Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Prostate cancer risk, screening and management in patients with germline BRCA1/2 mutations

Abstract

Mutations in the BRCA1 and BRCA2 tumour suppressor genes are associated with prostate cancer risk; however, optimal screening protocols for individuals with these mutations have been a subject of debate. Several prospective studies of prostate cancer incidence and screening among BRCA1/2 mutation carriers have indicated at least a twofold to fourfold increase in prostate cancer risk among carriers of BRCA2 mutations compared with the general population. Moreover, BRCA2 mutations are associated with more aggressive, high-grade disease characteristics at diagnosis, more aggressive clinical behaviour and greater prostate cancer-specific mortality. The risk for BRCA1 mutations seems to be attenuated compared with BRCA2. Prostate-specific antigen (PSA) measurement or prostate magnetic resonance imaging (MRI) alone is an imperfect indicator of clinically significant prostate cancer; therefore, BRCA1/2 mutation carriers might benefit from refined risk stratification strategies. However, the long-term impact of prostate cancer screening is unknown, and the optimal management of BRCA1/2 carriers with prostate cancer has not been defined. Whether timely localized therapy can improve overall survival in the screened population is uncertain. Long-term results of prospective studies are awaited to confirm the optimal screening strategies and benefits of prostate cancer screening among BRCA1/2 mutation carriers, and whether these approaches ultimately have a positive impact on survival and quality of life in these patients.

Key points

  • Carriers of germline BRCA2 mutations have a twofold to fourfold higher risk of prostate cancer than the general population; for BRCA1 mutation carriers, this association is attenuated.

  • BRCA2 mutation carriers are more likely to be diagnosed with aggressive prostate cancer at a younger age than non-carriers.

  • For BRCA1/2 mutation carriers, the use of advanced prebiopsy risk stratification tools might be beneficial, instead of guideline-recommended prostate-specific antigen (PSA) testing.

  • PSA measurement or prostate magnetic resonance imaging (MRI) alone is inadequate for screening in BRCA1/2 mutation carriers, owing to the inherent limitations of these tests.

  • Screened BRCA1/2 mutation carriers might have an increased risk of prostate cancer-specific death, but these patients often develop other lethal malignancies that could limit the benefits of prostate cancer screening.

  • Benefits and risks of prostate cancer screening among BRCA1/2 mutation carriers must be determined and optimal early treatment strategies identified to improve quality of life and survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Loeb, S. & Giri, V. N. Clinical implications of germline testing in newly diagnosed prostate cancer. Eur. Urol. Oncol. 4, 1–9 (2021).

    Article  PubMed  Google Scholar 

  2. Oh, M. et al. The association of BRCA1 and BRCA2 mutations with prostate cancer risk, frequency, and mortality: a meta-analysis. Prostate 79, 880–895 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Pritchard, C. C. et al. Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N. Engl. J. Med. 375, 443–453 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shore, N. et al. Systematic literature review of the epidemiology of advanced prostate cancer and associated homologous recombination repair gene alterations. J. Urol. 205, 977–986 (2021).

    Article  PubMed  Google Scholar 

  5. Gudmundsdottir, K. & Ashworth, A. The roles of BRCA1 and BRCA2 and associated proteins in the maintenance of genomic stability. Oncogene 25, 5864–5874 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Russo, J. & Giri, V. N. Germline testing and genetic counselling in prostate cancer. Nat. Rev. Urol. 19, 331–343 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Abul-Husn, N. S. et al. Exome sequencing reveals a high prevalence of BRCA1 and BRCA2 founder variants in a diverse population-based biobank. Genome Med. 12, 2 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mateo, J. et al. DNA-repair defects and olaparib in metastatic prostate cancer. N. Engl. J. Med. 373, 1697–1708 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Giri, V. N. et al. Inherited mutations in men undergoing multigene panel testing for prostate cancer: emerging implications for personalized prostate cancer genetic evaluation. JCO Precis. Oncol. 16, 00039 (2017).

    Google Scholar 

  10. Nicolosi, P. et al. Prevalence of germline variants in prostate cancer and implications for current genetic testing guidelines. JAMA Oncol. 5, 523–528 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Isaacsson Velho, P. et al. Intraductal/ductal histology and lymphovascular invasion are associated with germline DNA-repair gene mutations in prostate cancer. Prostate 78, 401–407 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Schweizer, M. T., Cheng, H. H., Nelson, P. S. & Montgomery, R. B. Two steps forward and one step back for precision in prostate cancer treatment. J. Clin. Oncol. 38, 3740–3742 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  13. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) Prostate Cancer Early Detection (version 1.2022). NCCN https://www.nccn.org/professionals/physician_gls/pdf/prostate_detection.pdf (2022).

  14. Mottet, N. et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer-2020 update. Part 1: screening, diagnosis, and local treatment with curative intent. Eur. Urol. 79, 243–262 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Loeb, S. et al. Systematic review of complications of prostate biopsy. Eur. Urol. 64, 876–892 (2013).

    Article  PubMed  Google Scholar 

  16. Fenton, J. J. et al. Prostate-specific antigen-based screening for prostate cancer: evidence report and systematic review for the US preventive services task force. JAMA 319, 1914–1931 (2018).

    Article  PubMed  Google Scholar 

  17. Merseburger, A. S. et al. Genomic testing in patients with metastatic castration-resistant prostate cancer: a pragmatic guide for clinicians. Eur. Urol. 79, 519–529 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Segal, N. et al. Imaging-based prostate cancer screening among BRCA mutation carriers-results from the first round of screening. Ann. Oncol. 31, 1545–1552 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Nyberg, T. et al. Prostate cancer risks for male BRCA1 and BRCA2 mutation carriers: a prospective cohort study. Eur. Urol. 77, 24–35 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Page, E. C. et al. Interim results from the IMPACT study: evidence for prostate-specific antigen screening in BRCA2 mutation carriers. Eur. Urol. 76, 831–842 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nyberg, T., Tischkowitz, M. & Antoniou, A. C. BRCA1 and BRCA2 pathogenic variants and prostate cancer risk: systematic review and meta-analysis. Br. J. Cancer 126, 1067–1081 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Welch, H. G. & Albertsen, P. C. Reconsidering prostate cancer mortality - the future of PSA screening. N. Engl. J. Med. 382, 1557–1563 (2020).

    Article  PubMed  Google Scholar 

  23. Basourakos, S. P. et al. Harm-to-benefit of three decades of prostate cancer screening in Black men. NEJM Evid. 1, EVIDoa2200031 (2022).

    Article  Google Scholar 

  24. Schröder, F. H. et al. Screening and prostate cancer mortality: results of the European randomised study of screening for prostate cancer (ERSPC) at 13 years of follow-up. Lancet 384, 2027–2035 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hugosson, J. et al. A 16-yr follow-up of the European randomized study of screening for prostate cancer. Eur. Urol. 76, 43–51 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Schroder, F. H. et al. Screening for prostate cancer decreases the risk of developing metastatic disease: findings from the European randomized study of screening for prostate cancer (ERSPC). Eur. Urol. 62, 745–752 (2012).

    Article  PubMed  Google Scholar 

  27. Pinsky, P. F. et al. Extended follow-up for prostate cancer incidence and mortality among participants in the prostate, lung, colorectal and ovarian randomized cancer screening trial. BJU Int. 123, 854–860 (2019).

    Article  PubMed  Google Scholar 

  28. Pinsky, P. F. et al. Extended mortality results for prostate cancer screening in the PLCO trial with median follow-up of 15 years. Cancer 123, 592–599 (2017).

    Article  PubMed  Google Scholar 

  29. Andriole, G. L. et al. Mortality results from a randomized prostate-cancer screening trial. N. Engl. J. Med. 360, 1310–1319 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Martin, R. M. et al. Effect of a low-intensity PSA-based screening intervention on prostate cancer mortality: the CAP randomized clinical trial. JAMA 319, 883–895 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Howlader N, et al. (eds). SEER Cancer Statistics Review, 1975–2017. National Cancer Institute https://seer.cancer.gov/csr/1975_2017/ (2020).

  32. Kelly, S. P., Anderson, W. F., Rosenberg, P. S. & Cook, M. B. Past, current, and future incidence rates and burden of metastatic prostate cancer in the United States. Eur. Urol. Focus. 4, 121–127 (2018).

    Article  PubMed  Google Scholar 

  33. Leapman, M. S. et al. Changes in prostate-specific antigen testing relative to the revised US preventive services task force recommendation on prostate cancer screening. JAMA Oncol. 8, 41–47 (2022).

    Article  PubMed  Google Scholar 

  34. Van Poppel, H. et al. Prostate-specific antigen testing as part of a risk-adapted early detection strategy for prostate cancer: European Association of Urology position and recommendations for 2021. Eur. Urol. 80, 703–711 (2021).

    Article  PubMed  Google Scholar 

  35. Neal, D. E. et al. Ten-year mortality, disease progression, and treatment-related side effects in men with localised prostate cancer from the protect randomised controlled trial according to treatment received. Eur. Urol. 77, 320–330 (2020).

    Article  PubMed  Google Scholar 

  36. Hamdy, F. C. et al. 10-Year outcomes after monitoring, surgery, or radiotherapy for localized prostate cancer. N. Engl. J. Med. 375, 1415–1424 (2016).

    Article  PubMed  Google Scholar 

  37. Wilt, T. J. et al. Follow-up of prostatectomy versus observation for early prostate cancer. N. Engl. J. Med. 377, 132–142 (2017).

    Article  PubMed  Google Scholar 

  38. Albertsen, P. C. et al. Impact of comorbidity on survival among men with localized prostate cancer. J. Clin. Oncol. 29, 1335–1341 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Moschini, M. et al. External beam radiotherapy increases the risk of bladder cancer when compared with radical prostatectomy in patients affected by prostate cancer: a population-based analysis. Eur. Urol. 75, 319–328 (2019).

    Article  PubMed  Google Scholar 

  40. Awad, M. A. et al. Prostate cancer radiation and urethral strictures: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis. 21, 168–174 (2018).

    Article  PubMed  Google Scholar 

  41. Welch, H. G. & Albertsen, P. C. Prostate cancer diagnosis and treatment after the introduction of prostate-specific antigen screening: 1986–2005. J. Natl Cancer Inst. 101, 1325–1329 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kawada, T. et al. Diagnostic performance of prostate-specific membrane antigen positron emission tomography-targeted biopsy for detection of clinically significant prostate cancer: a systematic review and meta-analysis. Eur. Urol. Oncol. 5, 390–400 (2022).

    Article  PubMed  Google Scholar 

  43. Rajwa, P. et al. Intensification of systemic therapy in addition to definitive local treatment in nonmetastatic unfavourable prostate cancer: a systematic review and meta-analysis. Eur. Urol. 82, 82–96 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Sathianathen, N. J. et al. Indirect comparisons of efficacy between combination approaches in metastatic hormone-sensitive prostate cancer: a systematic review and network meta-analysis. Eur. Urol. 77, 365–372 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Ost, P. et al. Surveillance or metastasis-directed therapy for oligometastatic prostate cancer recurrence: a prospective, randomized, multicenter phase II trial. J. Clin. Oncol. 36, 446–453 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Kasivisvanathan, V. et al. MRI-targeted or standard biopsy for prostate-cancer diagnosis. N. Engl. J. Med. 378, 1767–1777 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Eklund, M. et al. MRI-targeted or standard biopsy in prostate cancer screening. N. Engl. J. Med. 385, 908–920 (2021).

    Article  PubMed  Google Scholar 

  48. Loeb, S. et al. Knowledge and practice regarding prostate cancer germline testing among urologists: gaps to address for optimal implementation. Cancer Treat. Res. Commun. 25, 100212 (2020).

    Article  PubMed  Google Scholar 

  49. Loeb, S. et al. Barriers and facilitators of germline genetic evaluation for prostate cancer. Prostate 81, 754–764 (2021).

    Article  PubMed  Google Scholar 

  50. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic (version 1.2023). NCCN https://www.nccn.org/professionals/physician_gls/pdf/genetics_bop.pdf (2022).

  51. Hadar, T. et al. Presymptomatic awareness of germline pathogenic BRCA variants and associated outcomes in women with breast cancer. JAMA Oncol. 6, 1460–1463 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  52. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) Prostate Cancer (version 1.2023). NCCN https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf (2022).

  53. Giri, V. N. et al. Implementation of germline testing for prostate cancer: Philadelphia Prostate Cancer Consensus Conference 2019. J. Clin. Oncol. 38, 2798–2811 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Castro, E. et al. Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J. Clin. Oncol. 31, 1748–1757 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dall’Era, M. A. et al. Germline and somatic DNA repair gene alterations in prostate cancer. Cancer 126, 2980–2985 (2020).

    Article  PubMed  Google Scholar 

  56. Na, R. et al. Germline mutations in ATM and BRCA1/2 distinguish risk for lethal and indolent prostate cancer and are associated with early age at death. Eur. Urol. 71, 740–747 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Abeshouse, A. et al. The molecular taxonomy of primary prostate cancer. Cell 163, 1011–1025 (2015).

    Article  CAS  Google Scholar 

  58. Berchuck, J. E. et al. Impact of pathogenic germline DNA damage repair alterations on response to intense neoadjuvant androgen deprivation therapy in high-risk localized prostate cancer. Eur. Urol. 80, 295–303 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Momozawa, Y. et al. Expansion of cancer risk profile for BRCA1 and BRCA2 pathogenic variants. JAMA Oncol. 8, 871–878 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Li, S. et al. Cancer risks associated with BRCA1 and BRCA2 pathogenic variants. J. Clin. Oncol. 40, 1529–1541 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Laitman, Y. et al. Cancer risks in Jewish male BRCA1 and BRCA2 mutation carriers. Breast Cancer Res. Treat. 150, 631–635 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Mersch, J. et al. Cancers associated with BRCA1 and BRCA2 mutations other than breast and ovarian. Cancer 121, 269–275 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Mano, R. et al. Malignant abnormalities in male BRCA mutation carriers: results from a prospectively screened cohort. JAMA Oncol. 4, 872–874 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Bancroft, E. K. et al. Targeted prostate cancer screening in BRCA1 and BRCA2 mutation carriers: results from the initial screening round of the IMPACT study. Eur. Urol. 66, 489–499 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Gleason, D. F. & Mellinger, G. T. Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging. J. Urol. 197, S134–S139 (2017).

    Article  PubMed  Google Scholar 

  66. Epstein, J. I. et al. The 2014 International Society of Urological Pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma: definition of grading patterns and proposal for a new grading system. Am. J. Surgical Pathol. 40, 244–252 (2016).

    Article  Google Scholar 

  67. D’Amico, A. V. et al. Pretreatment nomogram for prostate-specific antigen recurrence after radical prostatectomy or external-beam radiation therapy for clinically localized prostate cancer. J. Clin. Oncol. 17, 168–168 (1999).

    Article  PubMed  Google Scholar 

  68. Cooperberg, M. R., Hilton, J. F. & Carroll, P. R. The CAPRA-S score. Cancer 117, 5039–5046 (2011).

    Article  PubMed  Google Scholar 

  69. Bokhorst, L. P. et al. Positive predictive value of prostate biopsy indicated by prostate-specific-antigen-based prostate cancer screening: trends over time in a European randomized trial. BJU Int. 110, 1654–1660 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Pinsky, P. F., Parnes, H. L. & Andriole, G. Mortality and complications after prostate biopsy in the prostate, lung, colorectal and ovarian cancer screening (PLCO) trial. BJU Int. 113, 254–259 (2014).

    Article  PubMed  Google Scholar 

  71. Eldred-Evans, D. et al. Population-based prostate cancer screening with magnetic resonance imaging or ultrasonography: the IP1-PROSTAGRAM study. JAMA Oncol. 7, 395–402 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Mazzone, E. et al. Positive predictive value of prostate imaging reporting and data system version 2 for the detection of clinically significant prostate cancer: a systematic review and meta-analysis. Eur. Urol. Oncol. 4, 697–713 (2021).

    Article  PubMed  Google Scholar 

  73. Park, K. J. et al. Risk stratification of prostate cancer according to PI-RADS(R) version 2 categories: meta-analysis for prospective studies. J. Urol. 204, 1141–1149 (2020).

    Article  PubMed  Google Scholar 

  74. Van Calster, B. et al. Reporting and interpreting decision curve analysis: a guide for investigators. Eur. Urol. 74, 796–804 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Nordström, T. et al. Prostate cancer screening using a combination of risk-prediction, MRI, and targeted prostate biopsies (STHLM3-MRI): a prospective, population-based, randomised, open-label, non-inferiority trial. Lancet Oncol. 22, 1240–1249 (2021).

    Article  PubMed  Google Scholar 

  76. Boilève, A., Lavaud, P. & Caron, O. Germline BRCA1 mutation and prostate cancer: be careful on causality. Eur. Urol. Oncol. 4, 674–675 (2021).

    Article  PubMed  Google Scholar 

  77. Messina, C. et al. BRCA mutations in prostate cancer: prognostic and predictive implications. J. Oncol. 2020, 4986365 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Taylor, R. A. et al. The influence of BRCA2 mutation on localized prostate cancer. Nat. Rev. Urol. 16, 281–290 (2019).

    Article  PubMed  Google Scholar 

  79. Carter, H. B. et al. Germline mutations in ATM and BRCA1/2 are associated with grade reclassification in men on active surveillance for prostate cancer. Eur. Urol. 75, 743–749 (2019).

    Article  CAS  PubMed  Google Scholar 

  80. Dall’era, M. et al. Are prostate cancer patients with BRCA1 and BRCA2 mutations safe for active surveillance? J. Clin. Oncol. 37 (Suppl. 7), 19 (2019).

    Article  Google Scholar 

  81. Rajwa, P. et al. Reliability of serial prostate magnetic resonance imaging to detect prostate cancer progression during active surveillance: a systematic review and meta-analysis. Eur. Urol. 80, 549–563 (2021).

    Article  PubMed  Google Scholar 

  82. Cooperberg, M. R. et al. Tailoring intensity of active surveillance for low-risk prostate cancer based on individualized prediction of risk stability. JAMA Oncol. 6, e203187 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Rajwa, P. et al. Association of negative followup biopsy and reclassification during active surveillance of prostate cancer: a systematic review and meta-analysis. J. Urol. 205, 1559–1568 (2021).

    Article  PubMed  Google Scholar 

  84. Halstuch, D. et al. Short-term outcomes of active surveillance for low risk prostate cancer among men with germline DNA repair gene mutations. J. Urol. 204, 707–713 (2020).

    Article  PubMed  Google Scholar 

  85. Halstuch, D., Ber, Y. & Margel, D. Screening, active surveillance, and treatment of localized prostate cancer among carriers of germline BRCA mutations. Eur. Urol. Focus. 6, 212–214 (2020).

    Article  PubMed  Google Scholar 

  86. Mai, P. L. et al. Potential excess mortality in BRCA1/2 mutation carriers beyond breast, ovarian, prostate, and pancreatic cancers and melanoma. PLoS ONE 4, e4812 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Gandaglia, G., Briganti, A. & Montorsi, F. Reimagining prostate cancer screening: the IMPACT of germline mutations. Lancet Oncol. 22, 1491–1492 (2021).

    Article  CAS  PubMed  Google Scholar 

  88. Castro, E. et al. Effect of BRCA mutations on metastatic relapse and cause-specific survival after radical treatment for localised prostate cancer. Eur. Urol. 68, 186–193 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Clark, R., McAlpine, K. & Fleshner, N. A clinical trial of prophylactic prostatectomy for BRCA2 mutation carriers: is now the time? Eur. Urol. Focus. 7, 506–507 (2021).

    Article  PubMed  Google Scholar 

  90. Hussain, M. et al. Survival with olaparib in metastatic castration-resistant prostate cancer. N. Engl. J. Med. 383, 2345–2357 (2020).

    Article  CAS  PubMed  Google Scholar 

  91. Antonarakis, E. S., Gomella, L. G. & Petrylak, D. P. When and how to use PARP inhibitors in prostate cancer: a systematic review of the literature with an update on on-going trials. Eur. Urol. Oncol. 3, 594–611 (2020).

    Article  PubMed  Google Scholar 

  92. De Bono, J. et al. Olaparib for metastatic castration-resistant prostate cancer. N. Engl. J. Med. 382, 2091–2102 (2020).

    Article  PubMed  Google Scholar 

  93. Abida, W. et al. Rucaparib in men with metastatic castration-resistant prostate cancer harboring a BRCA1 or BRCA2 gene alteration. J. Clin. Oncol. 38, 3763–3772 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ryan, C. J. et al. TRITON3: an international, randomized, open-label, phase III study of the PARP inhibitor rucaparib vs. physician’s choice of therapy for patients with metastatic castration-resistant prostate cancer (mCRPC) associated with homologous recombination deficiency (HRD). J. Clin. Oncol. 36 (Suppl. 6), TPS389 (2018).

    Article  Google Scholar 

  95. Smith, M. R. et al. Niraparib in patients with metastatic castration-resistant prostate cancer and DNA repair gene defects (GALAHAD): a multicentre, open-label, phase 2 trial. Lancet Oncol. 23, 362–373 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Clarke, N. W. et al. Abiraterone and olaparib for metastatic castration-resistant prostate cancer. NEJM Evid. 1, EVIDoa2200043 (2022).

    Article  Google Scholar 

  97. Clovis Oncology. TRITON3 phase 3 trial of Rubraca® (rucaparib) achieves primary endpoint in men with metastatic castration-resistant prostate cancer with BRCA or ATM mutations. Clovis Oncology https://ir.clovisoncology.com/investors-and-news/news-releases/press-release-details/2022/TRITON3-Phase-3-Trial-of-Rubraca-rucaparib-Achieves-Primary-Endpoint-in-Men-with-Metastatic-Castration-Resistant-Prostate-Cancer-with-BRCA-or-ATM-Mutations/default.aspx (2022).

  98. Teyssonneau, D. et al. Prostate cancer and PARP inhibitors: progress and challenges. J. Hematol. Oncol. 14, 51 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zumsteg, Z. et al. 689TiP NRG Oncology’s GU007 (NADIR): a randomized phase II trial of niraparib with standard combination androgen deprivation therapy (ADT) and radiotherapy (RT) in high-risk prostate cancer (PC) (with initial phase I). Ann. Oncol. 31, S546 (2020).

    Article  Google Scholar 

  100. Rathkopf, D. E. et al. AMPLITUDE: a study of niraparib in combination with abiraterone acetate plus prednisone (AAP) versus AAP for the treatment of patients with deleterious germline or somatic homologous recombination repair (HRR) gene-altered metastatic castration-sensitive prostate cancer (mCSPC). J. Clin. Oncol. 39 (Suppl. 6), TPS176 (2021).

    Article  Google Scholar 

  101. Antonarakis, E. S. et al. Interim results from a phase 2 study of olaparib (without ADT) in men with biochemically-recurrent prostate cancer after prostatectomy, with integrated biomarker analysis. J. Clin. Oncol. 37, 5045–5045 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

P.R. is supported by the EUSP Scholarship of the European Association of Urology (EAU).

Author information

Authors and Affiliations

Authors

Contributions

P.R., F.Q. and B.P. researched data for the article. P.R., F.Q., B.P., G.G., G.P., D.T., A.S.M. and S.F.S. contributed substantially to discussion of the content. P.R., F.Q., B.P., G.G., G.P., M.S.L., A.P. and S.F.S. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Shahrokh F. Shariat.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Maria Carlo, Gail Risbridger, Mark Frydenberg and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajwa, P., Quhal, F., Pradere, B. et al. Prostate cancer risk, screening and management in patients with germline BRCA1/2 mutations. Nat Rev Urol 20, 205–216 (2023). https://doi.org/10.1038/s41585-022-00680-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-022-00680-4

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer