Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The cognitive effect of anticholinergics for patients with overactive bladder


Overactive bladder (OAB) is often treated with medications that block the cholinergic receptors in the bladder (known as anticholinergics). The effect of this medication class on cognition and risk of dementia has been increasingly studied over the past 40 years after initial studies suggested that the anticholinergic medication class could affect memory. Short-term randomized clinical trials demonstrated that the administration of the anticholinergic oxybutynin leads to impaired memory and attention, and large, population-based studies showed associations between several different anticholinergic medications and dementia. However, trials involving anticholinergics other than oxybutynin have not shown such substantial effects on short-term cognitive function. This discordance in results between short-term cognitive safety of OAB anticholinergics and the long-term increased dementia risk could be explained by the high proportion of patients using oxybutynin in the OAB subgroups of the dementia studies, or a study duration that was too short in the prospective clinical trials on cognition with other OAB anticholinergics. Notably, all studies must be interpreted in the context of potential confounding factors, such as when prodromal urinary symptoms associated with the early stages of dementia lead to an increase in OAB medication use, rather than the use of OAB medication causing dementia. In patients with potential risk factors for cognitive impairment, the cautious use of selected OAB anticholinergic agents with favourable physicochemical and pharmacokinetic properties and clinical trial evidence of cognitive safety might be appropriate.

Key points

  • Short-term randomized clinical trials (most <4 weeks) have not shown substantial cognitive impairment with overactive bladder (OAB) anticholinergics other than oxybutynin.

  • Very few long-term clinical studies (>3 months) on OAB anticholinergics exist, and those studies that are available have conflicting results and are limited by methodological issues.

  • Large, observational studies of OAB anticholinergic use have shown that these medications are associated with an ~20% increased relative risk of dementia, but residual confounding and reverse causality cannot be ruled out.

  • Alternative OAB treatments might be more appropriate for patients >65 years of age and those patients with underlying mild cognitive impairment (or conditions that put them at risk of it); if necessary, careful use of anticholinergics with favourable physicochemical, pharmacokinetic and pharmacodynamic properties and cognitive safety data could be considered.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Distribution and general role of the muscarinic acetylcholine receptors in the human body and brain.
Fig. 2: Anatomy of the BBB, and how certain anticholinergics interact with it.


  1. 1.

    Milsom, I. et al. Global prevalence and economic burden of urgency urinary incontinence: a systematic review. Eur. Urol. 65, 79–95 (2014).

    PubMed  Article  Google Scholar 

  2. 2.

    Abrams, P. et al. The standardisation of terminology of lower urinary tract function: report from the Standardisation Sub-committee of the International Continence Society. Neurourol. Urodyn. 21, 167–178 (2002).

    PubMed  Article  Google Scholar 

  3. 3.

    Heidler, S. et al. The natural history of lower urinary tract symptoms in females: analysis of a health screening project. Eur. Urol. 52, 1744–1750 (2007).

    PubMed  Article  Google Scholar 

  4. 4.

    Peyronnet, B. et al. A comprehensive review of overactive bladder pathophysiology: on the way to tailored treatment. Eur. Urol. 75, 988–1000 (2019). An excellent article on OAB pathophysiology that includes a review of several potential mechanisms and phenotypes of OAB.

    PubMed  Article  Google Scholar 

  5. 5.

    Gormley, E. A., Lightner, D. J., Faraday, M. & Vasavada, S. P. Diagnosis and treatment of overactive bladder (Non-Neurogenic) in adults: AUA/SUFU guideline amendment. J. Urol. 193, 1572–1580 (2015).

    PubMed  Article  Google Scholar 

  6. 6.

    Nambiar, A. K. et al. EAU guidelines on assessment and nonsurgical management of urinary incontinence. Eur. Urol. 73, 596–609 (2018).

    PubMed  Article  Google Scholar 

  7. 7.

    Hesch, K. Agents for treatment of overactive bladder: a therapeutic class review. Bayl. Univ. Med. Cent. Proc. 20, 307–314 (2017).

    Article  Google Scholar 

  8. 8.

    Maggiore, U. L. R. et al. Pharmacokinetics and toxicity of antimuscarinic drugs for overactive bladder treatment in females. Expert Opin. Drug Met. 8, 1387–1408 (2012).

    Article  CAS  Google Scholar 

  9. 9.

    Chapple, C. R. et al. The effects of antimuscarinic treatments in overactive bladder: an update of a systematic review and meta-analysis. Eur. Urol. 54, 543–562 (2008).

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Maman, K. et al. Comparative efficacy and safety of medical treatments for the management of overactive bladder: a systematic literature review and mixed treatment comparison. Eur. Urol. 65, 755–765 (2014).

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Visco, A. G. et al. Anticholinergic therapy vs. onabotulinumtoxina for urgency urinary incontinence. N. Engl. J. Med. 367, 1803–1813 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  12. 12.

    Yeowell, G. et al. Real-world persistence and adherence to oral antimuscarinics and mirabegron in patients with overactive bladder (OAB): a systematic literature review. BMJ Open 8, e021889 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Kessler, T. M. et al. Adverse event assessment of antimuscarinics for treating overactive bladder: a network meta-analytic approach. PLoS ONE 6, e16718 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  14. 14.

    Coupland, C. A. C. et al. Anticholinergic drug exposure and the risk of dementia: a nested case-control study. JAMA Intern. Med. 179, 1084–1093 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Richardson, K. et al. Anticholinergic drugs and risk of dementia: case-control study. BMJ 361, k1315 (2018). An often-quoted study that suggests a potential causal association between anticholinergics and the eventual diagnosis of dementia.

    PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Kay, G. et al. Differential effects of the antimuscarinic agents darifenacin and oxybutynin ER on memory in older subjects. Eur. Urol. 50, 317–326 (2006). A prospective clinical study that demonstrated that short-term oxybutynin use is associated with 10 years of ageing of the brain.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Livingston, G. et al. Dementia prevention, intervention, and care. Lancet 390, 2673–2734 (2017).

    PubMed  Article  Google Scholar 

  18. 18.

    Petersen, R. C. Clinical practice. Mild cognitive impairment. N. Engl. J. Med. 364, 2227–2234 (2011).

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Decalf, V. H. et al. Older people’s preferences for side effects associated with antimuscarinic treatments of overactive bladder: a discrete-choice experiment. Drug Aging 34, 615–623 (2017).

    Article  Google Scholar 

  20. 20.

    Thomas, T. N. & Walters, M. D. AUGS consensus statement: association of anticholinergic medication use and cognition in women with overactive bladder. Female Pelvic Med. Reconstr. Surg. 23, 177–178 (2017).

    Article  Google Scholar 

  21. 21.

    Wagg, A., Dale, M., Tretter, R., Stow, B. & Compion, G. Randomised, multicentre, placebo-controlled, double-blind crossover study investigating the effect of solifenacin and oxybutynin in elderly people with mild cognitive impairment: the SENIOR study. Eur. Urol. 64, 74–81 (2013).

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Lipton, R. B., Kolodner, K. & Wesnes, K. Assessment of cognitive function of the elderly population. J. Urol. 173, 493–498 (2005).

    PubMed  Article  Google Scholar 

  23. 23.

    Kay, G. G. & Wesnes, K. A. Pharmacodynamic effects of darifenacin, a muscarinic M3 selective receptor antagonist for the treatment of overactive bladder, in healthy volunteers. BJU Int. 96, 1055–1062 (2005).

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Wesnes, K. A., Edgar, C., Tretter, R. N. & Bolodeoku, J. Exploratory pilot study assessing the risk of cognitive impairment or sedation in the elderly following single doses of solifenacin 10 mg. Expert Opin. Drug Saf. 8, 615–626 (2009).

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Kay, G. G. et al. Evaluation of cognitive function in healthy older subjects treated with fesoterodine. Postgrad. Med. 124, 7–15 (2015).

    Article  Google Scholar 

  26. 26.

    Geller, E. J. et al. Effect of trospium chloride on cognitive function in women aged 50 and older. Female Pelvic Med. Reconstr. Surg. 23, 118–123 (2017).

    PubMed  Article  Google Scholar 

  27. 27.

    Kosilov, K. et al. Influence of the short-term intake of high doses of solifenacin and trospium on cognitive function and health-related quality of life in older women with urinary incontinence. Int. Neurourol. J. 22, 41–50 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Chiang, C.-H. et al. Lower urinary tract symptoms are associated with increased risk of dementia among the elderly: a nationwide study. BioMed. Res. Int. 2015, 187819 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Syndulko, K. et al. Decreased verbal memory associated with anticholinergic treatment in Parkinson’s disease patients. Int. J. Neurosci. 14, 61–66 (2009).

    Article  Google Scholar 

  30. 30.

    Marzoughi, S. et al. Tardive neurotoxicity of anticholinergic drugs: a review. J. Neurochem. (2021).

    Article  PubMed  Google Scholar 

  31. 31.

    Wess, J. Muscarinic acetylcholine receptor knockout mice: novel phenotypes and clinical implications. Annu. Rev. Pharmacol. 44, 423–450 (2004).

    Article  CAS  Google Scholar 

  32. 32.

    Conn, P. J., Jones, C. K. & Lindsley, C. W. Subtype-selective allosteric modulators of muscarinic receptors for the treatment of CNS disorders. Trends Pharmacol. Sci. 30, 148–155 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  33. 33.

    Lebois, E. P., Thorn, C., Edgerton, J. R., Popiolek, M. & Xi, S. Muscarinic receptor subtype distribution in the central nervous system and relevance to aging and Alzheimer’s disease. Neuropharmacology 136, 362–373 (2018).

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Lonsdale, J. et al. The genotype-tissue expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).

    Article  CAS  Google Scholar 

  35. 35.

    Levey, A., Kitt, C., Simonds, W., Price, D. & Brann, M. Identification and localization of muscarinic acetylcholine receptor proteins in brain with subtype-specific antibodies. J. Neurosci. 11, 3218–3226 (1991).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  36. 36.

    Flynn, D. D., Ferrari-DiLeo, G., Mash, D. C. & Levey, A. I. Differential regulation of molecular subtypes of muscarinic receptors in Alzheimer’s disease. J. Neurochem. 64, 1888–1891 (1995).

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Hersch, S. M. & Levey, A. I. Diverse pre- and post-synaptic expression of m1–m4 muscarinic receptor proteins in neurons and afferents in the rat neostriatum. Life Sci. 56, 931–938 (1995).

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Messer, W. S., Bohnett, M. & Stibbe, J. Evidence for a preferential involvement of M1 muscarinic receptors in representational memory. Neurosci. Lett. 116, 184–189 (1990).

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Anagnostaras, S. G. et al. Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice. Nat. Neurosci. 6, 51–58 (2003).

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Kay, G. G. et al. Antimuscarinic drugs for overactive bladder and their potential effects on cognitive function in older patients. J. Am. Geriatr. Soc. 53, 2195–2201 (2005).

    PubMed  Article  Google Scholar 

  41. 41.

    Pomara, N., Willoughby, L. M., Wesnes, K. & Sidtis, J. J. Increased anticholinergic challenge-induced memory impairment associated with the APOE-ε4 allele in the elderly: a controlled pilot study. Neuropsychopharmacology 29, 403–409 (2004).

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Blain, J.-F., Sullivan, P. M. & Poirier, J. A deficit in astroglial organization causes the impaired reactive sprouting in human apolipoprotein E4 targeted replacement mice. Neurobiol. Dis. 21, 505–514 (2006).

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Weigand, A. J. et al. Association of anticholinergic medication and AD biomarkers with incidence of MCI among cognitively normal older adults. Neurology 95, e2295–e2304 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  44. 44.

    Jewart, R. D., Green, J., Lu, C., Cellar, J. & Tune, L. E. Cognitive, behavioral, and physiological changes in Alzheimer disease patients as a function of incontinence medications. Am. J. Geriatr. Psychiatry 13, 324–328 (2005).

    PubMed  Article  Google Scholar 

  45. 45.

    Serlin, Y., Shelef, I., Knyazer, B. & Friedman, A. Anatomy and physiology of the blood–brain barrier. Semin. Cell Dev. Biol. 38, 2–6 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    van de Haar, H. J. et al. Blood–brain barrier impairment in dementia: current and future in vivo assessments. Neurosci. Biobehav. Rev. 49, 71–81 (2015).

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Callegari, E. et al. A comprehensive non-clinical evaluation of the CNS penetration potential of antimuscarinic agents for the treatment of overactive bladder. Br. J. Clin. Pharm. 72, 235–246 (2011).

    Article  CAS  Google Scholar 

  48. 48.

    Geldenhuys, W. J., Mohammad, A. S., Adkins, C. E. & Lockman, P. R. Molecular determinants of blood–brain barrier permeation. Ther. Deliv. 6, 961–971 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  49. 49.

    Waterbeemd, H. van de, Camenisch, G., Folkers, G., Chretien, J. R. & Raevsky, O. A. Estimation of blood-brain barrier crossing of drugs using molecular size and shape, and H-bonding descriptors. J. Drug Target. 6, 151–165 (2009).

    Article  Google Scholar 

  50. 50.

    Roberts, L. M. et al. Subcellular localization of transporters along the rat blood–brain barrier and blood–cerebral-spinal fluid barrier by in vivo biotinylation. Neuroscience 155, 423–438 (2008).

    PubMed  Article  CAS  Google Scholar 

  51. 51.

    Geyer, J., Gavrilova, O. & Petzinger, E. The role of p-glycoprotein in limiting brain penetration of the peripherally acting anticholinergic overactive bladder drug trospium chloride. Drug Metab. Dispos. 37, 1371–1374 (2009).

    PubMed  Article  CAS  Google Scholar 

  52. 52.

    Chancellor, M. B. et al. Blood-brain barrier permeation and efflux exclusion of anticholinergics used in the treatment of overactive bladder. Drug Aging 29, 259–273 (2012).

    Article  CAS  Google Scholar 

  53. 53.

    Jakobsen, S. M., Kersten, H. & Molden, E. Evaluation of brain anticholinergic activities of urinary spasmolytic drugs using a high-throughput radio receptor bioassay. J. Am. Geriatr. Soc. 59, 501–505 (2011).

    PubMed  Article  Google Scholar 

  54. 54.

    Zinner, N. Darifenacin: a muscarinic M3-selective receptor antagonist for the treatment of overactive bladder. Expert Opin. Pharmacother. 8, 511–523 (2007).

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Maruyama, S. et al. In vivo quantitative autoradiographic analysis of brain muscarinic receptor occupancy by antimuscarinic agents for overactive bladder treatment. J. Pharmacol. Exp. Ther. 325, 774–781 (2008).

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Starr, J. M. et al. Increased blood–brain barrier permeability in type II diabetes demonstrated by gadolinium magnetic resonance imaging. J. Neurol. Neurosurg. Psychiatry 74, 70 (2003).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  57. 57.

    Pakulski, C., Drobnik, L. & Millo, B. Age and sex as factors modifying the function of the blood-cerebrospinal fluid barrier. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 6, 314–318 (2000).

    CAS  Google Scholar 

  58. 58.

    Coyne, K. S. et al. Comorbidities and personal burden of urgency urinary incontinence: a systematic review. Int. J. Clin. Pract. 67, 1015–1033 (2013).

    PubMed  Article  CAS  Google Scholar 

  59. 59.

    Nishtala, P. S., Salahudeen, M. S. & Hilmer, S. N. Anticholinergics: theoretical and clinical overview. Expert Opin. Drug Saf. 15, 753–768 (2016).

    PubMed  Article  CAS  Google Scholar 

  60. 60.

    Tan, M. P. et al. Use of medications with anticholinergic properties and the long-term risk of hospitalization for falls and fractures in the EPIC-norfolk longitudinal cohort study. Drug Aging 37, 105–114 (2020).

    Article  Google Scholar 

  61. 61.

    Kachru, N., Holmes, H. M., Johnson, M. L., Chen, H. & Aparasu, R. R. Risk of mortality associated with non-selective antimuscarinic medications in older adults with dementia: a retrospective study. J. Gen. Intern. Med. 35, 2084–2093 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Lisibach, A. et al. Quality of anticholinergic burden scales and their impact on clinical outcomes: a systematic review. Eur. J. Clin. Pharmacol. 77, 147–162 (2021).

    PubMed  Article  Google Scholar 

  63. 63.

    Welsh, T. J., Wardt, V. van der, Ojo, G., Gordon, A. L. & Gladman, J. R. F. Anticholinergic drug burden tools/scales and adverse outcomes in different clinical settings: a systematic review of reviews. Drugs Aging 35, 523–538 (2018).

    PubMed  Article  CAS  Google Scholar 

  64. 64.

    Turró-Garriga, O. et al. Measuring anticholinergic exposure in patients with dementia: a comparative study of nine anticholinergic risk scales. Int. J. Geriatr. Psychiatry 33, 710–717 (2018).

    PubMed  Article  Google Scholar 

  65. 65.

    Chuang, Y.-F., Elango, P., Gonzalez, C. E. & Thambisetty, M. Midlife anticholinergic drug use, risk of Alzheimer’s disease, and brain atrophy in community-dwelling older adults. Alzheimers Dement. 3, 471–479 (2017).

    Article  Google Scholar 

  66. 66.

    Risacher, S. L. et al. Association between anticholinergic medication use and cognition, brain metabolism, and brain atrophy in cognitively normal older adults. JAMA Neurol. 73, 721–732 (2016). This study linked anticholinergic medication use to brain atrophy as measured on MRI, and worse cognitive function performance.

    PubMed  PubMed Central  Article  Google Scholar 

  67. 67.

    Perry, E. K., Kilford, L., Lees, A. J., Burn, D. J. & Perry, R. H. Increased Alzheimer pathology in Parkinson’s disease related to antimuscarinic drugs. Ann. Neurol. 54, 235–238 (2003).

    PubMed  Article  CAS  Google Scholar 

  68. 68.

    Gray, S. L. et al. Exposure to strong anticholinergic medications and dementia-related neuropathology in a community-based autopsy cohort. J. Alzheimers Dis. 65, 607–616 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  69. 69.

    Richardson, K. et al. Neuropathological correlates of cumulative benzodiazepine and anticholinergic drug use. J. Alzheimers Dis. 74, 999–1009 (2020).

    PubMed  Article  Google Scholar 

  70. 70.

    Chhatwal, J. P. et al. Anticholinergic amnesia is mediated by alterations in human network connectivity architecture. Cereb. Cortex 29, 3445–3456 (2018).

    PubMed Central  Article  PubMed  Google Scholar 

  71. 71.

    Ketai, L. H. et al. Mind-body (hypnotherapy) treatment of women with urgency urinary incontinence: changes in brain attentional networks. Am. J. Obstet. Gynecol. 224, 498.e1–498.e10 (2020).

    Article  Google Scholar 

  72. 72.

    Katz, I. R. et al. Identification of medications that cause cognitive impairment in older people: the case of oxybutynin chloride. J. Am. Geriatr. Soc. 46, 8–13 (1998).

    PubMed  Article  CAS  Google Scholar 

  73. 73.

    Todorova, A., Vonderheid-Guth, B. & Dimpfel, W. Effects of tolterodine, trospium chloride, and oxybutynin on the central nervous system. J. Clin. Pharmacol. 41, 636–644 (2001).

    PubMed  Article  CAS  Google Scholar 

  74. 74.

    Lackner, T. E., Wyman, J. F., McCarthy, T. C., Monigold, M. & Davey, C. Randomized, placebo-controlled trial of the cognitive effect, safety, and tolerability of oral extended-release oxybutynin in cognitively impaired nursing home residents with urge urinary incontinence. J. Am. Geriatr. Soc. 56, 862–870 (2008).

    PubMed  Article  Google Scholar 

  75. 75.

    Kay, G. G., Staskin, D. R., MacDiarmid, S., McIlwain, M. & Dahl, N. V. Cognitive effects of oxybutynin chloride topical gel in older healthy subjects. Clin. Drug Invest. 32, 707–714 (2012).

    Article  CAS  Google Scholar 

  76. 76.

    Diefenbach, K. et al. Effects on sleep of anticholinergics used for overactive bladder treatment in healthy volunteers aged ≥50 years. BJU Int. 95, 346–349 (2005).

    PubMed  Article  CAS  Google Scholar 

  77. 77.

    Staskin, D. et al. Trospium chloride is undetectable in the older human central nervous system. J. Am. Geriatr. Soc. 58, 1618–1619 (2010).

    PubMed  Article  Google Scholar 

  78. 78.

    Isik, A. T., Celik, T., Bozoglu, E. & Doruk, H. Trospium and cognition in patients with late onset Alzheimer disease. JNHA 13, 672 (2009).

    CAS  Google Scholar 

  79. 79.

    Iyer, S. et al. Cognitive changes in women starting anticholinergic medications for overactive bladder: a prospective study. Int. Urogynecol. J. 31, 2653–2660 (2019).

    PubMed  Article  Google Scholar 

  80. 80.

    Esin, E. et al. Influence of antimuscarinic therapy on cognitive functions and quality of life in geriatric patients treated for overactive bladder. Aging Ment. Health 19, 217–223 (2015).

    PubMed  Article  Google Scholar 

  81. 81.

    Moga, D. C., Abner, E. L., Wu, Q. & Jicha, G. A. Bladder antimuscarinics and cognitive decline in elderly patients. Alzheimers Dement. 3, 139–148 (2017).

    Article  Google Scholar 

  82. 82.

    Roeck, E. E. D., Deyn, P. P. D., Dierckx, E. & Engelborghs, S. Brief cognitive screening instruments for early detection of Alzheimer’s disease: a systematic review. Alzheimers Res. Ther. 11, 21 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  83. 83.

    Pieper, N. T. et al. Anticholinergic drugs and incident dementia, mild cognitive impairment and cognitive decline: a meta-analysis. Age Ageing 49, 939–947 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  84. 84.

    Marcum, Z. A. et al. Anticholinergic medication use and falls in postmenopausal women: findings from the Women’s Health Initiative cohort study. BMC Geriatr. 16, 76 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  85. 85.

    Kachru, N., Carnahan, R. M., Johnson, M. L. & Aparasu, R. R. Potentially inappropriate anticholinergic medication use in community-dwelling older adults: a national cross-sectional study. Drug Aging 32, 379–389 (2015).

    Article  CAS  Google Scholar 

  86. 86.

    Grossi, C. M. et al. Increasing prevalence of anticholinergic medication use in older people in England over 20 years: cognitive function and ageing study I and II. BMC Geriatr. 20, 267 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  87. 87.

    Aldus, C. F. et al. Undiagnosed dementia in primary care: a record linkage study. Heal. Serv. Deliv. Res. 8, 1–108 (2020).

    Article  Google Scholar 

  88. 88.

    Gray, S. L. et al. Cumulative use of strong anticholinergics and incident dementia: a prospective cohort study. JAMA Intern. Med. 175, 401–407 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  89. 89.

    Grossi, C. M. et al. Anticholinergic and benzodiazepine medication use and risk of incident dementia: a UK cohort study. BMC Geriatr. 19, 276 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  90. 90.

    Fox, C. et al. Anticholinergic medication use and cognitive impairment in the older population: the Medical Research Council Cognitive Function and Ageing Study. J. Am. Geriatr. Soc. 59, 1477–1483 (2011).

    PubMed  Article  Google Scholar 

  91. 91.

    Boustani, M., Campbell, N., Munger, S., Maidment, I. & Fox, C. Impact of anticholinergics on the aging brain: a review and practical application. Aging Heal. 4, 311–320 (2008).

    Article  CAS  Google Scholar 

  92. 92.

    Chew, M. L. et al. Anticholinergic activity of 107 medications commonly used by older adults. J. Am. Geriatr. Soc. 56, 1333–1341 (2008). An in vitro study that quantifies the actual anticholinergic effect of common medications based on clinically relevant doses, and their ability to penetrate the CNS.

    PubMed  Article  Google Scholar 

  93. 93.

    Liu, Y.-P. et al. Are anticholinergic medications associated with increased risk of dementia and behavioral and psychological symptoms of dementia? A nationwide 15-year follow-up cohort study in Taiwan. Front. Pharmacol. 11, 30 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  94. 94.

    Bali, V. et al. Risk of dementia among elderly nursing home patients using paroxetine and other selective serotonin reuptake inhibitors. Psychiatr. Serv. 66, 1333–1340 (2015).

    PubMed  Article  Google Scholar 

  95. 95.

    Heath, L. et al. Cumulative antidepressant use and risk of dementia in a prospective cohort study. J. Am. Geriatr. Soc. 66, 1948–1955 (2018).

    PubMed  Article  Google Scholar 

  96. 96.

    Hafdi, M. et al. Association of benzodiazepine and anticholinergic drug usage with incident dementia: a prospective cohort study of community-dwelling older adults. J. Am. Med. Dir. Assoc. 21, 188–193.e3 (2019).

    PubMed  Article  Google Scholar 

  97. 97.

    Hong, C.-T., Chan, L., Wu, D., Chen, W.-T. & Chien, L.-N. Antiparkinsonism anticholinergics increase dementia risk in patients with Parkinson’s disease. Parkinsonism Relat. Disord. 65, 224–229 (2019).

    PubMed  Article  Google Scholar 

  98. 98.

    Wang, Y.-C. et al. Cumulative use of therapeutic bladder anticholinergics and the risk of dementia in patients with lower urinary tract symptoms: a nationwide 12-year cohort study. BMC Geriatr. 19, 380 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  99. 99.

    Yang, Y.-W., Liu, H.-H., Lin, T.-H., Chuang, H.-Y. & Hsieh, T. Association between different anticholinergic drugs and subsequent dementia risk in patients with diabetes mellitus. PLoS ONE 12, e0175335 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  100. 100.

    Barthold, D., Marcum, Z. A., Gray, S. L. & Zissimopoulos, J. Alzheimer’s disease and related dementias risk: comparing users of non-selective and M3-selective bladder antimuscarinic drugs. Pharmacoepidemiol. Drug Saf. 29, 1650–1658 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  101. 101.

    Welk, B. & McArthur, E. Increased risk of dementia among patients with overactive bladder treated with an anticholinergic medication compared to a beta-3 agonist: a population-based cohort study. BJU Int. 126, 183–190 (2020). A retrospective administrative data study that demonstrated an increased risk of dementia among new users of OAB anticholinergics compared with new users of β3 agonists.

    PubMed  Article  CAS  Google Scholar 

  102. 102.

    Schuemie, M. J. et al. A plea to stop using the case-control design in retrospective database studies. Stat. Med. 38, 4199–4208 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  103. 103.

    Richardson, K. et al. History of benzodiazepine prescriptions and risk of dementia: possible bias due to prevalent users and covariate measurement timing in a nested case-control study. Am. J. Epidemiol. 188, 1228–1236 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  104. 104.

    Baumgart, M. et al. Summary of the evidence on modifiable risk factors for cognitive decline and dementia: a population-based perspective. Alzheimers Dement. 11, 718–726 (2015).

    PubMed  Article  Google Scholar 

  105. 105.

    Dallosso, H. M., McGrother, C. W., Matthews, R. J. & Donaldson, M. M. K. The association of diet and other lifestyle factors with overactive bladder and stress incontinence: a longitudinal study in women. BJU Int. 92, 69–77 (2003).

    PubMed  Article  CAS  Google Scholar 

  106. 106.

    Plassman, B. L. et al. Incidence of dementia and cognitive impairment, not dementia in the United States. Ann. Neurol. 70, 418–426 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  107. 107.

    Barnish, M. S. & Turner, S. The value of pragmatic and observational studies in health care and public health. Pragmat. Obs. Res. 8, 49–55 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  108. 108.

    Araklitis, G. et al. Anticholinergic prescription: are healthcare professionals the real burden? Int. Urogynecol. J. 28, 1249–1256 (2017).

    PubMed  Article  Google Scholar 

  109. 109.

    Averbeck, M. A., Altaweel, W., Manu-Marin, A. & Madersbacher, H. Management of LUTS in patients with dementia and associated disorders. Neurourol. Urodyn. 36, 245–252 (2017).

    PubMed  Article  Google Scholar 

  110. 110.

    Caplan, E. O. et al. Impact of coexisting overactive bladder in medicare patients with dementia on clinical and economic outcomes. Am. J. Alzheimers Dis. Other Demen. 34, 492–499 (2019).

    PubMed  Article  Google Scholar 

  111. 111.

    Mori, S., Kojima, M., Sakai, Y. & Nakajima, K. Bladder dysfunction in dementia patients showing urinary incontinence. Nihon Ronen Igakkai Zasshi 36, 489–494 (1999).

    PubMed  Article  CAS  Google Scholar 

  112. 112.

    Gannon, M. et al. Noradrenergic dysfunction in Alzheimer’s disease. Front. Neurosci. 9, 220 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  113. 113.

    Griebling, T. L. et al. Effect of mirabegron on cognitive function in elderly patients with overactive bladder: MoCA results from a phase 4 randomized, placebo-controlled study (PILLAR). BMC Geriatr. 20, 109 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  114. 114.

    Sink, K. M. et al. Dual use of bladder anticholinergics and cholinesterase inhibitors: long-term functional and cognitive outcomes. J. Am. Geriatr. Soc. 56, 847–853 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  115. 115.

    Triantafylidis, L. K., Clemons, J. S., Peron, E. P., Roefaro, J. & Zimmerman, K. M. Brain over bladder: a systematic review of dual cholinesterase inhibitor and urinary anticholinergic use. Drugs Aging 35, 27–41 (2018).

    PubMed  Article  CAS  Google Scholar 

  116. 116.

    NICE Guideline Urinary incontinence and pelvic organ prolapse in women: management (NICE, 2019).

  117. 117.

    Jessen, F. et al. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzheimers Dement. 10, 844–852 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  118. 118.

    Dewey, S. L. et al. Age-related decreases in muscarinic cholinergic receptor binding in the human brain measured with positron emission tomography (PET). J. Neurosci. Res. 27, 569–575 (1990).

    PubMed  Article  CAS  Google Scholar 

  119. 119.

    Norbury, R. et al. In vivo imaging of muscarinic receptors in the aging female brain with (R,R)[123I]-I-QNB and single photon emission tomography. Exp. Gerontol. 40, 137–145 (2005).

    PubMed  Article  CAS  Google Scholar 

  120. 120.

    High, R. A. et al. Protocol for a multicenter randomized, double blind, controlled pilot trial of higher neural function in overactive bladder patients after anticholinergic, beta-3 adrenergic agonist, or placebo. Contemp. Clin. Trials Commun. 19, 100621 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  121. 121.

    Richardson, K. et al. Use of medications with anticholinergic activity and self-reported injurious falls in older community-dwelling adults. J. Am. Geriatr. Soc. 63, 1561–1569 (2015).

    PubMed  Article  Google Scholar 

  122. 122.

    Rahman, A. et al. Sex and gender driven modifiers of Alzheimer’s: the role for estrogenic control across age, race, medical, and lifestyle risks. Front. Aging Neurosci. 11, 315 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  123. 123.

    Sakakibara, R. et al. Is overactive bladder a brain disease? The pathophysiological role of cerebral white matter in the elderly. Int. J. Urol. 21, 33–38 (2014).

    PubMed  Article  Google Scholar 

  124. 124.

    Sexton, C. C. et al. Persistence and adherence in the treatment of overactive bladder syndrome with anticholinergic therapy: a systematic review of the literature. Int. J. Clin. Pract. 65, 567–585 (2011).

    PubMed  Article  CAS  Google Scholar 

Download references


J.N.P. is supported in part by funding from the United Kingdom’s Department of Health NIHR Biomedical Research Centres funding scheme. K.R. is supported by funding from the United Kingdom’s Alzheimer’s Society.

Author information




B.W., K.R. and J.N.P. researched data for the article, made substantial contributions to discussion of its content, and wrote, edited and reviewed the article prior to submission.

Corresponding author

Correspondence to Blayne Welk.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Urology thanks D. Robinson; R. Khavari, who co-reviewed with R. High; and L. Cardozo for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


Protopathic bias

Also known as reverse causality. When a medication is initiated to treat the initial symptoms of an undiagnosed disease.

Mini-mental state examination

(MMSE). A standardized and widely used test of cognitive function for adults, which evaluates orientation, attention, memory, language and visual–spatial skills.

Face–name association test

A cross-modal associative memory test, which uses 16 face–name pairs and 16 face–occupation pairs, and the person has to try to remember different pairs during both immediate and delayed (30 min later) tests.

EEG frequency bands

Electroencephalogram (EEG) readings can be decomposed into different component frequencies (delta, theta, alpha, beta and gamma), which are associated with specific functional characteristics.

Selective serotonin reuptake inhibitors

(SSRIs). Medications that inhibit the reabsorption of serotonin into neurons, which can help with psychiatric problems such as depression and anxiety.

Cholinesterase inhibitors

These medications prevent the breakdown of acetylcholine, and can improve intracellular communication and treat symptoms of dementia.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Welk, B., Richardson, K. & Panicker, J.N. The cognitive effect of anticholinergics for patients with overactive bladder. Nat Rev Urol 18, 686–700 (2021).

Download citation


Quick links