Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Human in vitro spermatogenesis as a regenerative therapy — where do we stand?

Abstract

Spermatogenesis involves precise temporal and spatial gene expression and cell signalling to reach a coordinated balance between self-renewal and differentiation of spermatogonial stem cells through various germ cell states including mitosis, and meiosis I and II, which result in the generation of haploid cells with a unique genetic identity. Subsequently, these round spermatids undergo a series of morphological changes to shed excess cytoplast, develop a midpiece and tail, and undergo DNA repackaging to eventually form millions of spermatozoa. The goal of recreating this process in vitro has been pursued since the 1920s as a tool to treat male factor infertility in patients with azoospermia. Continued advances in reproductive bioengineering led to successful generation of mature, functional sperm in mice and, in the past 3 years, in humans. Multiple approaches to study human in vitro spermatogenesis have been proposed, but technical and ethical obstacles have limited the ability to complete spermiogenesis, and further work is needed to establish a robust culture system for clinical application.

Key points

  • Spermatogenesis includes a complex and highly regulated series of steps required for the production of mature, motile sperm. Efforts to recreate this process in vitro are ongoing to support the treatment of male factor infertility, particularly non-obstructive azoospermia (NOA).

  • Advances in the ex vivo production of mature spermatids in animal models have provided new insights for the successful achievement of these results in humans.

  • Several approaches to achieve human in vitro spermatogenesis have been described, such as 2D and 3D cultures including scaffold, organoid-based and bioprinted systems, which are supported by a variety of media and biomaterials.

  • Complete spermatid differentiation in vitro has been shown in some studies, although this process frequently occurred at an accelerated rate compared with the expected course in vivo; moreover, these results still need to be independently replicated by other research groups.

  • The future perspective of using gene editing to investigate and rescue NOA phenotypes is promising, but is limited by regulatory and ethical considerations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Human spermatogenesis.
Fig. 2: Culture techniques for supporting in vitro spermatogenesis.
Fig. 3: Proposed personalized and precision medicine workflow for restoring sperm production using IVS.

Similar content being viewed by others

References

  1. Heller, C. H. & Clermont, Y. Kinetics of the germinal epithelium in man. Recent. Prog. Horm. Res. 20, 545–575 (1964).

    CAS  PubMed  Google Scholar 

  2. Suarez, S. S. & Pacey, A. A. Sperm transport in the female reproductive tract. Hum. Reprod. Update 12, 23–37 (2006).

    CAS  PubMed  Google Scholar 

  3. Agarwal, A., Mulgund, A., Hamada, A. & Chyatte, M. R. A unique view on male infertility around the globe. Reprod. Biol. Endocrinol. 13, 37 (2015).

    PubMed  PubMed Central  Google Scholar 

  4. Wang, J. & Sauer, M. V. In vitro fertilization (IVF): a review of 3 decades of clinical innovation and technological advancement. Ther. Clin. Risk Manag. 2, 355–364 (2006).

    PubMed  PubMed Central  Google Scholar 

  5. Practice Committee of the American Society for Reproductive Medicine. Diagnostic evaluation of the infertile male: a committee opinion. Fertil. Steril. 103, e18–e25 (2015).

    Google Scholar 

  6. Vincent, M. C. et al. Cytogenetic investigations of infertile men with low sperm counts: a 25-year experience. J. Androl. 23, 18–22 (2002). discussion 44–45.

    PubMed  Google Scholar 

  7. Jungwirth, A. et al. European Association of Urology guidelines on male infertility: the 2012 update. Eur. Urol. 62, 324–332 (2012).

    PubMed  Google Scholar 

  8. Flannigan, R. K. & Schlegel, P. N. Microdissection testicular sperm extraction: preoperative patient optimization, surgical technique, and tissue processing. Fertil. Steril. 111, 420–426 (2019).

    PubMed  Google Scholar 

  9. Chiba, K., Enatsu, N. & Fujisawa, M. Management of non-obstructive azoospermia. Reprod. Med. Biol. 15, 165–173 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Achermann, A. P. P., Pereira, T. A. & Esteves, S. C. Microdissection testicular sperm extraction (micro-TESE) in men with infertility due to nonobstructive azoospermia: summary of current literature. Int. Urol. Nephrol. 53, 2193–2210 (2021).

    CAS  PubMed  Google Scholar 

  11. Ghieh, F., Mitchell, V., Mandon-Pepin, B. & Vialard, F. Genetic defects in human azoospermia. Basic. Clin. Androl. 29, 4 (2019).

    PubMed  PubMed Central  Google Scholar 

  12. Meistrich, M. L. Male gonadal toxicity. Pediatr. Blood Cancer 53, 261–266 (2009).

    PubMed  PubMed Central  Google Scholar 

  13. Del-Pozo-Lerida, S. et al. Preservation of fertility in patients with cancer (Review). Oncol. Rep. 41, 2607–2614 (2019).

    CAS  PubMed  Google Scholar 

  14. Keros, V. et al. Methods of cryopreservation of testicular tissue with viable spermatogonia in pre-pubertal boys undergoing gonadotoxic cancer treatment. Hum. Reprod. 22, 1384–1395 (2007).

    CAS  PubMed  Google Scholar 

  15. Mirzapour, T., Movahedin, M., Koruji, M. & Nowroozi, M. R. Xenotransplantation assessment: morphometric study of human spermatogonial stem cells in recipient mouse testes. Andrologia 47, 626–633 (2015).

    CAS  PubMed  Google Scholar 

  16. Hou, M., Andersson, M., Eksborg, S., Soder, O. & Jahnukainen, K. Xenotransplantation of testicular tissue into nude mice can be used for detecting leukemic cell contamination. Hum. Reprod. 22, 1899–1906 (2007).

    PubMed  Google Scholar 

  17. Sato, Y. et al. Xenografting of testicular tissue from an infant human donor results in accelerated testicular maturation. Hum. Reprod. 25, 1113–1122 (2010).

    CAS  PubMed  Google Scholar 

  18. Schlatt, S. et al. Limited survival of adult human testicular tissue as ectopic xenograft. Hum. Reprod. 21, 384–389 (2006).

    CAS  PubMed  Google Scholar 

  19. Jahnukainen, K., Hou, M., Petersen, C., Setchell, B. & Soder, O. Intratesticular transplantation of testicular cells from leukemic rats causes transmission of leukemia. Cancer Res. 61, 706–710 (2001).

    CAS  PubMed  Google Scholar 

  20. Sadri-Ardekani, H. et al. Eliminating acute lymphoblastic leukemia cells from human testicular cell cultures: a pilot study. Fertil. Steril. 101, 1072–1078.e1 (2014).

    PubMed  Google Scholar 

  21. Sadri-Ardekani, H. & Atala, A. Testicular tissue cryopreservation and spermatogonial stem cell transplantation to restore fertility: from bench to bedside. Stem Cell Res. Ther. 5, 68 (2014).

    PubMed  PubMed Central  Google Scholar 

  22. Jahnukainen, K., Ehmcke, J., Nurmio, M. & Schlatt, S. Autologous ectopic grafting of cryopreserved testicular tissue preserves the fertility of prepubescent monkeys that receive sterilizing cytotoxic therapy. Cancer Res. 72, 5174–5178 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sato, T. et al. In vitro production of functional sperm in cultured neonatal mouse testes. Nature 471, 504–507 (2011).

    CAS  PubMed  Google Scholar 

  24. Sato, T. et al. Testis tissue explantation cures spermatogenic failure in c-Kit ligand mutant mice. Proc. Natl Acad. Sci. USA 109, 16934–16938 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Neto, F. T., Bach, P. V., Najari, B. B., Li, P. S. & Goldstein, M. Spermatogenesis in humans and its affecting factors. Semin. Cell Dev. Biol. 59, 10–26 (2016).

    PubMed  Google Scholar 

  26. Kanatsu-Shinohara, M. & Shinohara, T. Spermatogonial stem cell self-renewal and development. Annu. Rev. Cell Dev. Bi 29, 163–187 (2013).

    CAS  Google Scholar 

  27. Singh, R. & Hansen, D. Regulation of the balance between proliferation and differentiation in germ line stem cells. Results Probl. Cell Differ. 59, 31–66 (2017).

    CAS  PubMed  Google Scholar 

  28. Paniagua, R. & Nistal, M. Morphological and histometric study of human spermatogonia from birth to the onset of puberty. J. Anat. 139, 535–552 (1984).

    PubMed  PubMed Central  Google Scholar 

  29. Amann, R. P. The cycle of the seminiferous epithelium in humans: a need to revisit. J. Androl. 29, 469–487 (2008).

    PubMed  Google Scholar 

  30. Goossens, E. & Tournaye, H. Adult stem cells in the human testis. Semin. Reprod. Med. 31, 39–48 (2013).

    CAS  PubMed  Google Scholar 

  31. Clermont, Y. Spermatogenesis in man. A study of the spermatogonial population. Fertil. Steril. 17, 705–721 (1966).

    CAS  PubMed  Google Scholar 

  32. van Alphen, M. M., van de Kant, H. J. & de Rooij, D. G. Repopulation of the seminiferous epithelium of the rhesus monkey after X irradiation. Radiat. Res. 113, 487–500 (1988).

    PubMed  Google Scholar 

  33. Guo, J. et al. The adult human testis transcriptional cell atlas. Cell Res. 28, 1141–1157 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Guo, J. et al. The dynamic transcriptional cell atlas of testis development during human puberty. Cell Stem Cell 26, 262–276.e4 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ehmcke, J. & Schlatt, S. A revised model for spermatogonial expansion in man: lessons from non-human primates. Reproduction 132, 673–680 (2006).

    CAS  PubMed  Google Scholar 

  36. Mruk, D. D. & Cheng, C. Y. The mammalian blood-testis barrier: its biology and regulation. Endocr. Rev. 36, 564–591 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Pelletier, R. M. The blood-testis barrier: the junctional permeability, the proteins and the lipids. Prog. Histochem. Cytochem. 46, 49–127 (2011).

    PubMed  Google Scholar 

  38. Gerton, J. L. & Hawley, R. S. Homologous chromosome interactions in meiosis: diversity amidst conservation. Nat. Rev. Genet. 6, 477–487 (2005).

    CAS  PubMed  Google Scholar 

  39. Hess, R. A. & de Franca, L. R. in Molecular Mechanisms in Spermatogenesis. Advances in Experimental Medicine and Biology Vol. 636 (ed. Cheng, C. Y.) 1–15 (Springer, 2009).

  40. Clermont, Y. & Leblond, C. P. Spermiogenesis of man, monkey, ram and other mammals as shown by the periodic acid-Schiff technique. Am. J. Anat. 96, 229–253 (1955).

    CAS  PubMed  Google Scholar 

  41. Oko, R. & Sutovsky, P. Biogenesis of sperm perinuclear theca and its role in sperm functional competenc and fertilization. J. Reprod. Immunol. 83, 2–7 (2009).

    CAS  PubMed  Google Scholar 

  42. Foresta, C., Zorzi, M., Rossato, M. & Varotto, A. Sperm nuclear instability and staining with aniline blue: abnormal persistence of histones in spermatozoa in infertile men. Int. J. Androl. 15, 330–337 (1992).

    CAS  PubMed  Google Scholar 

  43. Zhao, M. et al. Transition nuclear proteins are required for normal chromatin condensation and functional sperm development. Genesis 38, 200–213 (2004).

    CAS  PubMed  Google Scholar 

  44. Wang, T., Gao, H., Li, W. & Liu, C. Essential role of histone replacement and modifications in male fertility. Front. Genet. 10, 962 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Gur, Y. & Breitbart, H. Protein synthesis in sperm: dialog between mitochondria and cytoplasm. Mol. Cell Endocrinol. 282, 45–55 (2008).

    CAS  PubMed  Google Scholar 

  46. Breucker, H., Schafer, E. & Holstein, A. F. Morphogenesis and fate of the residual body in human spermiogenesis. Cell Tissue Res. 240, 303–309 (1985).

    CAS  PubMed  Google Scholar 

  47. Tesarik, J. et al. Differentiation of spermatogenic cells during in-vitro culture of testicular biopsy samples from patients with obstructive azoospermia: effect of recombinant follicle stimulating hormone. Hum. Reprod. 13, 2772–2781 (1998).

    CAS  PubMed  Google Scholar 

  48. Tesarik, J., Guido, M., Mendoza, C. & Greco, E. Human spermatogenesis in vitro: respective effects of follicle-stimulating hormone and testosterone on meiosis, spermiogenesis, and Sertoli cell apoptosis. J. Clin. Endocrinol. Metab. 83, 4467–4473 (1998).

    CAS  PubMed  Google Scholar 

  49. Tesarik, J., Bahceci, M., Ozcan, C., Greco, E. & Mendoza, C. Restoration of fertility by in-vitro spermatogenesis. Lancet 353, 555–556 (1999).

    CAS  PubMed  Google Scholar 

  50. Cremades, N., Bernabeu, R., Barros, A. & Sousa, M. In-vitro maturation of round spermatids using co-culture on vero cells. Hum. Reprod. 14, 1287–1293 (1999).

    CAS  PubMed  Google Scholar 

  51. Tanaka, A. et al. Completion of meiosis in human primary spermatocytes through in vitro coculture with vero cells. Fertil. Steril. 79, 795–801 (2003).

    PubMed  Google Scholar 

  52. Sato, T. et al. In vitro spermatogenesis in explanted adult mouse testis tissues. PLoS ONE https://doi.org/10.1371/journal.pone.0130171 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Komeya, M. et al. Long-term ex vivo maintenance of testis tissues producing fertile sperm in a microfluidic device. Sci. Rep. 6, 21472 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Matsumura, T. et al. Rat in vitro spermatogenesis promoted by chemical supplementations and oxygen-tension control. Sci. Rep. 11, 3458 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Sanjo, H. et al. In vitro mouse spermatogenesis with an organ culture method in chemically defined medium. PLoS ONE 13, e0192884 (2018).

    PubMed  PubMed Central  Google Scholar 

  56. Sanjo, H. et al. Antioxidant vitamins and lysophospholipids are critical for inducing mouse spermatogenesis under organ culture conditions. FASEB J. 34, 9480–9497 (2020).

    CAS  PubMed  Google Scholar 

  57. Yamanaka, H. et al. A monolayer microfluidic device supporting mouse spermatogenesis with improved visibility. Biochem. Biophys. Res. Commun. 500, 885–891 (2018).

    CAS  PubMed  Google Scholar 

  58. Boitani, C., Politi, M. G. & Menna, T. Spermatogonial cell proliferation in organ culture of immature rat testis. Biol. Reprod. 48, 761–767 (1993).

    CAS  PubMed  Google Scholar 

  59. Hue, D. et al. Meiotic differentiation of germinal cells in three-week cultures of whole cell population from rat seminiferous tubules. Biol. Reprod. 59, 379–387 (1998).

    CAS  PubMed  Google Scholar 

  60. Le Magueresse-Battistoni, B., Gerard, N. & Jegou, B. Pachytene spermatocytes can achieve meiotic process in vitro. Biochem. Biophys. Res. Commun. 179, 1115–1121 (1991).

    PubMed  Google Scholar 

  61. Marh, J., Tres, L. L., Yamazaki, Y., Yanagimachi, R. & Kierszenbaum, A. L. Mouse round spermatids developed in vitro from preexisting spermatocytes can produce normal offspring by nuclear injection into in vivo-developed mature oocytes. Biol. Reprod. 69, 169–176 (2003).

    CAS  PubMed  Google Scholar 

  62. Hadley, M. A., Byers, S. W., Suarez-Quian, C. A., Kleinman, H. K. & Dym, M. Extracellular matrix regulates Sertoli cell differentiation, testicular cord formation, and germ cell development in vitro. J. Cell Biol. 101, 1511–1522 (1985).

    CAS  PubMed  Google Scholar 

  63. Stukenborg, J. B. et al. Coculture of spermatogonia with somatic cells in a novel three-dimensional soft-agar-culture-system. J. Androl. 29, 312–329 (2008).

    CAS  PubMed  Google Scholar 

  64. Stukenborg, J. B. et al. New horizons for in vitro spermatogenesis? An update on novel three-dimensional culture systems as tools for meiotic and post-meiotic differentiation of testicular germ cells. Mol. Hum. Reprod. 15, 521–529 (2009).

    PubMed  Google Scholar 

  65. Alves-Lopes, J. P., Soder, O. & Stukenborg, J. B. Testicular organoid generation by a novel in vitro three-layer gradient system. Biomaterials 130, 76–89 (2017).

    CAS  PubMed  Google Scholar 

  66. Lee, J. H., Kim, H. J., Kim, H., Lee, S. J. & Gye, M. C. In vitro spermatogenesis by three-dimensional culture of rat testicular cells in collagen gel matrix. Biomaterials 27, 2845–2853 (2006).

    CAS  PubMed  Google Scholar 

  67. Yu, X. Z., Sidhu, J. S., Hong, S. & Faustman, E. M. Essential role of extracellular matrix (ECM) overlay in establishing the functional integrity of primary neonatal rat Sertoli cell/gonocyte co-cultures: an improved in vitro model for assessment of male reproductive toxicity. Toxicol. Sci. 84, 378–393 (2005).

    CAS  PubMed  Google Scholar 

  68. Zhang, J. D., Hatakeyama, J., Eto, K. & Abe, S. Reconstruction of a seminiferous tubule-like structure in a 3 dimensional culture system of re-aggregated mouse neonatal testicular cells within a collagen matrix. Gen. Comp. Endocr. 205, 121–132 (2014).

    CAS  PubMed  Google Scholar 

  69. Pan, F., Chi, L. F. & Schlatt, S. Effects of nanostructures and mouse embryonic stem cells on in vitro morphogenesis of rat testicular cords. PLoS ONE https://doi.org/10.1371/journal.pone.0060054 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Vermeulen, M. et al. Generation of organized porcine testicular organoids in solubilized hydrogels from decellularized extracellular matrix. Int. J. Mol. Sci. https://doi.org/10.3390/ijms20215476 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Cham, T. C., Ibtisham, F., Fayaz, M. A. & Honaramooz, A. Generation of a highly biomimetic organoid, including vasculature, resembling the native immature testis tissue. Cells https://doi.org/10.3390/cells10071696 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Honaramooz, A., Megee, S. O., Rathi, R. & Dobrinski, I. Building a testis: formation of functional testis tissue after transplantation of isolated porcine (Sus scrofa) testis cells. Biol. Reprod. 76, 43–47 (2007).

    CAS  PubMed  Google Scholar 

  73. Tres, L. L. & Kierszenbaum, A. L. Viability of rat spermatogenic cells in vitro is facilitated by their coculture with Sertoli cells in serum-free hormone-supplemented medium. Proc. Natl Acad. Sci. USA 80, 3377–3381 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Llames, S., Garcia-Perez, E., Meana, A., Larcher, F. & del Rio, M. Feeder layer cell actions and applications. Tissue Eng. Part B Rev. 21, 345–353 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Foresta, C., Galeazzi, C., Bettella, A., Garolla, A. & Ferlin, A. In-vitro spermatogenesis. Lancet 353, 1707–1708 (1999).

    CAS  PubMed  Google Scholar 

  76. Food and Drug Administration. Guidance for Industry: Source Animal, Product, Preclinical, and Clinical Issues Concerning the Use of Xenotransplantation Products in Humans (FDA, 2016).

  77. Namba, M., Fukushima, F. & Kimoto, T. Effects of feeder layers made of human, mouse, hamster, and rat-cells on the cloning efficiency of transformed human-cells. In Vitro 18, 469–475 (1982).

    CAS  PubMed  Google Scholar 

  78. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    CAS  PubMed  Google Scholar 

  79. Yamanaka, S. Induced pluripotent stem cells: past, present, and future. Cell Stem Cell 10, 678–684 (2012).

    CAS  PubMed  Google Scholar 

  80. Gashti, N. G., Gilani, M. A. S. & Abbasi, M. Sertoli cell-only syndrome: etiology and clinical management. J. Assist. Reprod. Gen. 38, 559–572 (2021).

    Google Scholar 

  81. Wyns, C. et al. Fertility preservation in the male pediatric population: factors influencing the decision of parents and children. Hum. Reprod. 30, 2022–2030 (2015).

    CAS  PubMed  Google Scholar 

  82. Goossens, E. et al. Fertility preservation in boys: recent developments and new insights. Hum. Reprod. Open 2020, hoaa016 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Easley, C. A.IV et al. Direct differentiation of human pluripotent stem cells into haploid spermatogenic cells. Cell Rep. 2, 440–446 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Paoloni-Giacobino, A. & Chaillet, J. R. Genomic imprinting and assisted reproduction. Reprod. Health 1, 6 (2004).

    PubMed  PubMed Central  Google Scholar 

  85. De Rycke, M., Liebaers, I. & Van Steirteghem, A. Epigenetic risks related to assisted reproductive technologies – risk analysis and epigenetic inheritance. Hum. Reprod. 17, 2487–2494 (2002).

    PubMed  Google Scholar 

  86. Tesarik, J. et al. In-vitro spermatogenesis resumption in men with maturation arrest: relationship with in-vivo blocking stage and serum FSH. Hum. Reprod. 15, 1350–1354 (2000).

    CAS  PubMed  Google Scholar 

  87. de Michele, F. et al. Preserved seminiferous tubule integrity with spermatogonial survival and induction of Sertoli and Leydig cell maturation after long-term organotypic culture of prepubertal human testicular tissue. Hum. Reprod. 32, 32–45 (2017).

    PubMed  Google Scholar 

  88. de Michele, F. et al. In vitro formation of the blood–testis barrier during long-term organotypic culture of human prepubertal tissue: comparison with a large cohort of pre/peripubertal boys. Mol. Hum. Reprod. 24, 271–282 (2018).

    PubMed  Google Scholar 

  89. de Michele, F. et al. Haploid germ cells generated in organotypic culture of testicular tissue from prepubertal boys. Front. Physiol. 9, 1413 (2018).

    PubMed  PubMed Central  Google Scholar 

  90. Trowell, O. A. The culture of mature organs in a synthetic medium. Exp. Cell Res. 16, 118–147 (1959).

    CAS  PubMed  Google Scholar 

  91. Gholami, K. et al. The air-liquid interface culture of the mechanically isolated seminiferous tubules embedded in agarose or alginate improves in vitro spermatogenesis at the expense of attenuating their integrity. Vitr. Cell Dev. Biol. Anim. 56, 261–270 (2020).

    CAS  Google Scholar 

  92. Roulet, V. et al. Human testis in organotypic culture: application for basic or clinical research. Hum. Reprod. 21, 1564–1575 (2006).

    CAS  PubMed  Google Scholar 

  93. Portela, J. M. D. et al. Assessment of fresh and cryopreserved testicular tissues from (pre)pubertal boys during organ culture as a strategy for in vitro spermatogenesis. Hum. Reprod. 34, 2443–2455 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Yuan, Y. et al. In vitro testicular organogenesis from human fetal gonads produces fertilization-competent spermatids. Cell Res. 30, 244–255 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang, D. et al. Organotypic culture of testicular tissue from infant boys with cryptorchidism. Int. J. Mol. Sci. https://doi.org/10.3390/ijms23147975 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Luetjens, C. M. et al. Association of meiotic arrest with lack of BOULE protein expression in infertile men. J. Clin. Endocr. Metab. 89, 1926–1933 (2004).

    CAS  PubMed  Google Scholar 

  97. Perrard, M. H. et al. Complete human and rat ex vivo spermatogenesis from fresh or frozen testicular tissue. Biol. Reprod. 95, 89 (2016).

    PubMed  Google Scholar 

  98. Victor, R. D. et al. A review on chitosan’s uses as biomaterial: tissue engineering, drug delivery systems and cancer treatment. Materials https://doi.org/10.3390/ma13214995 (2020).

    Article  Google Scholar 

  99. Jimenez-Gomez, C. P. & Cecilia, J. A. Chitosan: a natural biopolymer with a wide and varied range of applications. Molecules https://doi.org/10.3390/molecules25173981 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Giudice, M. G., de Michele, F., Poels, J., Vermeulen, M. & Wyns, C. Update on fertility restoration from prepubertal spermatogonial stem cells: how far are we from clinical practice? Stem Cell Res. 21, 171–177 (2017).

    PubMed  Google Scholar 

  101. Perrard, M.-H., Durand, P. & David, L. Process for implementing in vitro spermatogenesis and associated device. US Patent US10723999B2 (2014).

  102. Rouwkema, J., Koopman, B. F. J. M., van Blitterswijk, C. A., Dhert, W. J. A. & Malda, J. Supply of nutrients to cells in engineered tissues. Biotechnol. Genet. Eng. 26, 163–177 (2010).

    CAS  Google Scholar 

  103. Teixeira, S. P. B. et al. Biomaterials for sequestration of growth factors and modulation of cell behavior. Adv. Funct. Mater. https://doi.org/10.1002/adfm.201909011 (2020).

    Article  Google Scholar 

  104. Griffith, L. G. & Swartz, M. A. Capturing complex 3D tissue physiology in vitro. Nat. Rev. Mol. Cell Biol. 7, 211–224 (2006).

    CAS  PubMed  Google Scholar 

  105. Lee, D. R. et al. Isolation of male germ stem cell-like cells from testicular tissue of non-obstructive azoospermic patients and differentiation into haploid male germ cells in vitro. Hum. Reprod. 21, 471–476 (2006).

    PubMed  Google Scholar 

  106. Andersen, T., Auk-Emblem, P. & Dornish, M. 3D cell culture in alginate hydrogels. Microarrays 4, 133–161 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Lee, J. H. et al. In vitro differentiation of germ cells from nonobstructive azoospermic patients using three-dimensional culture in a collagen gel matrix. Fertil. Steril. 87, 824–833 (2007).

    CAS  PubMed  Google Scholar 

  108. Sun, M. et al. Efficient generation of functional haploid spermatids from human germline stem cells by three-dimensional-induced system. Cell Death Differ. 25, 749–766 (2018).

    PubMed  Google Scholar 

  109. von Kopylow, K. et al. Dynamics, ultrastructure and gene expression of human in vitro organized testis cells from testicular sperm extraction biopsies. Mol. Hum. Reprod. 24, 123–134 (2018).

    Google Scholar 

  110. Sakib, S. et al. Formation of organotypic testicular organoids in microwell culture. Biol. Reprod. 100, 1648–1660 (2019).

    PubMed  PubMed Central  Google Scholar 

  111. Pendergraft, S. S., Sadri-Ardekani, H., Atala, A. & Bishop, C. E. Three-dimensional testicular organoid: a novel tool for the study of human spermatogenesis and gonadotoxicity in vitro. Biol. Reprod. 96, 720–732 (2017).

    PubMed  Google Scholar 

  112. Skylar-Scott, M. A. et al. Orthogonally induced differentiation of stem cells for the programmatic patterning of vascularized organoids and bioprinted tissues. Nat. Biomed. Eng. 6, 449–462 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Skylar-Scott, M. A. et al. Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Sci. Adv. 5, eaaw2459 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Ji, S. & Guvendiren, M. Complex 3D bioprinting methods. Apl. Bioeng. 5, 011508 (2021).

    PubMed  PubMed Central  Google Scholar 

  115. Kang, H. W. et al. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 34, 312–319 (2016).

    CAS  PubMed  Google Scholar 

  116. Robinson, M., Bedford, E., Witherspoon, L., Willerth, S. M. & Flannigan, R. Using clinically derived human tissue to 3-dimensionally bioprint personalized testicular tubules for in vitro culturing: first report. F. S Sci. 3, 130–139 (2022).

    PubMed  Google Scholar 

  117. Davoodi, E. et al. Extrusion and microfluidic-based bioprinting to fabricate biomimetic tissues and organs. Adv. Mater. Technol. https://doi.org/10.1002/admt.201901044 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Morgan, M., Kumar, L., Li, Y. & Baptissart, M. Post-transcriptional regulation in spermatogenesis: all RNA pathways lead to healthy sperm. Cell Mol. Life Sci. 78, 8049–8071 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Hermann, B. P. et al. The mammalian spermatogenesis single-cell transcriptome, from spermatogonial stem cells to spermatids. Cell Rep. 25, 1650–1667.e8 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Tan, K. et al. Transcriptome profiling reveals signaling conditions dictating human spermatogonia fate in vitro. Proc. Natl Acad. Sci. USA 117, 17832–17841 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Conrad, S. et al. Differential gene expression profiling of enriched human spermatogonia after short- and long-term culture. Biomed. Res. Int. 2014, 138350 (2014).

    PubMed  PubMed Central  Google Scholar 

  122. Wenger, R. H. & Katschinski, D. M. The hypoxic testis and post-meiotic expression of PAS domain proteins. Semin. Cell Dev. Biol. 16, 547–553 (2005).

    CAS  PubMed  Google Scholar 

  123. Zimmermann, C. et al. Research resource: the dynamic transcriptional profile of Sertoli cells during the progression of spermatogenesis. Mol. Endocrinol. 29, 627–642 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Ishikura, Y. et al. In vitro reconstitution of the whole male germ-cell development from mouse pluripotent stem cells. Cell Stem Cell 28, 2167–2179.e9 (2021).

    CAS  PubMed  Google Scholar 

  125. Nakamura, M., Okinaga, S. & Arai, K. Metabolism of round spermatids: kinetic properties of pyruvate kinase. Andrologia 19, 91–96 (1987).

    CAS  PubMed  Google Scholar 

  126. Nakamura, M., Okinaga, S. & Arai, K. Studies of metabolism of round spermatids: glucose as unfavorable substrate. Biol. Reprod. 35, 927–935 (1986).

    CAS  PubMed  Google Scholar 

  127. Nakamura, M., Okinaga, S. & Arai, K. Metabolism of round spermatids: evidence that lactate is preferred substrate. Am. J. Physiol. 247, E234–E242 (1984).

    CAS  PubMed  Google Scholar 

  128. Hakovirta, H. et al. Polyamines and regulation of spermatogenesis: selective stimulation of late spermatogonia in transgenic mice overexpressing the human ornithine decarboxylase gene. Mol. Endocrinol. 7, 1430–1436 (1993).

    CAS  PubMed  Google Scholar 

  129. Griswold, M. D. Spermatogenesis: the commitment to meiosis. Physiol. Rev. 96, 1–17 (2016).

    CAS  PubMed  Google Scholar 

  130. Law, S. M. Retinoic Acid Receptor Alpha in Germ Cells is Important for Mitosis of Spermatogonia, Spermatogonial Differentiation and Meiosis. PhD thesis, Washington State Univ. (2013).

  131. Childs, A. J., Cowan, G., Kinnell, H. L., Anderson, R. A. & Saunders, P. T. Retinoic acid signalling and the control of meiotic entry in the human fetal gonad. PLoS ONE 6, e20249 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Hasegawa, K. & Saga, Y. Retinoic acid signaling in Sertoli cells regulates organization of the blood-testis barrier through cyclical changes in gene expression. Development 139, 4347–4355 (2012).

    CAS  PubMed  Google Scholar 

  133. Viswanathan, P., Wood, M. A. & Walker, W. H. Follicle-stimulating hormone (FSH) transiently blocks FSH receptor transcription by increasing inhibitor of deoxyribonucleic acid binding/differentiation-2 and decreasing upstream stimulatory factor expression in rat Sertoli cells. Endocrinology 150, 3783–3791 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Monaco, L., Foulkes, N. S. & Sassone-Corsi, P. Pituitary follicle-stimulating-hormone (FSH) induces CREM gene expression in Sertoli cells: involvement in long-term desensitization of the FSH receptor. Proc. Natl Acad. Sci. USA 92, 10673–10677 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Jahnsen, T., Gordeladze, J. O., Torjesen, P. A. & Hansson, V. FSH-response adenylyl cyclase in rat testes: desensitization by homologous hormone. Arch. Androl. 5, 169–177 (1980).

    CAS  PubMed  Google Scholar 

  136. Gnanaprakasam, M. S., Chen, C. J., Sutherland, J. G. & Bhalla, V. K. Receptor depletion and replenishment processes: in vivo regulation of gonadotropin receptors by luteinizing hormone, follicle stimulating hormone and ethanol in rat testis. Biol. Reprod. 20, 991–1000 (1979).

    CAS  PubMed  Google Scholar 

  137. O’Shaughnessy, P. J. & Brown, P. S. Reduction in FSH receptors in the rat testis by injection of homologous hormone. Mol. Cell Endocrinol. 12, 9–15 (1978).

    PubMed  Google Scholar 

  138. Dalton, P. D., Woodfield, T. B. F., Mironov, V. & Groll, J. Advances in hybrid fabrication toward hierarchical tissue constructs. Adv. Sci. 7, 1902953 (2020).

    CAS  Google Scholar 

  139. Liu, W. et al. Coaxial extrusion bioprinting of 3D microfibrous constructs with cell-favorable gelatin methacryloyl microenvironments. Biofabrication 10, 024102 (2018).

    PubMed  PubMed Central  Google Scholar 

  140. Miri, A. K. et al. Microfluidics-enabled multimaterial maskless stereolithographic bioprinting. Adv. Mater. 30, e1800242 (2018).

    PubMed  Google Scholar 

  141. Zhou, X., Wu, H., Wen, H. & Zheng, B. Advances in single-cell printing. Micromachines https://doi.org/10.3390/mi13010080 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Zhang, P. F. & Abate, A. R. High-definition single-cell printing: cell-by-cell fabrication of biological structures. Adv. Mater. https://doi.org/10.1002/adma.202005346 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Zhang, J. et al. Single cell bioprinting with ultrashort laser pulses. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202100066 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Maan, Z., Masri, N. Z. & Willerth, S. M. Smart bioinks for the printing of human tissue models. Biomolecules 12, 141 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. De la Vega, L. et al. 3D bioprinting human-induced pluripotent stem cells and drug-releasing microspheres to produce responsive neural tissues. Adv. Nanobiomed. Res. https://doi.org/10.1002/anbr.202000077 (2021).

    Article  Google Scholar 

  146. Abelseth, E. et al. 3D printing of neural tissues derived from human induced pluripotent stem cells using a fibrin-based bioink. ACS Biomater. Sci. Eng. 5, 234–243 (2019).

    CAS  PubMed  Google Scholar 

  147. de la Vega, L. et al. 3D bioprinting human induced pluripotent stem cell-derived neural tissues using a novel lab-on-a-printer technology. Appl. Sci. Basel https://doi.org/10.3390/app8122414 (2018).

    Article  Google Scholar 

  148. Sharma, R., Smits, I. P. M., De La Vega, L., Lee, C. & Willerth, S. M. 3D Bioprinting pluripotent stem cell derived neural tissues using a novel fibrin bioink containing drug releasing microspheres. Front. Bioeng. Biotech. https://doi.org/10.3389/fbioe.2020.00057 (2020).

    Article  Google Scholar 

  149. Rizvi, S. A. A. & Saleh, A. M. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm. J. 26, 64–70 (2018).

    PubMed  Google Scholar 

  150. Hu, J. B. et al. Cardiovascular tissue bioprinting: physical and chemical processes. Appl. Phys. Rev. https://doi.org/10.1063/1.5048807 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Ninan, N. et al. Plasma assisted design of biocompatible 3D printed PCL/silver nanoparticle scaffolds: in vitro and in vivo analyses. Mater. Adv. 2, 6620–6630 (2021).

    CAS  Google Scholar 

  152. Calamak, S. & Ermis, M. In situ silver nanoparticle synthesis on 3D-printed polylactic acid scaffolds for biomedical applications. J. Mater. Res. 36, 166–175 (2021).

    CAS  Google Scholar 

  153. McLachlan, R. I., Rajpert-De Meyts, E., Hoei-Hansen, C. E., de Kretser, D. M. & Skakkebaek, N. E. Histological evaluation of the human testis – approaches to optimizing the clinical value of the assessment: mini review. Hum. Reprod. 22, 2–16 (2007).

    CAS  PubMed  Google Scholar 

  154. Zhao, L. et al. Single-cell analysis of developing and azoospermia human testicles reveals central role of Sertoli cells. Nat. Commun. 11, 5683 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Ma, M. et al. Sertoli cells from non-obstructive azoospermia and obstructive azoospermia patients show distinct morphology, Raman spectrum and biochemical phenotype. Hum. Reprod. 28, 1863–1873 (2013).

    CAS  PubMed  Google Scholar 

  156. Feng, L. X., Ravindranath, N. & Dym, M. Stem cell factor/c-kit up-regulates cyclin D3 and promotes cell cycle progression via the phosphoinositide 3-kinase/p70 S6 kinase pathway in spermatogonia. J. Biol. Chem. 275, 25572–25576 (2000).

    CAS  PubMed  Google Scholar 

  157. Hasthorpe, S. Clonogenic culture of normal spermatogonia: in vitro regulation of postnatal germ cell proliferation. Biol. Reprod. 68, 1354–1360 (2003).

    CAS  PubMed  Google Scholar 

  158. Singh, D. et al. The production of glial cell line-derived neurotrophic factor by human sertoli cells is substantially reduced in sertoli cell-only testes. Hum. Reprod. 32, 1108–1117 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Paduch, D. A. et al. Aberrant gene expression by Sertoli cells in infertile men with Sertoli cell-only syndrome. PLoS ONE 14, e0216586 (2019).

    PubMed  PubMed Central  Google Scholar 

  160. D’Aurora, M. et al. Deregulation of Sertoli and Leydig cells function in patients with Klinefelter syndrome as evidenced by testis transcriptome analysis. BMC Genomics 16, 156 (2015).

    PubMed  PubMed Central  Google Scholar 

  161. Lottrup, G. et al. Expression patterns of DLK1 and INSL3 identify stages of Leydig cell differentiation during normal development and in testicular pathologies, including testicular cancer and Klinefelter syndrome. Hum. Reprod. 29, 1637–1650 (2014).

    CAS  PubMed  Google Scholar 

  162. Mahyari, E. et al. Comparative single-cell analysis of biopsies clarifies pathogenic mechanisms in Klinefelter syndrome. Am. J. Hum. Genet. 108, 1924–1945 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Cinà, D. P., Phillips, D. & Flannigan, R. CRISPR/Cas9 in male factor infertility. Curr. Tissue Microenviron. Rep. 1, 89–97 (2020).

    Google Scholar 

  164. Krausz, C. & Cioppi, F. Genetic factors of non-obstructive azoospermia: consequences on patients’ and offspring health. J. Clin. Med. https://doi.org/10.3390/jcm10174009 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Chen, J. et al. MicroRNA-202 maintains spermatogonial stem cells by inhibiting cell cycle regulators and RNA binding proteins. Nucleic Acids Res. 45, 4142–4157 (2017).

    CAS  PubMed  Google Scholar 

  166. Li, X. Y., Sun, T. C., Wang, X. X., Tang, J. X. & Liu, Y. X. Restore natural fertility of Kit(w)/Kit(wv) mouse with nonobstructive azoospermia through gene editing on SSCs mediated by CRISPR-Cas9. Stem Cell Res. Ther. https://doi.org/10.1186/s13287-019-1386-7 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Schiebinger, G. et al. Optimal-transport analysis of single-cell gene expression identifies developmental trajectories in reprogramming. Cell 176, 1517 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. van der Valk, J. & Gstraunthaler, G. Fetal bovine serum (FBS)–a pain in the dish? Altern. Lab. Anim. 45, 329–332 (2017).

    PubMed  Google Scholar 

  169. van der Valk, J. et al. Fetal bovine serum (FBS): past–present–future. ALTEX 35, 99–118 (2018).

    PubMed  Google Scholar 

  170. Gstraunthaler, G. Alternatives to the use of fetal bovine serum: serum-free cell culture. ALTEX 20, 275–281 (2003).

    PubMed  Google Scholar 

  171. Ibtisham, F. & Honaramooz, A. Spermatogonial stem cells for in vitro spermatogenesis and in vivo restoration of fertility. Cells https://doi.org/10.3390/cells9030745 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Loai, S. et al. Clinical perspectives on 3D bioprinting paradigms for regenerative medicine. Regen. Med. Front. https://doi.org/10.20900/rmf20190004 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank A. Piechka for her illustrations used in this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Ryan Flannigan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks H. Sadri, S. Schlatt and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robinson, M., Sparanese, S., Witherspoon, L. et al. Human in vitro spermatogenesis as a regenerative therapy — where do we stand?. Nat Rev Urol 20, 461–479 (2023). https://doi.org/10.1038/s41585-023-00723-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-023-00723-4

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research