J. et al. Increased Notch signalling inhibits anoikis and stimulates proliferation of prostate luminal epithelial cells. Nat. Commun. 5, 4416–4422 (2014).

    Article  CAS  PubMed  Google Scholar 

  245. Capaccione, K. M. & Pine, S. R. The Notch signaling pathway as a mediator of tumor survival. Carcinogenesis 34, 1420–1430 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Santagata, S. et al. JAGGED1 expression is associated with prostate cancer metastasis and recurrence. Cancer Res. 64, 6854–6857 (2004).

    Article  CAS  PubMed  Google Scholar 

  247. Carvalho, F. L., Simons, B. W., Eberhart, C. G. & Berman, D. M. Notch signaling in prostate cancer: a moving target. Prostate 74, 933–945 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Zhu, H., Zhou, X., Redfield, S., Lewin, J. & Miele, L. Elevated Jagged-1 and Notch-1 expression in high grade and metastatic prostate cancers. Am. J. Transl. Res. 5, 368–378 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  249. Bin Hafeez, B. et al. Targeted knockdown of Notch1 inhibits invasion of human prostate cancer cells concomitant with inhibition of matrix metalloproteinase-9 and urokinase plasminogen activator. Clin. Cancer Res. 15, 452–459 (2009).

    Article  PubMed Central  Google Scholar 

  250. Xishan, Z. et al. Jagged-2 enhances immunomodulatory activity in adipose derived mesenchymal stem cells. Sci. Rep. 5, 14284 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Shi, D. et al. Human adipose tissue-derived mesenchymal stem cells facilitate the immunosuppressive effect of cyclosporin A on T lymphocytes through Jagged-1-mediated inhibition of NF-κB signaling. Exp. Hematol. 39, 214–224.e1 (2011).

    Article  CAS  PubMed  Google Scholar 

  252. Zhou, J. et al. Notch and TGFβ form a positive regulatory loop and regulate EMT in epithelial ovarian cancer cells. Cell. Signal. 28, 838–849 (2016).

    Article  CAS  PubMed  Google Scholar 

  253. Su, Q. et al. Jagged1 upregulation in prostate epithelial cells promotes formation of reactive stroma in the Pten null mouse model for prostate cancer. Oncogene 36, 618–627 (2017).

    Article  CAS  PubMed  Google Scholar 

  254. Kwon, O. J. et al. Notch promotes tumor metastasis in a prostate-specific Pten-null mouse model. J. Clin. Invest. 126, 2626–2641 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  255. Liang, S. C. et al. IL-22 induces an acute-phase response. J. Immunol. 185, 5531–5538 (2010).

    Article  CAS  PubMed  Google Scholar 

  256. Sestito, R. et al. STAT3-dependent effects of IL-22 in human keratinocytes are counterregulated by sirtuin 1 through a direct inhibition of STAT3 acetylation. FASEB J. 25, 916–927 (2011).

    Article  CAS  PubMed  Google Scholar 

  257. Beloribi-Djefaflia, S., Vasseur, S. & Guillaumond, F. Lipid metabolic reprogramming in cancer cells. Oncogenesis 5, e189 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Pascual, G. et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature 541, 41–45 (2017).

    Article  CAS  PubMed  Google Scholar 

  259. Mukherjee, A., Kenny, H. A. & Lengyel, E. Unsaturated fatty acids maintain cancer cell stemness. Cell Stem Cell 20, 291–292 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Rohrig, F. & Schulze, A. The multifaceted roles of fatty acid synthesis in cancer. Nat. Rev. Cancer 16, 732–749 (2016).

    Article  PubMed  Google Scholar 

  261. Daquinag, A. C. et al. Fatty acid mobilization from adipose tissue is mediated by CD36 posttranslational modifications and intracellular trafficking. JCI Insight 6, e147057 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  262. Currie, E., Schulze, A., Zechner, R., Walther, T. C. & Farese, R. V. Jr. Cellular fatty acid metabolism and cancer. Cell Metab. 18, 153–161 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Balaban, S., Lee, L. S., Schreuder, M. & Hoy, A. J. Obesity and cancer progression: is there a role of fatty acid metabolism. Biomed. Res. Int. 2015, 274585 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  264. Deep, G. & Schlaepfer, I. R. Aberrant lipid metabolism promotes prostate cancer: role in cell survival under hypoxia and extracellular vesicles biogenesis. Int. J. Mol. Sci. 17, 1061 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  265. Zaidi, N. et al. Lipogenesis and lipolysis: the pathways exploited by the cancer cells to acquire fatty acids. Prog. Lipid Res. 52, 585–589 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Ros, S. et al. Functional metabolic screen identifies 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 as an important regulator of prostate cancer cell survival. Cancer Discov. 2, 328–343 (2012).

    Article  CAS  PubMed  Google Scholar 

  267. Pandey, P. R., Liu, W., Xing, F., Fukuda, K. & Watabe, K. Anti-cancer drugs targeting fatty acid synthase (FAS). Recent Pat. Anticancer Drug Discov. 7, 185–197 (2012).

    Article  CAS  PubMed  Google Scholar 

  268. Kuemmerle, N. B. et al. Lipoprotein lipase links dietary fat to solid tumor cell proliferation. Mol. Cancer Ther. 10, 427–436 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Yao, C. H. et al. Exogenous fatty acids are the preferred source of membrane lipids in proliferating fibroblasts. Cell Chem. Biol. 23, 483–493 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Louie, S. M., Roberts, L. S., Mulvihill, M. M., Luo, K. & Nomura, D. K. Cancer cells incorporate and remodel exogenous palmitate into structural and oncogenic signaling lipids. Biochim. Biophys. Acta 1831, 1566–1572 (2013).

    Article  CAS  PubMed  Google Scholar 

  271. Nath, A., Li, I., Roberts, L. R. & Chan, C. Elevated free fatty acid uptake via CD36 promotes epithelial-mesenchymal transition in hepatocellular carcinoma. Sci. Rep. 5, 14752 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Byon, C. H. et al. Free fatty acids enhance breast cancer cell migration through plasminogen activator inhibitor-1 and SMAD4. Lab. Invest. 89, 1221–1228 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Dalmau, N., Jaumot, J., Tauler, R. & Bedia, C. Epithelial-to-mesenchymal transition involves triacylglycerol accumulation in DU145 prostate cancer cells. Mol. Biosyst. 11, 3397–3406 (2015).

    Article  CAS  PubMed  Google Scholar 

  274. Sanchez-Martinez, R. et al. A link between lipid metabolism and epithelial-mesenchymal transition provides a target for colon cancer therapy. Oncotarget 6, 38719–38736 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  275. Wendt, M. K., Balanis, N., Carlin, C. R. & Schiemann, W. P. STAT3 and epithelial-mesenchymal transitions in carcinomas. JAKSTAT 3, e28975 (2014).

    PubMed  PubMed Central  Google Scholar 

  276. Yuan, J., Zhang, F. & Niu, R. Multiple regulation pathways and pivotal biological functions of STAT3 in cancer. Sci. Rep. 5, 17663 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Grivennikov, S. I. & Karin, M. Dangerous liaisons: STAT3 and NF-κB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev. 21, 11–19 (2010).

    Article  CAS  PubMed  Google Scholar 

  278. Goktuna, S. I., Diamanti, M. A. & Chau, T. L. IKKs and tumor cell plasticity. FEBS J. 285, 2161–2181 (2018).

    Article  PubMed  Google Scholar 

  279. Rosen, E. D. & Spiegelman, B. M. What we talk about when we talk about fat. Cell 156, 20–44 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Ducharme, N. A. & Bickel, P. E. Lipid droplets in lipogenesis and lipolysis. Endocrinology 149, 942–949 (2008).

    Article  CAS  PubMed  Google Scholar 

  281. Granneman, J. G. & Moore, H. P. Location, location: protein trafficking and lipolysis in adipocytes. Trends Endocrinol. Metab. 19, 3–9 (2008).

    Article  CAS  PubMed  Google Scholar 

  282. Wang, Y. Y. et al. Mammary adipocytes stimulate breast cancer invasion through metabolic remodeling of tumor cells. JCI Insight 2, e87489 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  283. Arner, P. & Langin, D. Lipolysis in lipid turnover, cancer cachexia, and obesity-induced insulin resistance. Trends Endocrinol. Metab. 25, 255–262 (2014).

    Article  CAS  PubMed  Google Scholar 

  284. Rohm, M. et al. An AMP-activated protein kinase-stabilizing peptide ameliorates adipose tissue wasting in cancer cachexia in mice. Nat. Med. 22, 1120–1130 (2016).

    Article  CAS  PubMed  Google Scholar 

  285. Okumura, T. et al. Extra-pancreatic invasion induces lipolytic and fibrotic changes in the adipose microenvironment, with released fatty acids enhancing the invasiveness of pancreatic cancer cells. Oncotarget 8, 18280–18295 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  286. Yamaguchi, J., Ohtani, H., Nakamura, K., Shimokawa, I. & Kanematsu, T. Prognostic impact of marginal adipose tissue invasion in ductal carcinoma of the breast. Am. J. Clin. Pathol. 130, 382–388 (2008).

    Article  PubMed  Google Scholar 

  287. Nieman, K. M. et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat. Med. 17, 1498–1503 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Ye, H. et al. Leukemic stem cells evade chemotherapy by metabolic adaptation to an adipose tissue niche. Cell Stem Cell 19, 23–37 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Dirat, B. et al. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res. 71, 2455–2465 (2011).

    Article  CAS  PubMed  Google Scholar 

  290. Balaban, S. et al. Adipocyte lipolysis links obesity to breast cancer growth: adipocyte-derived fatty acids drive breast cancer cell proliferation and migration. Cancer Metab. 5, 1 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  291. Wen, Y. A. et al. Adipocytes activate mitochondrial fatty acid oxidation and autophagy to promote tumor growth in colon cancer. Cell Death Dis. 8, e2593 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Chou, C. C. et al. AMPK reverses the mesenchymal phenotype of cancer cells by targeting the Akt-MDM2-Foxo3a signaling axis. Cancer Res. 74, 4783–4795 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Su, F. et al. Progression of prostate carcinoma is promoted by adipose stromal cell-secreted CXCL12 signaling in prostate epithelium. NPJ Precis. Oncol. 5, 26 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Mele, V. et al. Mesenchymal stromal cells induce epithelial-to-mesenchymal transition in human colorectal cancer cells through the expression of surface-bound TGF-β. Int. J. Cancer 134, 2583–2594 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Mani, S. A. et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Fischer, K. R. et al. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature 527, 472–476 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Zheng, X. et al. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature 527, 525–530 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Yang, J. & Weinberg, R. A. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev. Cell 14, 818–829 (2008).

    Article  CAS  PubMed  Google Scholar 

  299. Liu, Q. et al. The CXCL8-CXCR1/2 pathways in cancer. Cytokine Growth Factor Rev. 31, 61–71 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  300. Bendre, M. S. et al. Interleukin-8 stimulation of osteoclastogenesis and bone resorption is a mechanism for the increased osteolysis of metastatic bone disease. Bone 33, 28–37 (2003).

    Article  CAS  PubMed  Google Scholar 

  301. Palafox, M. et al. RANK induces epithelial-mesenchymal transition and stemness in human mammary epithelial cells and promotes tumorigenesis and metastasis. Cancer Res. 72, 2879–2888 (2012).

    Article  CAS  PubMed  Google Scholar 

  302. Chu, G. C. et al. RANK- and c-Met-mediated signal network promotes prostate cancer metastatic colonization. Endocr. Relat. Cancer 21, 311–326 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Li, X. et al. Potential role of the OPG/RANK/RANKL axis in prostate cancer invasion and bone metastasis. Oncol. Rep. 32, 2605–2611 (2014).

    Article  CAS  PubMed  Google Scholar 

  304. Muller, A. et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50–56 (2001).

    Article  CAS  PubMed  Google Scholar 

  305. Feig, C. et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc. Natl Acad. Sci. USA 110, 20212–20217 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Yang, P., Hu, Y. & Zhou, Q. The CXCL12-CXCR4 signaling axis plays a key role in cancer metastasis and is a potential target for developing novel therapeutics against metastatic cancer. Curr. Med. Chem. 27, 5543–5561 (2020).

    Article  CAS  PubMed  Google Scholar 

  307. Liotti, A. et al. Periprostatic adipose tissue promotes prostate cancer resistance to docetaxel by paracrine IGF-1 upregulation of TUBB2B β-tubulin isoform. Prostate 81, 407–417 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Incio, J. et al. Obesity-induced inflammation and desmoplasia promote pancreatic cancer progression and resistance to chemotherapy. Cancer Discov. 6, 852–869 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Germain, N. et al. Lipid metabolism and resistance to anticancer treatment. Biology 9, 474 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Yu, X. H., Ren, X. H., Liang, X. H. & Tang, Y. L. Roles of fatty acid metabolism in tumourigenesis: beyond providing nutrition (Review). Mol. Med. Rep. 18, 5307–5316 (2018).

    CAS  PubMed  Google Scholar 

  311. Laurent, V. et al. Periprostatic adipose tissue favors prostate cancer cell invasion in an obesity-dependent manner: role of oxidative stress. Mol. Cancer Res. 17, 821–835 (2019).

    Article  CAS  PubMed  Google Scholar 

  312. Cao, Y. Adipocyte and lipid metabolism in cancer drug resistance. J. Clin. Invest. 129, 3006–3017 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  313. Wang, T. et al. JAK/STAT3-regulated fatty acid β-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance. Cell Metab. 27, 1357 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Su, F. et al. Ablation of stromal cells with a targeted proapoptotic peptide suppresses cancer chemotherapy resistance and metastasis. Mol. Ther. Oncolytics 18, 579–586 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Dong, L., Zieren, R. C., Xue, W., de Reijke, T. M. & Pienta, K. J. Metastatic prostate cancer remains incurable, why? Asian J. Urol. 6, 26–41 (2019).

    Article  PubMed  Google Scholar 

  316. Gandaglia, G. et al. Distribution of metastatic sites in patients with prostate cancer: a population-based analysis. Prostate 74, 210–216 (2014).

    Article  PubMed  Google Scholar 

  317. Hernandez, M., Shin, S., Muller, C. & Attane, C. The role of bone marrow adipocytes in cancer progression: the impact of obesity. Cancer Metastasis Rev. 41, 589–605 (2022).

    Article  PubMed  Google Scholar 

  318. Diedrich, J. D. et al. Bone marrow adipocytes promote the Warburg phenotype in metastatic prostate tumors via HIF-1α activation. Oncotarget 7, 64854–64877 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  319. Jiao, S. et al. Differences in tumor microenvironment dictate T helper lineage polarization and response to immune checkpoint therapy. Cell 179, 1177–1190.e13 (2019).

    Article  CAS  PubMed  Google Scholar 

  320. Nicholson, L. T. & Fong, L. Immune checkpoint inhibition in prostate cancer. Trends Cancer 6, 174–177 (2020).

    Article  CAS  PubMed  Google Scholar 

  321. Daquinag, A. C., Zhang, Y., Amaya-Manzanares, F., Simmons, P. J. & Kolonin, M. G. An isoform of decorin is a resistin receptor on the surface of adipose progenitor cells. Cell Stem Cell 9, 74–86 (2011).

    Article  CAS  PubMed  Google Scholar 

  322. Daquinag, A. C. et al. Targeted proapoptotic peptides depleting adipose stromal cells inhibit tumor growth. Mol. Ther. 24, 34–40 (2016).

    Article  CAS  PubMed  Google Scholar 

  323. Hoda, M. R., Theil, G., Mohammed, N., Fischer, K. & Fornara, P. The adipocyte-derived hormone leptin has proliferative actions on androgen-resistant prostate cancer cells linking obesity to advanced stages of prostate cancer. J. Oncol. 2012, 280386 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  324. Saglam, K., Aydur, E., Yilmaz, M. & Goktas, S. Leptin influences cellular differentiation and progression in prostate cancer. J. Urol. 169, 1308–1311 (2003).

    Article  CAS  PubMed  Google Scholar 

  325. Stattin, P. et al. Leptin is associated with increased prostate cancer risk: a nested case-referent study. J. Clin. Endocrinol. Metab. 86, 1341–1345 (2001).

    CAS  PubMed  Google Scholar 

  326. Hsing, A. W. et al. Prostate cancer risk and serum levels of insulin and leptin: a population-based study. J. Natl Cancer Inst. 93, 783–789 (2001).

    Article  CAS  PubMed  Google Scholar 

  327. Mistry, T., Digby, J. E., Desai, K. M. & Randeva, H. S. Leptin and adiponectin interact in the regulation of prostate cancer cell growth via modulation of p53 and bcl-2 expression. BJU Int. 101, 1317–1322 (2008).

    Article  CAS  PubMed  Google Scholar 

  328. Byrne, A. M., Bouchier-Hayes, D. J. & Harmey, J. H. Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF). J. Cell. Mol. Med. 9, 777–794 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Shibuya, M. Vascular endothelial growth factor and its receptor system: physiological functions in angiogenesis and pathological roles in various diseases. J. Biochem. 153, 13–19 (2013).

    Article  CAS  PubMed  Google Scholar 

  330. Park, J. et al. VEGF-A-Expressing adipose tissue shows rapid beiging and enhanced survival after transplantation and confers IL-4-independent metabolic improvements. Diabetes 66, 1479–1490 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Nauta, A. et al. Adipose-derived stromal cells overexpressing vascular endothelial growth factor accelerate mouse excisional wound healing. Mol. Ther. 21, 445–455 (2013).

    Article  CAS  PubMed  Google Scholar 

  332. Chen, J. et al. C-reactive protein can upregulate VEGF expression to promote ADSC-induced angiogenesis by activating HIF-1α via CD64/PI3k/Akt and MAPK/ERK signaling pathways. Stem Cell Res. Ther. 7, 114 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  333. Loskutoff, D. J., van Mourik, J. A., Erickson, L. A. & Lawrence, D. Detection of an unusually stable fibrinolytic inhibitor produced by bovine endothelial cells. Proc. Natl Acad. Sci. USA 80, 2956–2960 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. Bastelica, D. et al. Stromal cells are the main plasminogen activator inhibitor-1-producing cells in human fat evidence of differences between visceral and subcutaneous deposits. Arterioscler. Thromb. Vasc. Biol. 22, 173–178 (2002).

    Article  CAS  PubMed  Google Scholar 

  335. Crandall, D. L., Groeling, T. M., Busler, D. E. & Antrilli, T. M. Release of PAI-1 by human preadipocytes and adipocytes independent of insulin and IGF-1. Biochem. Biophys. Res. Commun. 279, 984–988 (2000).

    Article  CAS  PubMed  Google Scholar 

  336. Kubala, M. H. et al. Plasminogen activator inhibitor-1 promotes the recruitment and polarization of macrophages in cancer. Cell Rep. 25, 2177–2191.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Loppnow, H. & Libby, P. Adult human vascular endothelial cells express the IL6 gene differentially in response to LPS or IL1. Cell. Immunol. 122, 493–503 (1989).

    Article  CAS  PubMed  Google Scholar 

  338. Mohamed-Ali, V. et al. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-α, in vivo. J. Clin. Endocrinol. Metab. 82, 4196–4200 (1997).

    CAS  PubMed  Google Scholar 

  339. Mi, F. & Gong, L. Secretion of interleukin-6 by bone marrow mesenchymal stem cells promotes metastasis in hepatocellular carcinoma. Biosci. Rep. 37, BSR20170181 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  340. Lou, W., Ni, Z., Dyer, K., Tweardy, D. J. & Gao, A. C. Interleukin-6 induces prostate cancer cell growth accompanied by activation of stat3 signaling pathway. Prostate 42, 239–242 (2000).

    Article  CAS  PubMed  Google Scholar 

  341. Lee, S. O. et al. Interleukin-6 promotes androgen-independent growth in LNCaP human prostate cancer cells. Clin. Cancer Res. 9, 370–376 (2003).

    CAS  PubMed  Google Scholar 

  342. Wegiel, B., Bjartell, A., Culig, Z. & Persson, J. L. Interleukin-6 activates PI3K/Akt pathway and regulates cyclin A1 to promote prostate cancer cell survival. Int. J. Cancer 122, 1521–1529 (2008).

    Article  CAS  PubMed  Google Scholar 

  343. Hobisch, A. et al. Interleukin-6 regulates prostate-specific protein expression in prostate carcinoma cells by activation of the androgen receptor. Cancer Res. 58, 4640–4645 (1998).

    CAS  PubMed  Google Scholar 

  344. Michalaki, V., Syrigos, K., Charles, P. & Waxman, J. Serum levels of IL-6 and TNF-α correlate with clinicopathological features and patient survival in patients with prostate cancer. Br. J. Cancer 90, 2312–2316 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  345. Agbanoma, G. et al. Production of TNF-α in macrophages activated by T cells, compared with lipopolysaccharide, uses distinct IL-10-dependent regulatory mechanism. J. Immunol. 188, 1307–1317 (2012).

    Article  CAS  PubMed  Google Scholar 

  346. Wang, R., Jaw, J. J., Stutzman, N. C., Zou, Z. & Sun, P. D. Natural killer cell-produced IFN-γ and TNF-α induce target cell cytolysis through up-regulation of ICAM-1. J. Leukoc. Biol. 91, 299–309 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. Nakashima, J. et al. Association between tumor necrosis factor in serum and cachexia in patients with prostate cancer. Clin. Cancer Res. 4, 1743–1748 (1998).

    CAS  PubMed  Google Scholar 

  348. Wang, N. et al. CXCL1 derived from tumor-associated macrophages promotes breast cancer metastasis via activating NF-κB/SOX4 signaling. Cell Death Dis. 9, 880 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  349. Acharyya, S. et al. A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell 150, 165–178 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  350. Wang, D. et al. CXCL1 induced by prostaglandin E2 promotes angiogenesis in colorectal cancer. J. Exp. Med. 203, 941–951 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  351. Miyake, M., Goodison, S., Urquidi, V., Gomes Giacoia, E. & Rosser, C. J. Expression of CXCL1 in human endothelial cells induces angiogenesis through the CXCR2 receptor and the ERK1/2 and EGF pathways. Lab. Invest. 93, 768–778 (2013).

    Article  CAS  PubMed  Google Scholar 

  352. Lu, Y. et al. CXCL1-LCN2 paracrine axis promotes progression of prostate cancer via the Src activation and epithelial-mesenchymal transition. Cell Commun. Signal. 17, 118 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  353. Kuo, P. L., Shen, K. H., Hung, S. H. & Hsu, Y. L. CXCL1/GROα increases cell migration and invasion of prostate cancer by decreasing fibulin-1 expression through NF-κB/HDAC1 epigenetic regulation. Carcinogenesis 33, 2477–2487 (2012).

    Article  CAS  PubMed  Google Scholar 

  354. Chavey, C. et al. CXC ligand 5 is an adipose-tissue derived factor that links obesity to insulin resistance. Cell Metab. 9, 339–349 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  355. Begley, L. A. et al. CXCL5 promotes prostate cancer progression. Neoplasia 10, 244–254 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  356. Qi, Y. et al. High C-X-C motif chemokine 5 expression is associated with malignant phenotypes of prostate cancer cells via autocrine and paracrine pathways. Int. J. Oncol. 53, 358–370 (2018).

    CAS  PubMed  Google Scholar 

  357. Kuo, P. L., Chen, Y. H., Chen, T. C., Shen, K. H. & Hsu, Y. L. CXCL5/ENA78 increased cell migration and epithelial-to-mesenchymal transition of hormone-independent prostate cancer by early growth response-1/snail signaling pathway. J. Cell Physiol. 226, 1224–1231 (2011).

    Article  CAS  PubMed  Google Scholar 

  358. Hattermann, K. & Mentlein, R. An infernal trio: the chemokine CXCL12 and its receptors CXCR4 and CXCR7 in tumor biology. Ann. Anat. 195, 103–110 (2013).

    Article  CAS  PubMed  Google Scholar 

  359. Conley-LaComb, M. K. et al. PTEN loss mediated Akt activation promotes prostate tumor growth and metastasis via CXCL12/CXCR4 signaling. Mol. Cancer 12, 85 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  360. Rivat, C. et al. Src family kinases involved in CXCL12-induced loss of acute morphine analgesia. Brain Behav. Immun. 38, 38–52 (2014).

    Article  CAS  PubMed  Google Scholar 

  361. Duda, D. G. et al. CXCL12 (SDF1α)-CXCR4/CXCR7 pathway inhibition: an emerging sensitizer for anticancer therapies? Clin. Cancer Res. 17, 2074–2080 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  362. Ammirante, M., Shalapour, S., Kang, Y., Jamieson, C. A. & Karin, M. Tissue injury and hypoxia promote malignant progression of prostate cancer by inducing CXCL13 expression in tumor myofibroblasts. Proc. Natl Acad. Sci. USA 111, 14776–14781 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  363. Kusuyama, J. et al. CXCL13 is a differentiation- and hypoxia-induced adipocytokine that exacerbates the inflammatory phenotype of adipocytes through PHLPP1 induction. Biochem. J. 476, 3533–3548 (2019).

    Article  CAS  PubMed  Google Scholar 

  364. Kabir, S. M., Lee, E. S. & Son, D. S. Chemokine network during adipogenesis in 3T3-L1 cells: differential response between growth and proinflammatory factor in preadipocytes vs. adipocytes. Adipocyte 3, 97–106 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  365. El-Haibi, C. P. et al. Antibody microarray analysis of signaling networks regulated by Cxcl13 and Cxcr5 in prostate cancer. J. Proteomics Bioinform. 5, 177–184 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  366. Deng, L., Chen, N., Li, Y., Zheng, H. & Lei, Q. CXCR6/CXCL16 functions as a regulator in metastasis and progression of cancer. Biochim. Biophys. Acta 1806, 42–49 (2010).

    CAS  PubMed  Google Scholar 

  367. Hu, W. et al. CXCR6 is expressed in human prostate cancer in vivo and is involved in the in vitro invasion of PC3 and LNCap cells. Cancer Sci. 99, 1362–1369 (2008).

    Article  CAS  PubMed  Google Scholar 

  368. Wang, J. et al. CXCR6 induces prostate cancer progression by the AKT/mammalian target of rapamycin signaling pathway. Cancer Res. 68, 10367–10376 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  369. Kanda, H. et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J. Clin. Invest. 116, 1494–1505 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  370. Sartipy, P. & Loskutoff, D. J. Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc. Natl Acad. Sci. USA 100, 7265–7270 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  371. Li, X. et al. A destructive cascade mediated by CCL2 facilitates prostate cancer growth in bone. Cancer Res. 69, 1685–1692 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  372. Loberg, R. D. et al. CCL2 as an important mediator of prostate cancer growth in vivo through the regulation of macrophage infiltration. Neoplasia 9, 556–562 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  373. Natsagdorj, A. et al. CCL2 induces resistance to the antiproliferative effect of cabazitaxel in prostate cancer cells. Cancer Sci. 110, 279–288 (2019).

    Article  CAS  PubMed  Google Scholar 

  374. Loberg, R. D. et al. CCL2 is a potent regulator of prostate cancer cell migration and proliferation. Neoplasia 8, 578–586 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  375. Roca, H., Varsos, Z. S., Mizutani, K. & Pienta, K. J. CCL2, survivin and autophagy: new links with implications in human cancer. Autophagy 4, 969–971 (2008).

    Article  CAS  PubMed  Google Scholar 

  376. van Golen, K. L. et al. CCL2 induces prostate cancer transendothelial cell migration via activation of the small GTPase Rac. J. Cell Biochem. 104, 1587–1597 (2008).

    Article  PubMed  Google Scholar 

  377. Danforth, J. M. et al. Macrophage inflammatory protein-1 α expression in vivo and in vitro: the role of lipoteichoic acid. Clin. Immunol. Immunopathol. 74, 77–83 (1995).

    Article  CAS  PubMed  Google Scholar 

  378. Menten, P., Wuyts, A. & Van Damme, J. Macrophage inflammatory protein-1. Cytokine Growth Factor Rev. 13, 455–481 (2002).

    Article  CAS  PubMed  Google Scholar 

  379. Berkman, N. et al. Corticosteroid inhibition of macrophage inflammatory protein-1 α in human monocytes and alveolar macrophages. Am. J. Physiol. 269, L443–L452 (1995).

    CAS  PubMed  Google Scholar 

  380. Sherry, B. et al. Nitric oxide regulates MIP-1α expression in primary macrophages and T lymphocytes: implications for anti-HIV-1 response. Mol. Med. 6, 542–549 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  381. Yang, S. K., Eckmann, L., Panja, A. & Kagnoff, M. F. Differential and regulated expression of C-X-C, C-C, and C-chemokines by human colon epithelial cells. Gastroenterology 113, 1214–1223 (1997).

    Article  CAS  PubMed  Google Scholar 

  382. Surmi, B. K., Webb, C. D., Ristau, A. C. & Hasty, A. H. Absence of macrophage inflammatory protein-1α does not impact macrophage accumulation in adipose tissue of diet-induced obese mice. Am. J. Physiol. Endocrinol. Metab. 299, E437–E445 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  383. Dang, T. & Liou, G. Y. Macrophage cytokines enhance cell proliferation of normal prostate epithelial cells through activation of ERK and Akt. Sci. Rep. 8, 7718 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  384. Maurer, M. & von Stebut, E. Macrophage inflammatory protein-1. Int. J. Biochem. Cell Biol. 36, 1882–1886 (2004).

    Article  CAS  PubMed  Google Scholar 

  385. Ziegler, S. F., Tough, T. W., Franklin, T. L., Armitage, R. J. & Alderson, M. R. Induction of macrophage inflammatory protein-1 β gene expression in human monocytes by lipopolysaccharide and IL-7. J. Immunol. 147, 2234–2239 (1991).

    Article  CAS  PubMed  Google Scholar 

  386. Kim, J. J. et al. Intracellular adhesion molecule-1 modulates β-chemokines and directly costimulates T cells in vivo. J. Clin. Invest. 103, 869–877 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  387. Krzysiek, R. et al. Antigen receptor engagement selectively induces macrophage inflammatory protein-1 α (MIP-1 α) and MIP-1 β chemokine production in human B cells. J. Immunol. 162, 4455–4463 (1999).

    Article  CAS  PubMed  Google Scholar 

  388. Lapinet, J. A., Scapini, P., Calzetti, F., Perez, O. & Cassatella, M. A. Gene expression and production of tumor necrosis factor α, interleukin-1β (IL-1β), IL-8, macrophage inflammatory protein 1α (MIP-1α), MIP-1β, and γ interferon-inducible protein 10 by human neutrophils stimulated with group B meningococcal outer membrane vesicles. Infect. Immun. 68, 6917–6923 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  389. Shukaliak, J. A. & Dorovini-Zis, K. Expression of the β-chemokines RANTES and MIP-1 β by human brain microvessel endothelial cells in primary culture. J. Neuropathol. Exp. Neurol. 59, 339–352 (2000).

    Article  CAS  PubMed  Google Scholar 

  390. Cocchi, F. et al. Identification of RANTES, MIP-1 α, and MIP-1 β as the major HIV-suppressive factors produced by CD8+ T cells. Science 270, 1811–1815 (1995).

    Article  CAS  PubMed  Google Scholar 

  391. Aldinucci, D. & Colombatti, A. The inflammatory chemokine CCL5 and cancer progression. Mediators Inflamm. 2014, 292376 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  392. Vaday, G. G., Peehl, D. M., Kadam, P. A. & Lawrence, D. M. Expression of CCL5 (RANTES) and CCR5 in prostate cancer. Prostate 66, 124–134 (2006).

    Article  CAS  PubMed  Google Scholar 

  393. Huang, R. et al. CCL5 derived from tumor-associated macrophages promotes prostate cancer stem cells and metastasis via activating β-catenin/STAT3 signaling. Cell Death Dis. 11, 234 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  394. Lee, Y. S. et al. Crosstalk between CCL7 and CCR3 promotes metastasis of colon cancer cells via ERK-JNK signaling pathways. Oncotarget 7, 36842–36853 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  395. Liu, J. et al. Cancer-associated fibroblasts promote hepatocellular carcinoma metastasis through chemokine-activated hedgehog and TGF-β pathways. Cancer Lett. 379, 49–59 (2016).

    Article  CAS  PubMed  Google Scholar 

  396. She, S. et al. Functional roles of chemokine receptor CCR2 and its ligands in liver disease. Front. Immunol. 13, 812431 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NIH grants R01 CA196259 (to J.D. and M.G.K.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Mikhail G. Kolonin or John DiGiovanni.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Lisa Butler, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, A., Kolonin, M.G. & DiGiovanni, J. Obesity and prostate cancer — microenvironmental roles of adipose tissue. Nat Rev Urol 20, 579–596 (2023). https://doi.org/10.1038/s41585-023-00764-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-023-00764-9

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer