Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Treatment de-escalation for stage II seminoma

Abstract

International Germ Cell Cancer Collaborative Group good-risk metastatic seminoma has cure rates of >95%. Within this risk group, patients with stage II disease exhibit the best oncological outcomes with the standard-of-care treatment strategies of radiotherapy or combination chemotherapy. However, these treatments can be associated with substantial early and late toxic effects. Therapy de-escalation aims to reduce treatment morbidity whilst preserving oncological outcomes. The evidence supporting such approaches is largely from non-randomized institutional data, and therefore this strategy is not recognized as standard of care. Current de-escalation approaches for stage II seminoma include single-agent chemotherapy, radiotherapy and surgery based on early data from clinical studies. Increased recognition of emerging data on treatment modification to reduce morbidity whilst maintaining cure rates and consideration of therapy de-escalation could improve patient survivorship outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: RPLND surgical incisions and templates.

Similar content being viewed by others

References

  1. Laguna, M. P. et al. EAU guidelines on testicular cancer. EAU https://d56bochluxqnz.cloudfront.net/documents/full-guideline/EAU-Guidelines-on-Testicular-Cancer-2022.pdf (2022).

  2. Cheng, L. et al. Testicular cancer. Nat. Rev. Dis. Primers 4, 29 (2018).

    PubMed  Google Scholar 

  3. Oldenburg, J. et al. Testicular seminoma and non-seminoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 24, vi125–vi132 (2013).

    PubMed  Google Scholar 

  4. International Germ Cell Cancer Collaborative Group. International germ cell consensus classification: a. prognostic factor-based staging system for metastatic germ cell. J. Clin. Oncol. 15, 594–603 (1997).

    Google Scholar 

  5. Gillessen, S. et al. Redefining the IGCCCG classification in advanced non-seminoma [abstract 903O]. Ann. Oncol. 30 (Suppl. 5), v357–v358 (2019).

    Google Scholar 

  6. Gilligan, T. et al. Testicular cancer, version 2.2020, NCCN clinical practice guidelines in oncology. J. Natl Compr. Cancer Netw. 17, 1529–1554 (2019).

    CAS  Google Scholar 

  7. Cancer Research UK. Testicular cancer incidence statistics. Cancer Research UK https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/testicular-cancer/incidence (2022).

  8. Williams, S. D. et al. Treatment of disseminated germ-cell tumors with cisplatin, bleomycin, and either vinblastine or etoposide. N. Engl. J. Med. 316, 1435–1440 (1987).

    CAS  PubMed  Google Scholar 

  9. Travis, L. B. et al. Testicular cancer survivorship: research strategies and recommendations. J. Natl Cancer Inst. 102, 1114–1130 (2010).

    PubMed  PubMed Central  Google Scholar 

  10. Meinardi, M. T. et al. Cardiovascular morbidity in long-term survivors of metastatic testicular cancer. J. Clin. Oncol. 18, 1725–1732 (2000).

    CAS  PubMed  Google Scholar 

  11. Fung, C. et al. Toxicities associated with cisplatin-based chemotherapy and radiotherapy in long-term testicular cancer survivors. Adv. Urol. 2018, 8671832 (2018).

    PubMed  PubMed Central  Google Scholar 

  12. Amin, M. B. et al. The eighth edition AJCC Cancer Staging Manual: continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J. Clin. 267, 93–99 (2017).

    Google Scholar 

  13. Fosså, S. D. et al. Mortality and second cancer incidence after treatment for testicular cancer: psychosocial health and lifestyle are modifiable prognostic factors. J. Clin. Oncol. 40, 2588–2599 (2022).

    PubMed  Google Scholar 

  14. O’Sullivan, J. M. et al. Predicting the risk of bleomycin lung toxicity in patients with germ-cell tumours. Ann. Oncol. 14, 91–96 (2003).

    PubMed  Google Scholar 

  15. Simpson, A. B., Paul, J., Graham, J. & Kaye, S. B. Fatal bleomycin pulmonary toxicity in the west of Scotland 1991-95: a review of patients with germ cell tumours. Br. J. Cancer 78, 1061–1066 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Haugnes, H. S. et al. Pulmonary function in long-term survivors of testicular cancer. J. Clin. Oncol. 27, 2779–2786 (2009).

    PubMed  Google Scholar 

  17. Haugnes, H. S., Oldenburg, J. & Bremnes, R. M. Pulmonary and cardiovascular toxicity in long-term testicular cancer survivors. Urol. Oncol. 33, 399–406 (2015).

    PubMed  Google Scholar 

  18. Sleijfer, S. Bleomycin-induced pneumonitis. Chest 120, 617–624 (2001).

    CAS  PubMed  Google Scholar 

  19. Ehrlich, Y., Margel, D., Lubin, M. A. & Baniel, J. Advances in the treatment of testicular cancer. Transl. Androl. Urol. 4, 381–390 (2015).

    PubMed  PubMed Central  Google Scholar 

  20. Huddart, R. A. et al. Cardiovascular disease as a long-term complication of treatment for testicular cancer. J. Clin. Oncol. 21, 1513–1523 (2003).

    CAS  PubMed  Google Scholar 

  21. Van Den Belt-Dusebout, A. W. et al. Treatment-specific risks of second malignancies and cardiovascular disease in 5-year survivors of testicular cancer. J. Clin. Oncol. 25, 4370–4378 (2007).

    PubMed  Google Scholar 

  22. Fosså, S. D., Aass, N., Winderen, M., Börmer, O. P. & Olsen, D. R. Long-term renal function after treatment for malignant germ-cell tumours. Ann. Oncol. 13, 222–228 (2002).

    PubMed  Google Scholar 

  23. Hansen, S. W., Groth, S., Daugaard, G., Rossing, N. & Rørth, M. Long-term effects on renal function and blood pressure of treatment with cisplatin, vinblastine, and bleomycin in patients with germ cell cancer. J. Clin. Oncol. 6, 1728–1731 (1988).

    CAS  PubMed  Google Scholar 

  24. Kennedy, I. C., Fitzharris, B. M., Colls, B. M. & Atkinson, C. H. Carboplatin is ototoxic. Cancer Chemother. Pharmacol. 26, 232–234 (1990).

    CAS  PubMed  Google Scholar 

  25. Hjelle, L. V. et al. Associations between long-term serum platinum and neurotoxicity and ototoxicity, endocrine gonadal function, and cardiovascular disease in testicular cancer survivors. Urol. Oncol. 34, 487.e13–487.e20 (2016).

    CAS  PubMed  Google Scholar 

  26. Kerns, S. L. et al. Cumulative burden of morbidity among testicular cancer survivors after standard cisplatin-based chemotherapy: a multi-institutional study. J. Clin. Oncol. 36, 1505–1512 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Brydøy, M. et al. Paternity and testicular function among testicular cancer survivors treated with two to four cycles of cisplatin-based chemotherapy. Eur. Urol. 58, 134–141 (2010).

    PubMed  Google Scholar 

  28. Brydøy, M. et al. Sperm counts and endocrinological markers of spermatogenesis in long-term survivors of testicular cancer. Br. J. Cancer 107, 1833–1839 (2012).

    PubMed  PubMed Central  Google Scholar 

  29. Brydøy, M. et al. Paternity following treatment for testicular cancer. J. Natl Cancer Inst. 97, 1580–1588 (2005).

    PubMed  Google Scholar 

  30. Loren, A. W. et al. Fertility preservation for patients with cancer: American Society of Clinical Oncology clinical practice guideline update. J. Clin. Oncol. 31, 2500–2510 (2013).

    PubMed  PubMed Central  Google Scholar 

  31. Giannatempo, P. et al. Radiotherapy or chemotherapy for clinical stage IIA and IIB seminoma: a systematic review and meta-analysis of patient outcomes. Ann. Oncol. 26, 657–668 (2015).

    CAS  PubMed  Google Scholar 

  32. Hanna, N. et al. in Holland-Frei Cancer Medicine 6th edn (eds Kufe, D. W. et al.) (BC Decker, 2003).

  33. Travis, L. B. et al. Second cancers among 40,576 testicular cancer patients: focus on long-term survivors. J. Natl Cancer Inst. 97, 1354–1355 (2005).

    PubMed  Google Scholar 

  34. Hellesnes, R. et al. Testicular cancer in the cisplatin era: causes of death and mortality rates in a population-based cohort [abstract]. J. Clin. Oncol. 39 (Suppl. 15), 5006 (2021).

    Google Scholar 

  35. Honecker, F. et al. ESMO consensus conference on testicular germ cell cancer: diagnosis, treatment and follow-up. Ann. Oncol. 29, 1658–1686 (2018).

    CAS  PubMed  Google Scholar 

  36. Spinner, M. A. & Advani, R. H. Risk-adapted therapy for advanced-stage Hodgkin lymphoma. Hematology Am. Soc. Hematol. Educ. Program 2018, 200–206 (2018).

    PubMed  PubMed Central  Google Scholar 

  37. Grimison, P. S. et al. Comparison of two standard chemotherapy regimens for good-prognosis germ cell tumors: updated analysis of a randomized trial. J. Natl Cancer Inst. 102, 1253–1262 (2010).

    CAS  PubMed  Google Scholar 

  38. Nichols, C. & Kollmannsberger, C. Alternatives to standard BEP × 3 in good-prognosis germ cell tumors – you bet your life. J. Natl Cancer Inst. 102, 1214–1215 (2010).

    PubMed  Google Scholar 

  39. Newton, C. et al. A multicentre retrospective cohort study of ovarian germ cell tumours: evidence for chemotherapy de-escalation and alignment of paediatric and adult practice. Eur. J. Cancer 113, 19–27 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Tookman, L. et al. Carboplatin AUC 10 for IGCCCG good prognosis metastatic seminoma. Acta Oncol. 52, 987–993 (2013).

    CAS  PubMed  Google Scholar 

  41. Powles, T. et al. The long-term risks of adjuvant carboplatin treatment for stage I seminoma of the testis. Ann. Oncol. 19, 443–447 (2008).

    CAS  PubMed  Google Scholar 

  42. Horwich, A. et al. Simple nontoxic treatment of advanced metastatic seminoma with carboplatin. J. Clin. Oncol. 7, 1150–1156 (1989).

    CAS  PubMed  Google Scholar 

  43. Shamash, J. et al. A phase II study of carboplatin AUC-10 guided by positron emission tomography-defined metabolic response in metastatic seminoma. Eur. J. Cancer 115, 128–135 (2019).

    CAS  PubMed  Google Scholar 

  44. Krege, S. et al. Single agent carboplatin for CS IIA/B testicular seminoma. A phase II study of the German Testicular Cancer Study Group (GTCSG). Ann. Oncol. 17, 276–280 (2006).

    CAS  PubMed  Google Scholar 

  45. Mann, J. R. et al. The United Kingdom Children’s Cancer Study Group’s second germ cell tumor study: carboplatin, etoposide, and bleomycin are effective treatment for children with malignant extracranial germ cell tumors, with acceptable toxicity. J. Clin. Oncol. 18, 3809–3818 (2000).

    CAS  PubMed  Google Scholar 

  46. Oliver, R. T. et al. A randomised comparison of single agent carboplatin with radiotherapy in the adjuvant treatment of stage I seminoma of the testis, following orchidectomy: MRC TE19/EORTC 30982 [abstract]. J. Clin. Oncol. 22 (Suppl. 14), 4517 (2004).

    Google Scholar 

  47. Bokemeyer, C. et al. Metastatic seminoma treated with either single agent carboplatin or cisplatin-based combination chemotherapy: a pooled analysis of two randomised trials. Br. J. Cancer 91, 683–687 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Loriot, Y. et al. The SEMITEP trial: de-escalating chemotherapy in low-volume metastatic seminoma based on early FDG-PET [abstract]. J. Clin. Oncol. 38 (Suppl. 6), 387 (2020).

    Google Scholar 

  49. Albers, P. The SEMITEP trial: less may be more. Eur. Urol. 82, 180–181 (2022).

    PubMed  Google Scholar 

  50. Alifrangis, C. et al. Single-agent carboplatin AUC10 in metastatic seminoma: a multi-centre UK study of 216 patients. Eur. J. Cancer 164, 105–113 (2020).

    PubMed  Google Scholar 

  51. Milic, M. et al. A qualitative analysis of the impact of carboplatin AUC 10 on physical, work functioning and bone marrow toxicity among seminoma patients–a single-centre experience. In Vivo 33, 233–237 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Horwich, A., Dearnaley, D. P., Sohaib, A., Pennert, K. & Huddart, R. A. Neoadjuvant carboplatin before radiotherapy in stage IIA and IIB seminoma. Ann. Oncol. 24, 2104–2107 (2013).

    CAS  PubMed  Google Scholar 

  53. Papachristofilou, A. et al. Treatment compliance and early toxicity in SAKK 01/10: single-dose carboplatin and involved-node radiotherapy for treatment of stage IIA/B seminoma [abstract]. J. Clin. Oncol. 38 (Suppl. 6), 405 (2020).

    Google Scholar 

  54. Ray, B., Hajdu, S. I. & Whitmore, W.F.Jr Distribution of retroperitoneal lymph node metastases in testicular germinal tumors. Cancer 33, 340–348 (1974).

    CAS  PubMed  Google Scholar 

  55. Pearce, A. K. et al. Outcomes of postchemotherapy retroperitoneal lymph node dissection from a high-volume UK centre compared with a national data set. Eur. Urol. Open Sci. 33, 83–86 (2021).

    PubMed  PubMed Central  Google Scholar 

  56. Kenney, P. A. & Tuerk, I. A. Complications of laparoscopic retroperitoneal lymph node dissection in testicular cancer. World J. Urol. 26, 561–569 (2008).

    PubMed  Google Scholar 

  57. Mittakanti, H. R. & Porter, J. R. Robotic retroperitoneal lymph node dissection for testicular cancer: feasibility and latest outcomes. Curr. Opin. Urol. 29, 173–179 (2019).

    PubMed  Google Scholar 

  58. Lloyd, P. et al. A comparative study of peri-operative outcomes for 100 consecutive post-chemotherapy and primary robot-assisted and open retroperitoneal lymph node dissections. World J. Urol. 40, 119–126 (2022).

    CAS  PubMed  Google Scholar 

  59. Mano, R., Di Natale, R. & Sheinfeld, J. Current controversies on the role of retroperitoneal lymphadenectomy for testicular cancer. Urol. Oncol. 37, 209–218 (2019).

    PubMed  Google Scholar 

  60. Weissbach, L. et al. RPLND or primary chemotherapy in clinical stage IIA/B nonseminomatous germ cell tumors? Results of a prospective multicenter trial including quality of life assessment. Eur. Urol. 37, 582–594 (2000).

    CAS  PubMed  Google Scholar 

  61. Hamilton, R. J. et al. Treatment of relapse of clinical stage I nonseminomatous germ cell tumors on surveillance. J. Clin. Oncol. 37, 1919–1926 (2019).

    PubMed  Google Scholar 

  62. Daneshmand, S. et al. SEMS trial: result of a prospective, multi-institutional phase II clinical trial of surgery in early metastatic seminoma [abstract]. J. Clin. Oncol. 39 (Suppl. 6), 375 (2021).

    Google Scholar 

  63. Hiester, A. et al. Phase 2 single-arm trial of primary retroperitoneal lymph node dissection in patients with seminomatous testicular germ cell tumors with clinical stage IIA/B (PRIMETEST). Eur. Urol. https://doi.org/10.1016/j.eururo.2022.10.021 (2022).

    Article  PubMed  Google Scholar 

  64. McHugh, D. J. et al. Adjuvant chemotherapy with etoposide plus cisplatin for patients with pathologic stage II nonseminomatous germ cell tumors. J. Clin. Oncol. 20, 1332–1337 (2020).

    Google Scholar 

  65. Tachibana, I. et al. Primary retroperitoneal lymph node dissection for patients with pathologic stage II nonseminomatous germ cell tumor-N1, N2, and N3 disease: is adjuvant chemotherapy necessary? J. Clin. Oncol. 40, 3762–3769 (2022).

    CAS  PubMed  Google Scholar 

  66. Stephenson, A. J. et al. Retroperitoneal lymph node dissection in patients with low stage testicular cancer with embryonal carcinoma predominance and/or lymphovascular invasion. J. Urol. 174, 557–560 (2005).

    PubMed  Google Scholar 

  67. Huddart, R. A. et al. Clinical outcomes of minimally invasive retroperitoneal lymph node dissection and single dose carboplatin for clinical stage 2a seminoma [abstract]. Eur. Urol. Open Sci. 18, 24 (2019).

    Google Scholar 

  68. Becherer, A. et al. FDG PET is superior to CT in the prediction of viable tumour in post-chemotherapy seminoma residuals. Eur. J. Radiol. 54, 284–288 (2005).

    PubMed  Google Scholar 

  69. Hinz, S. et al. The role of positron emission tomography in the evaluation of residual masses after chemotherapy for advanced stage seminoma. J. Urol. 179, 936–940 (2008).

    PubMed  Google Scholar 

  70. Ganjoo, K. N., Chan, R. J., Sharma, M. & Einhorn, L. H. Positron emission tomography scans in the evaluation of postchemotherapy residual masses in patients with seminoma. J. Clin. Oncol. 17, 3457–3460 (1999).

    CAS  PubMed  Google Scholar 

  71. De Santis, M. et al. Predictive impact of 2-18fluoro-2-deoxy-D-glucose positron emission tomography for residual postchemotherapy masses in patients with bulky seminoma. J. Clin. Oncol. 19, 3740–3744 (2001).

    PubMed  Google Scholar 

  72. Mueller, J. et al. Meta-analysis to determine the diagnostic value of 2-18fluoro-2-deoxy-D-glucose positron emission tomography in assessing residual tumors after systemic therapy for metastatic seminoma. Open. J. Urol. 1, 50–55 (2011).

    Google Scholar 

  73. Treglia, G. et al. Diagnostic performance of fluorine-18-fluorodeoxyglucose positron emission tomography in the postchemotherapy management of patients with seminoma: Systematic review and meta-analysis. Biomed. Res. Int. 2014, 852681 (2014).

    PubMed  PubMed Central  Google Scholar 

  74. Conduit, C., Hofman, M. S., Lewin, J. H., Toner, G. C. & Tran, B. Clinical utility of FDG PET-CT in stage 1 and advanced testicular seminoma [abstract]. J. Clin. Oncol. 39 (Suppl. 15), 5027 (2021).

    Google Scholar 

  75. Alifrangis, C. et al. Management of stage II seminoma: a contemporary UK perspective. Scott. Med. J. 67, 126–128 (2022).

    PubMed  PubMed Central  Google Scholar 

  76. Kim, S. Y., Flory, J. & Relton, C. Ethics and practice of trials within cohorts: an emerging pragmatic trial design. Clin. Trials 15, 9–16 (2018).

    PubMed  Google Scholar 

  77. Hu, M., Jiang, L., Cui, X., Zhang, J. & Yu, J. Proton beam therapy for cancer in the era of precision medicine. J. Hematol. Oncol. 11, 136 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Simone, C. B. et al. Predicted rates of secondary malignancies from proton versus photon radiation therapy for stage I seminoma. Int. J. Radiat. Oncol. Biol. Phys. 82, 242–249 (2012).

    PubMed  Google Scholar 

  79. Hoppe, B. S., Mamalui-Hunter, M., Mendenhall, N. P., Li, Z. & Indelicato, D. J. Improving the therapeutic ratio by using proton therapy in patients with stage I or II seminoma. Am. J. Clin. Oncol. 36, 31–37 (2013).

    CAS  PubMed  Google Scholar 

  80. Efstathiou, J. A. et al. Adjuvant radiation therapy for early stage seminoma: proton versus photon planning comparison and modeling of second cancer risk. Radiother. Oncol. 103, 12–17 (2012).

    PubMed  Google Scholar 

  81. Choo, R., Kazemba, B., Choo, C. S., Lester, S. C. & Whitaker, T. Proton therapy for stage IIA-B seminoma: a new standard of care for treating retroperitoneal nodes. Int. J. Part. Ther. 5, 50–57 (2019).

    Google Scholar 

  82. Haque, W. et al. Proton therapy for seminoma: case report describing the technique, efficacy, and advantages of proton-based therapy for seminoma. Pract. Radiat. Oncol. 5, 135–140 (2015).

    PubMed  Google Scholar 

  83. Pasalic, D. et al. Outcomes and toxicities of proton and photon radiation therapy for testicular seminoma. Int. J. Part. Ther. 7, 11–20 (2020).

    PubMed  PubMed Central  Google Scholar 

  84. Shen, H. et al. Integrated molecular characterization of testicular germ cell tumors. Cell Rep. 23, 3392–3406 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Casali, P. G. et al. Gastrointestinal stromal tumours: ESMO-EURACAN-GENTURIS clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 33, 20–33 (2022).

    CAS  PubMed  Google Scholar 

  86. Piulats, J. et al. Phase II multicenter study of imatinib in patients with chemorefractory germ cell tumors that express c-kit [abstract]. Cancer Res 67 (Suppl. 9), 2648 (2007).

    Google Scholar 

  87. Pedersini, R., Vattemi, E., Mazzoleni, G. & Graiff, C. Complete response after treatment with imatinib in pretreated disseminated testicular seminoma with overexpression of c-KIT. Lancet Oncol. 8, 1039–1040 (2007).

    CAS  PubMed  Google Scholar 

  88. Pectasides, D. et al. Complete response after imatinib mesylate administration in a patient with chemoresistant stage IV seminoma. Anticancer. Res. 28, 2317–2320 (2008).

    CAS  PubMed  Google Scholar 

  89. Anagnostou, V., Bardelli, A., Chan, T. A. & Turajlic, S. The status of tumor mutational burden and immunotherapy. Nat. Cancer 3, 652–656 (2022).

    PubMed  Google Scholar 

  90. Fankhauser, C. D. et al. Frequent PD-L1 expression in testicular germ cell tumors. Br. J. Cancer 113, 411–413 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Cierna, Z. et al. Prognostic value of programmed-death-1 receptor (PD-1) and its ligand 1 (PD-L1) in testicular germ cell tumors. Ann. Oncol. 27, 300–305 (2016).

    CAS  PubMed  Google Scholar 

  92. Necchi, A. et al. Genomic characterization of testicular germ cell tumors relapsing after chemotherapy. Eur. Urol. Focus. 6, 122–130 (2020).

    PubMed  Google Scholar 

  93. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    CAS  PubMed  Google Scholar 

  94. Murray, M. J., Huddart, R. A. & Coleman, N. The present and future of serum diagnostic tests for testicular germ cell tumours. Nat. Rev. Urol. 13, 715–725 (2016).

    CAS  PubMed  Google Scholar 

  95. Lafin, J. T. et al. Serum microRNA-371a-3p levels predict viable germ cell tumor in chemotherapy-naïve patients undergoing retroperitoneal lymph node dissection. Eur. Urol. 77, 290–292 (2020).

    CAS  PubMed  Google Scholar 

  96. Rajpert-De Meyts, E., McGlynn, K. A., Okamoto, K., Jewett, M. A. & Bokemeyer, C. Testicular germ cell tumours. Lancet 387, 1762–1774 (2016).

    PubMed  Google Scholar 

  97. Smith, S., Morgan, S., Riley, V. & Soanes, L. Priorities and challenges in the care of teenagers and young adults. Cancer Nurs. Pract. 10, 32–39 (2011).

    Google Scholar 

  98. Taylor, R. M. et al. Longitudinal cohort study of the impact of specialist cancer services for teenagers and young adults on quality of life: outcomes from the BRIGHTLIGHT study. BMJ Open 10, e038471 (2020).

    PubMed  PubMed Central  Google Scholar 

  99. Ferrari, A. et al. Adolescents and young adults (AYA) with cancer: a position paper from the AYA Working Group of the European Society for Medical Oncology (ESMO) and the European Society for Paediatric Oncology (SIOPE). ESMO Open 6, 100096 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Atun, R. et al. Expanding global access to radiotherapy. Lancet Oncol. 16, 1153–1186 (2015).

    PubMed  Google Scholar 

  101. Sironi, G., Barr, R. D. & Ferrari, A. Models of care – there is more than one way to deliver. Cancer J. 24, 315–320 (2018).

    PubMed  Google Scholar 

  102. Fern, L. A. et al. The art of age-appropriate care: reflecting on a conceptual model of the cancer experience for teenagers and young adults. Cancer Nurs. 36, e27–e38 (2013).

    PubMed  Google Scholar 

  103. Tricoli, J. V. et al. Biological and clinical characteristics of adolescent and young adult cancers: acute lymphoblastic leukemia, colorectal cancer, breast cancer, melanoma and sarcoma. Cancer 122, 1017–1028 (2016).

    PubMed  Google Scholar 

  104. Bukowinski, A. J., Burns, K. C., Parsons, K., Perentesis, J. P. & O’Brien, M. M. Toxicity of cancer therapy in adolescents and young adults (AYAs). Semin. Oncol. Nurs. 31, 216–226 (2015).

    PubMed  Google Scholar 

  105. Whelan, J. S. & Fern, L. A. Poor accrual of teenagers and young adults into clinical trials in the UK. Lancet Oncol. 9, 306–307 (2008).

    PubMed  Google Scholar 

  106. National Cancer Research Institute. NCRI teenage and young adult & germ cell tumours group priorities 2022–2025. NCRI https://www.ncri.org.uk/wp-content/uploads/NCRI-TYA-GCT-Group-priorities.pdf (2022).

  107. Noel, G. J. et al. Inclusion of adolescents in adult clinical trials: report of the institute for advanced clinical trials for children’s Pediatric Innovation Research Forum. Ther. Innov. Regul. Sci. 55, 773–778 (2021).

    PubMed  PubMed Central  Google Scholar 

  108. Mittakanti, H. R. & Porter, J. R. Robot-assisted laparoscopic retroperitoneal lymph node dissection: a minimally invasive surgical approach for testicular cancer. Transl. Androl. Urol. 9, S66–S73 (2020).

    PubMed  PubMed Central  Google Scholar 

  109. Warszawski, N. & Schmücking, M. Relapses in early-stage testicular seminoma: radiation therapy versus retroperitoneal lymphadenectomy. Scand. J. Urol. Nephrol. 31, 355–359 (1997).

    CAS  PubMed  Google Scholar 

  110. Mezvrishvili, Z. & Managadze, L. Retroperitoneal lymph node dissection for high-risk stage I and stage IIA seminoma. Int. Urol. Nephrol. 38, 615–619 (2006).

    PubMed  Google Scholar 

  111. Hu, B. et al. Retroperitoneal lymph node dissection as first-line treatment of node-positive seminoma. Clin. Genitourin. Cancer 13, e265–e269 (2015).

    PubMed  Google Scholar 

  112. Tandstad, T. et al. Management of seminomatous testicular cancer: a binational prospective population-based study from the Swedish Norwegian Testicular Cancer Study Group. J. Clin. Oncol. 26, 719–725 (2011).

    Google Scholar 

  113. Müller, J., Schrader, A. J., Jentzmik, F. & Schrader, M. Beurteilung von Residualtumoren nach Systemtherapie des metastasierten Seminoms: 18F-2-Fluor-2-Deoxy-D-Glucose-Positronenemissionstomographie – Metaanalyse zur diagnostischen Wertigkeit [German]. Urologe 50, 322–327 (2011).

    Google Scholar 

Download references

Acknowledgements

C.A. is supported by the National Institute for Healthcare Research University College London Hospitals Biomedical Research Centre. P.R. is supported by the John Black Charitable Foundation and The Urology Foundation, the Barts Charity and the Orchid Charity.

Author information

Authors and Affiliations

Authors

Contributions

G.E.W., F.C., B.T., C.C., E.L., C.A. and P.R. researched data for the article. G.E.W., F.C., D.L.N., J.S., C.A. and P.R. contributed substantially to discussion of the content. G.E.W., C.A. and P.R. wrote the article. G.E.W., F.C., B.T., D.L.N., J.S., C.A. and P.R. reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Constantine Alifrangis or Prabhakar Rajan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Michael Jewett, Phil Pierorazio and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wood, G.E., Chamberlain, F., Tran, B. et al. Treatment de-escalation for stage II seminoma. Nat Rev Urol 20, 502–512 (2023). https://doi.org/10.1038/s41585-023-00727-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-023-00727-0

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer