Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Optimizing pharmacokinetics of intravesical chemotherapy for bladder cancer

Abstract

Non-muscle-invasive bladder cancer (NMIBC) remains one of the most common malignancies and is associated with considerable treatment costs. Patients with intermediate-risk or high-risk disease can be treated with intravesical BCG, but many of these patients will experience tumour recurrence, despite adequate treatment. Standard of care in these patients is radical cystectomy with urinary diversion, but this approach is associated with considerable morbidity and lifestyle modification. As an alternative, perioperative intravesical chemotherapy is recommended for low-risk papillary NMIBC, and induction intravesical chemotherapy is an option for patients with intermediate-risk NMIBC and BCG-unresponsive NMIBC. However, poor pharmaceutical absorption and drug washout during normal voiding can limit sustained drug concentrations in the urothelium, which reduces efficacy, and small-molecule chemotherapeutic agents can be absorbed through the urothelium into the bloodstream, leading to systemic adverse effects. Several novel drug delivery methods — including hyperthermia, mechanical sustained released devices and nanoparticle drug conjugation — have been developed to overcome these limitations. These novel methods have the potential to be combined with established chemotherapeutic agents to change the paradigm of NMIBC treatment.

Key points

  • Intravesical chemotherapy has historically been used as a single-dose treatment after transurethral resection of the bladder tumour to prevent recurrence and in clinical trials for patients with bacillus Calmette–Guérin (BCG) failure.

  • The clinical effect of intravesical chemotherapy is limited by rapid clearance of agents during voiding and by physiological drug uptake into the bladder wall.

  • Novel mechanical and chemical drug delivery methods have been developed to overcome these physiological limitations.

  • Nanoparticle-based intravesical drug delivery has shown promising results in increasing penetration, bladder wall retention and the clinical response to chemotherapeutic agents in murine models.

  • DNA damage response gene mutations in resected tumours are a potential biomarker to select those patients who would most benefit from novel drug delivery methods.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bladder wall anatomy and elimination.
Fig. 2: Novel methods to optimize intravesical chemotherapy.

Similar content being viewed by others

References

  1. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin. 68, 7–30 (2018).

    Article  PubMed  Google Scholar 

  2. Avritscher, E. B. C. et al. Clinical model of lifetime cost of treating bladder cancer and associated complications. Urology 68, 549–553 (2006).

    Article  PubMed  Google Scholar 

  3. Botteman, M. F., Pashos, C. L., Redaelli, A., Laskin, B. & Hauser, R. The health economics of bladder cancer: a comprehensive review of the published literature. Pharmacoeconomics 21, 1315–1330 (2003).

    Article  PubMed  Google Scholar 

  4. Jordan, B. & Meeks, J. J. T1 bladder cancer: current considerations for diagnosis and management. Nat. Rev. Urol. 16, 23–34 (2019).

    Article  PubMed  Google Scholar 

  5. Chang, S. S. et al. Diagnosis and treatment of non-muscle invasive bladder cancer: AUA/SUO Guideline. J. Urol. 196, 1021–1029 (2016).

    Article  PubMed  Google Scholar 

  6. Oliveira, M. B., Villa Nova, M. & Bruschi, M. L. A review of recent developments on micro/nanostructured pharmaceutical systems for intravesical therapy of the bladder cancer. Pharm. Dev. Technol. 23, 1–12 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Malmström, P.-U. Intravesical therapy of superficial bladder cancer. Crit. Rev. Oncol. Hematol. 47, 109–126 (2003).

    Article  PubMed  Google Scholar 

  8. Schulman, C. C., Rozencweig, M., Staquet, M., Kenis, Y. & Sylvester, R. EORTC randomized trial for the adjuvant therapy of T1 bladder carcinoma. Eur. Urol. 2, 271–273 (1976).

    Article  CAS  PubMed  Google Scholar 

  9. Thrasher, J. B. & Crawford, E. D. Complications of intravesical chemotherapy. Urol. Clin. North Am. 19, 529–539 (1992).

    CAS  PubMed  Google Scholar 

  10. Newling, D. Intravesical therapy in the management of superficial transitional cell carcinoma of the bladder: the experience of the EORTC GU Group. Br. J. Cancer 61, 497–499 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Denis, L. Anaphylactic reactions to repeated intravesical instillation with cisplatin. Lancet 321, P1378–P1379 (1983).

    Article  Google Scholar 

  12. Brocks, C. P., Büttner, H. & Böhle, A. Inhibition of tumor implantation by intravesical gemcitabine in a murine model of superficial bladder cancer. J. Urol. 174, 1115–1118 (2005).

    Article  PubMed  Google Scholar 

  13. Sylvester, R. J. et al. Systematic review and individual patient data meta-analysis of randomized trials comparing a single immediate instillation of chemotherapy after transurethral resection with transurethral resection alone in patients with stage pTa-pT1 urothelial carcinoma. Eur. Urol. 69, 231–244 (2016).

    Article  PubMed  Google Scholar 

  14. Babjuk, M. et al. EAU guidelines on non-muscle-invasive bladder cancer (TaT1 and CIS). European Association of Urology 1–36 (2012).

  15. Gudjónsson, S. et al. Should all patients with non–muscle-invasive bladder cancer receive early intravesical chemotherapy after transurethral resection? The results of a prospective randomised multicentre study. Eur. Urol. 55, 773–780 (2009).

    Article  PubMed  Google Scholar 

  16. Okamura, K. et al. Randomized study of single early instillation of (2′′R)-4′-O-tetrahydropyranyl-doxorubicin for a single superficial bladder carcinoma. Cancer 94, 2363–2368 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Tolley, D. A. et al. The effect of intravesical mitomycin C on recurrence of newly diagnosed superficial bladder cancer: a further report with 7 years of follow up. J. Urol. 155, 1233–1238 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. [No authors listed.] The effect of intravesical thiotepa on tumour recurrence after endoscopic treatment of newly diagnosed superficial bladder cancer. A further report with long-term follow-up of a Medical Research Council randomized trial. Medical Research Council Working Party on Urological Cancer, Subgroup on Superficial Bladder Cancer. Br. J. Urol. 73, 632–638 (1994).

  19. Cookson, M. S. et al. National practice patterns for immediate postoperative instillation of chemotherapy in nonmuscle invasive bladder cancer. J. Urol. 187, 1571–1576 (2012).

    Article  PubMed  Google Scholar 

  20. Perlis, N. et al. Immediate post-transurethral resection of bladder tumor intravesical chemotherapy prevents non-muscle-invasive bladder cancer recurrences: an updated meta-analysis on 2548 patients and quality-of-evidence review. Eur. Urol. 64, 421–430 (2013).

    Article  PubMed  Google Scholar 

  21. Kang, M., Jeong, C. W., Kwak, C., Kim, H. H. & Ku, J. H. Single, immediate postoperative instillation of chemotherapy in non-muscle invasive bladder cancer: a systematic review and network meta-analysis of randomized clinical trials using different drugs. Oncotarget 7, 45479–45488 (2016).

    PubMed  PubMed Central  Google Scholar 

  22. Filson, C. P. et al. Complications associated with single-dose, perioperative mitomycin-C for patients undergoing bladder tumor resection. Urol. Oncol. 32, 40.e1–40.e8 (2014).

    Article  CAS  Google Scholar 

  23. Davies, B. Bladder cancer drug shortages and price gouging: the new reality. Forbeshttps://www.forbes.com/sites/benjamindavies/2014/10/16/bladder-cancer-drug-shortages-and-price-gouging-the-new-reality/#68e83d881c0e (2014).

  24. Böhle, A. et al. Single postoperative instillation of gemcitabine in patients with non-muscle-invasive transitional cell carcinoma of the bladder: a randomised, double-blind, placebo-controlled phase III multicentre study. Eur. Urol. 56, 495–503 (2009).

    Article  PubMed  CAS  Google Scholar 

  25. Messing, E. M. et al. Effect of intravesical instillation of gemcitabine vs saline immediately following resection of suspected low-grade non–muscle-invasive bladder cancer on tumor recurrence: SWOG S0337 randomized clinical trial. JAMA 319, 1880–1888 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kaffenberger, S. D., Miller, D. C. & Nielsen, M. E. Simplifying treatment and reducing recurrence for patients with early-stage bladder cancer. JAMA 319, 1864 (2018).

    Article  PubMed  Google Scholar 

  27. Berrum-Svennung, I., Granfors, T., Jahnson, S., Boman, H. & Holmäng, S. A single instillation of epirubicin after transurethral resection of bladder tumors prevents only small recurrences. J. Urol. 179, 101–106 (2008).

    Article  PubMed  Google Scholar 

  28. Shelley, M. D. et al. Intravesical bacillus Calmette-Guérin is superior to mitomycin C in reducing tumour recurrence in high-risk superficial bladder cancer: a meta-analysis of randomized trials. BJU Int. 93, 485–490 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Böhle, A., Jocham, D. & Bock, P. R. Intravesical bacillus Calmette-Guerin versus mitomycin C for superficial bladder cancer: a formal meta-analysis of comparative studies on recurrence and toxicity. J. Urol. 169, 90–95 (2003).

    Article  PubMed  Google Scholar 

  30. Chou, R. et al. Intravesical therapy for the treatment of nonmuscle invasive bladder cancer: a systematic review and meta-analysis. J. Urol. 197, 1189–1199 (2017).

    Article  PubMed  Google Scholar 

  31. Sylvester, R. J. et al. Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC Trials. Eur. Urol. 49, 466–477 (2006).

    Article  PubMed  Google Scholar 

  32. Kates, M. et al. Intravesical BCG induces CD4+ T-cell expansion in an immune competent model of bladder cancer. Cancer Immunol. Res. 5, 594–603 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Houghton, B. B. et al. Intravesical chemotherapy plus bacille Calmette-Guérin in non-muscle invasive bladder cancer: a systematic review with meta-analysis. BJU Int. 111, 977–983 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Ali-El-Dein, B., Nabeeh, A., Ismail, E. H. & Ghoneim, M. A. Sequential bacillus Calmette-Guerin and epirubicin versus bacillus Calmette-Guerin alone for superficial bladder tumors: a randomized prospective study. J. Urol. 162, 339–342 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Kaasinen, E. et al. Alternating mitomycin C and BCG instillations versus BCG alone in treatment of carcinoma in situ of the urinary bladder: a Nordic study. Eur. Urol. 43, 637–645 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Di Stasi, S. M. et al. Sequential BCG and electromotive mitomycin versus BCG alone for high-risk superficial bladder cancer: a randomised controlled trial. Lancet Oncol. 7, 43–51 (2006).

    Article  PubMed  CAS  Google Scholar 

  37. Hayne, D. et al. BCG+MMC trial: adding mitomycin C to BCG as adjuvant intravesical therapy for high-risk, non-muscle-invasive bladder cancer: a randomised phase III trial (ANZUP 1301). BMC Cancer 15, 432 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Messing, E. M. The BCG shortage. Bladder Cancer 3, 227–228 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Veeratterapillay, R., Heer, R., Johnson, M. I., Persad, R. & Bach, C. High-risk non-muscle-invasive bladder cancer—therapy options during intravesical BCG shortage. Curr. Urol. Rep. 17, 68 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mostafid, A. H., Palou Redorta, J., Sylvester, R. & Witjes, J. A. Therapeutic options in high-risk non–muscle-invasive bladder cancer during the current worldwide shortage of bacille Calmette-Guérin. Eur. Urol. 67, 359–360 (2015).

    Article  PubMed  Google Scholar 

  41. Alhogbani, M. M., Picard, J. A., Fassi-Fehri, M. H., Badet, J. L. & Colombel, C. M. Prognostic impact of bacillus Calmette-Guérin interruption at the time of induction and consolidation. Urol. Ann. 9, 315–320 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Perera, M. et al. The impact of the global bacille Calmette-Guérin shortage on treatment patterns: population-based data. BJU Int. 121, 169–172 (2018).

    Article  PubMed  Google Scholar 

  43. Kamat, A. M. et al. BCG-unresponsive non-muscle-invasive bladder cancer: recommendations from the IBCG. Nat. Rev. Urol. 14, 244–255 (2017).

    Article  PubMed  Google Scholar 

  44. Center for Drug Evaluation and Research. VALSTAR® (valrubicin). Sterile solution for intravesical instillation. https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/020892s013lbl.pdf (2011).

  45. Steinberg, G. et al. Efficacy and safety of valrubicin for the treatment of bacillus Calmette-Guerin refractory carcinoma in situ of the bladder. The Valrubicin Study Group. J. Urol. 163, 761–767 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Dalbagni, G. et al. Phase II trial of intravesical gemcitabine in bacille Calmette-Guérin-refractory transitional cell carcinoma of the bladder. J. Clin. Oncol. 24, 2729–2734 (2006).

    CAS  PubMed  Google Scholar 

  47. Dalbagni, G. et al. Phase I trial of intravesical gemcitabine in bacillus Calmette-Guérin-refractory transitional-cell carcinoma of the bladder. J. Clin. Oncol. 20, 3193–3198 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Skinner, E. C. et al. SWOG S0353: phase II trial of intravesical gemcitabine in patients with nonmuscle invasive bladder cancer and recurrence after 2 prior courses of intravesical bacillus Calmette-Guérin. J. Urol. 190, 1200–1204 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Addeo, R. et al. Randomized phase III trial on gemcitabine versus mytomicin in recurrent superficial bladder cancer: evaluation of efficacy and tolerance. J. Clin. Oncol. 28, 543–548 (2010).

    CAS  PubMed  Google Scholar 

  50. Mackler, N. J. & Pienta, K. J. Drug insight: use of docetaxel in prostate and urothelial cancers. Nat. Clin. Pract. Urol. 2, 92–100 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. McKiernan, J. M. et al. Phase I trial of intravesical docetaxel in the management of superficial bladder cancer refractory to standard intravesical therapy. J. Clin. Oncol. 24, 3075–3080 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Laudano, M. A. et al. Long-term clinical outcomes of a phase I trial of intravesical docetaxel in the management of non-muscle-invasive bladder cancer refractory to standard intravesical therapy. Urology 75, 134–137 (2010).

    Article  PubMed  Google Scholar 

  53. Barlow, L. J., McKiernan, J. M. & Benson, M. C. Long-term survival outcomes with intravesical docetaxel for recurrent nonmuscle invasive bladder cancer after previous bacillus Calmette-Guérin therapy. J. Urol. 189, 834–839 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Siddiqui, M. R., Grant, C., Sanford, T. & Agarwal, P. K. Current clinical trials in non-muscle invasive bladder cancer. Urol. Oncol. 35, 516–527 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Breyer, B. N., Whitson, J. M., Carroll, P. R. & Konety, B. R. Sequential intravesical gemcitabine and mitomycin C chemotherapy regimen in patients with non-muscle invasive bladder cancer. Urol. Oncol. Semin. Orig. Investig. 28, 510–514 (2010).

    Article  CAS  Google Scholar 

  56. Lightfoot, A. J. et al. Multi-institutional analysis of sequential intravesical gemcitabine and mitomycin C chemotherapy for non-muscle invasive bladder cancer. Urol. Oncol. 32, 35.e15–35.e19 (2014).

    Article  CAS  Google Scholar 

  57. Cockerill, P. A., Knoedler, J. J., Frank, I., Tarrell, R. & Karnes, R. J. Intravesical gemcitabine in combination with mitomycin C as salvage treatment in recurrent non-muscle-invasive bladder cancer. BJU Int. 117, 456–462 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Velaer, K. N., Steinberg, R. L., Thomas, L. J., O’Donnell, M. A. & Nepple, K. G. Experience with sequential intravesical gemcitabine and docetaxel as salvage therapy for non-muscle invasive bladder cancer. Curr. Urol. Rep. 17, 38 (2016).

    Article  PubMed  Google Scholar 

  59. Plunkett, W. et al. Gemcitabine: metabolism, mechanisms of action, and self-potentiation. Semin. Oncol. 22, 3–10 (1995).

    CAS  PubMed  Google Scholar 

  60. Steinberg, R. L., Thomas, L. J., O’donnell, M. A. & Nepple, K. G. Sequential intravesical gemcitabine and docetaxel for the salvage treatment of non-muscle invasive bladder cancer. Bladder Cancer 1, 65–72 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Milbar, N. et al. Oncological outcomes of sequential intravesical gemcitabine and docetaxel in patients with non-muscle invasive bladder cancer. Bladder Cancer 3, 293–303 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. International Collaboration of Trialists et al. International phase III trial assessing neoadjuvant cisplatin, methotrexate, and vinblastine chemotherapy for muscle-invasive bladder cancer: long-term results of the BA06 30894 trial. J. Clin. Oncol. 29, 2171–2177 (2011).

    Article  PubMed Central  Google Scholar 

  63. Delto, J. C., Kobayashi, T., Benson, M., McKiernan, J. & Abate-Shen, C. Preclinical analyses of intravesical chemotherapy for prevention of bladder cancer progression. Oncotarget 4, 269–276 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  64. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02202772 (2018).

  65. DeCastro, G. J. et al. A phase I trial for the use of intravesical cabazitaxel, gemcitabine, and cisplatin (CGC) in the treatment of BCG-refractory nonmuscle invasive urothelial carcinoma of the bladder. J. Clin. Oncol. 35, 313–313 (2017).

    Article  Google Scholar 

  66. Khandelwal, P., Abraham, S. N. & Apodaca, G. Cell biology and physiology of the uroepithelium. Am. J. Physiol. Renal Physiol. 297, F1477–F1501 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Campodonico, F. et al. Intravesical chemotherapy and chemohyperthermia in non-muscle-invasive bladder cancer; an overview on drug administration technologies and pharmacokinetics. Curr. Drug Metab. 18, 657–665 (2017).

    Article  CAS  PubMed  Google Scholar 

  68. Wientjes, M. G., Dalton, J. T., Badalament, R. A., Drago, J. R. & Au, J. L. Bladder wall penetration of intravesical mitomycin C in dogs. Cancer Res. 51, 4347–4354 (1991).

    CAS  PubMed  Google Scholar 

  69. Dalton, J. T., Wientjes, M. G., Badalament, R. A., Drago, J. R. & Au, J. L. Pharmacokinetics of intravesical mitomycin C in superficial bladder cancer patients. Cancer Res. 51, 5144–5152 (1991).

    CAS  PubMed  Google Scholar 

  70. Wientjes, M. G., Badalament, R. A., Wang, R. C., Hassan, F. & Au, J. L. Penetration of mitomycin C in human bladder. Cancer Res. 53, 3314–3320 (1993).

    CAS  PubMed  Google Scholar 

  71. Song, D., Wientjes, M. G. & Au, J. L.-S. Bladder tissue pharmacokinetics of intravesical taxol. Cancer Chemother. Pharmacol. 40, 285–292 (1997).

    Article  CAS  PubMed  Google Scholar 

  72. Au, J. L.-S. et al. Methods to improve efficacy of intravesical mitomycin C: results of a randomized phase III trial. J. Natl. Cancer Inst. 93, 597–604 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Patel, S. G., Cohen, A., Weiner, A. B. & Steinberg, G. D. Intravesical therapy for bladder cancer. Expert Opin. Pharmacother. 16, 889–901 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Packiam, V. T., Johnson, S. C. & Steinberg, G. D. Non–muscle-invasive bladder cancer: intravesical treatments beyond bacille Calmette-Guérin. Cancer 123, 390–400 (2017).

    Article  PubMed  Google Scholar 

  75. Tan, W. S. & Kelly, J. D. Intravesical device-assisted therapies for non-muscle-invasive bladder cancer. Nat. Rev. Urol. 15, 667–685 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Vanderheijden, A., verhaegh, G., jansen, C., schalken, J. & witjes, J. Effect of hyperthermia on the cytotoxicity of 4 chemotherapeutic agents currently used for the treatment of transitional cell carcinoma of the bladder: an in vitro study. J. Urol. 173, 1375–1380 (2005).

    Article  Google Scholar 

  77. Inman, B. A. et al. A pilot clinical trial of intravesical mitomycin-C and external deep pelvic hyperthermia for non-muscle-invasive bladder cancer. Int. J. Hyperthermia 30, 171–175 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Witjes, J. A., Hendricksen, K., Gofrit, O., Risi, O. & Nativ, O. Intravesical hyperthermia and mitomycin-C for carcinoma in situ of the urinary bladder: experience of the European Synergo® working party. World J. Urol. 27, 319–324 (2009).

    Article  CAS  Google Scholar 

  79. Arends, T. J. H., Van Der Heijden, A. G. & Witjes, J. A. Combined chemohyperthermia: 10-year single center experience in 160 patients with nonmuscle invasive bladder cancer. J. Urol. 192, 708–713 (2014).

    Article  PubMed  Google Scholar 

  80. Colombo, R. et al. Multicentric study comparing intravesical chemotherapy alone and with local microwave hyperthermia for prophylaxis of recurrence of superficial transitional cell carcinoma. J. Clin. Oncol. 21, 4270–4276 (2003).

    Article  PubMed  Google Scholar 

  81. Colombo, R., Salonia, A., Leib, Z., Pavone-Macaluso, M. & Engelstein, D. Long-term outcomes of a randomized controlled trial comparing thermochemotherapy with mitomycin-C alone as adjuvant treatment for non-muscle-invasive bladder cancer (NMIBC). BJU Int. 107, 912–918 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Arends, T. J. H. et al. Results of a randomised controlled trial comparing intravesical chemohyperthermia with mitomycin C versus bacillus Calmette-Guérin for adjuvant treatment of patients with intermediate- and high-risk non-muscle-invasive bladder cancer. Eur. Urol. 69, 1046–1052 (2016).

    Article  CAS  PubMed  Google Scholar 

  83. Tan, W. S. et al. Radiofrequency-induced thermo-chemotherapy effect versus a second course of bacillus Calmette-Guérin or institutional standard in patients with recurrence of non-muscle-invasive bladder cancer following induction or maintenance bacillus Calmette-Guérin therapy (HYMN): a phase III, open-label, randomised controlled trial. Eur. Urol. 75, 63–71 (2019).

    Article  PubMed  Google Scholar 

  84. Sousa, A. et al. A clinical trial of neoadjuvant hyperthermic intravesical chemotherapy (HIVEC) for treating intermediate and high-risk non-muscle invasive bladder cancer. Int. J. Hyperthermia 30, 166–170 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Tan, W. S., Palou, J. & Kelly, J., HIVEC I and HIVEC II Clinical Trials Group. Safety and tolerability analysis of hyperthermic intravesical mitomycin to mitomycin alone in HIVEC I and HIVEC II: an analysis of 307 patients [abstract MP15-18]. J. Urol. 197, e177 (2017).

    Google Scholar 

  86. Jung, J. H. et al. Intravesical electromotive drug administration for non-muscle invasive bladder cancer. Cochrane Database Syst. Rev. 9, CD011864 (2017).

    PubMed  Google Scholar 

  87. Di Stasi, S. M. et al. Intravesical electromotive mitomycin C versus passive transport mitomycin C for high risk superficial bladder cancer: a prospective randomized study. J. Urol. 170, 777–782 (2003).

    Article  PubMed  CAS  Google Scholar 

  88. Di Stasi, S. M. et al. Electromotive versus passive diffusion of mitomycin C into human bladder wall: concentration-depth profiles studies. Cancer Res. 59, 4912–4918 (1999).

    PubMed  Google Scholar 

  89. Di Stasi, S. M. et al. Electromotive instillation of mitomycin immediately before transurethral resection for patients with primary urothelial non-muscle invasive bladder cancer: a randomised controlled trial. Lancet Oncol. 12, 871–879 (2011).

    Article  PubMed  CAS  Google Scholar 

  90. Lee, H. & Cimac, M. Design of an elastomeric tubular osmotic pump for intravesical delivery of lidocaine to the bladder. J. Med. Devices 6, 017533 (2012).

    Article  Google Scholar 

  91. Lee, H. & Cima, M. J. An intravesical device for the sustained delivery of lidocaine to the bladder. J. Control. Release 149, 133–139 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Nickel, J. C. et al. Continuous intravesical lidocaine treatment for interstitial cystitis / bladder pain syndrome: safety and efficacy of a new drug delivery device. Sci. Transl Med. 4, 143ra100 (2012).

    Article  PubMed  CAS  Google Scholar 

  93. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02722538 (2018).

  94. Daneshmand, K., Pohar, K. S., Steinberg, G. D., Aron, M. & Cutie, C. Effect of GemRIS (gemcitabine-releasing system, TAR-200) on antitumor activity in muscle-invasive bladder cancer (MIBC). J. Clin. Oncol. 35 (Suppl. 15), e16000 (2017).

    Article  Google Scholar 

  95. Kolawole, O. M., Lau, W. M., Mostafid, H. & Khutoryanskiy, V. V. Advances in intravesical drug delivery systems to treat bladder cancer. Int. J. Pharm. 532, 105–117 (2017).

    Article  CAS  PubMed  Google Scholar 

  96. Lin, T. et al. In situ floating hydrogel for intravesical delivery of Adriamycin without blocking urinary tract. J. Pharm. Sci. 103, 927–936 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. Donin, N. M. et al. Serial retrograde instillations of sustained release formulation of mitomycin C to the upper urinary tract of the Yorkshire swine using a thermosensitive polymer: safety and feasibility. Urol. Oncol. 35, 272–278 (2017).

    Article  CAS  PubMed  Google Scholar 

  98. Donin, N. M. et al. Sustained-release formulation of mitomycin C to the upper urinary tract using a thermosensitive polymer: a preclinical study. Urology 99, 270–277 (2017).

    Article  PubMed  Google Scholar 

  99. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01803295 (2017).

  100. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02793128 (2019).

  101. Walker, C., Mojares, E. & Hernández, A. del R. Role of extracellular matrix in development and cancer progression. Int. J. Mol. Sci. 19, (2018).

  102. Shepard, H. M. Breaching the castle walls: hyaluronan depletion as a therapeutic approach to cancer therapy. Front. Oncol. 5, 192 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Nakazawa, H. et al. 4-methylumbelliferone, a hyaluronan synthase suppressor, enhances the anticancer activity of gemcitabine in human pancreatic cancer cells. Cancer Chemother. Pharmacol. 57, 165–170 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Piccioni, F. et al. 4-Methylumbelliferone inhibits hepatocellular carcinoma growth by decreasing IL-6 production and angiogenesis. Glycobiology 25, 825–835 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Bassi, P. F. et al. Paclitaxel-hyaluronic acid for intravesical therapy of bacillus Calmette-Guérin refractory carcinoma in situ of the bladder: results of a phase I study. J. Urol. 185, 445–449 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Huang, W., Wang, F., Wu, C. & Hu, W. Efficacy and safety of pirarubicin combined with hyaluronic acid for non-muscle invasive bladder cancer after transurethral resection: a prospective, randomized study. Int. Urol. Nephrol. 47, 631–636 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00782587 (2010)

  108. Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A. & Danquah, M. K. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol. 9, 1050–1074 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Martin, D. T. et al. Nanoparticles for urothelium penetration and delivery of the histone deacetylase inhibitor belinostat for treatment of bladder cancer. Nanomedicine 9, 1124–1134 (2013).

    Article  CAS  PubMed  Google Scholar 

  110. Boehm, B. E. & Svatek, R. S. Novel therapeutic approaches for recurrent nonmuscle invasive bladder cancer. Urol. Clin. North Am. 42, 159–168 (2015).

    Article  PubMed  Google Scholar 

  111. Larsen, M. T., Kuhlmann, M., Hvam, M. L. & Howard, K. A. Albumin-based drug delivery: harnessing nature to cure disease. Mol. Cell. Ther. 4, 3 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Lluch, A. et al. Treatment innovations for metastatic breast cancer: nanoparticle albumin-bound (NAB) technology targeted to tumors. Crit. Rev. Oncol. Hematol. 89, 62–72 (2014).

    Article  PubMed  Google Scholar 

  113. Sparreboom, A. et al. Comparative preclinical and clinical pharmacokinetics of a Cremophor-free, nanoparticle albumin-bound paclitaxel (ABI-007) and paclitaxel formulated in Cremophor (Taxol). Clin. Cancer Res. 11, 4136–4143 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Gradishar, W. J. et al. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J. Clin. Oncol. 23, 7794–7803 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Socinski, M. A. et al. Weekly nab-paclitaxel in combination with carboplatin versus solvent-based paclitaxel plus carboplatin as first-line therapy in patients with advanced non-small-cell lung cancer: final results of a phase III trial. J. Clin. Oncol. 30, 2055–2062 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Von Hoff, D. D. et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med. 369, 1691–1703 (2013).

    Article  CAS  Google Scholar 

  117. Miele, Ev., Spinelli, G. P., Miele, Er., Tomao, F. & Tomao, S. Albumin-bound formulation of paclitaxel (Abraxane® ABI-007) in the treatment of breast cancer. Int. J. Nanomedicine 4, 99–105 (2009).

  118. Mckiernan, J. M. et al. A phase I trial of intravesical nanoparticle albumin-bound paclitaxel in the treatment of bacillus Calmette-Guérin refractory nonmuscle invasive bladder cancer. J. Urol. 186, 448–451 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. McKiernan, J. M. et al. Phase II trial of intravesical nanoparticle albumin bound paclitaxel for the treatment of nonmuscle invasive urothelial carcinoma of the bladder after bacillus Calmette-Guérin treatment failure. J. Urol. 192, 1633–1638 (2014).

    Article  CAS  PubMed  Google Scholar 

  120. Kang, M. R. et al. Intravesical delivery of small activating RNA formulated into lipid nanoparticles inhibits orthotopic bladder tumor growth. Cancer Res. 72, 5069–5079 (2012).

    Article  CAS  PubMed  Google Scholar 

  121. Mugabe, C. et al. In vivo evaluation of mucoadhesive nanoparticulate docetaxel for intravesical treatment of non-muscle-invasive bladder cancer. Clin. Cancer Res. 17, 2788–2798 (2011).

    Article  CAS  PubMed  Google Scholar 

  122. Suk, J. S., Xu, Q., Kim, N., Hanes, J. & Ensign, L. M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 99, 28–51 (2016).

    Article  CAS  PubMed  Google Scholar 

  123. Zhang, C. et al. Convection enhanced delivery of cisplatin-loaded brain penetrating nanoparticles cures malignant glioma in rats. J. Control. Release 263, 112–119 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Schneider, C. S. et al. Nanoparticles that do not adhere to mucus provide uniform and long-lasting drug delivery to airways following inhalation. Sci. Adv. 3, 1–10 (2017).

    Article  CAS  Google Scholar 

  125. Cu, Y., Booth, C. J. & Saltzman, W. M. In vivo distribution of surface-modified PLGA nanoparticles following intravaginal delivery. J. Control. Release 156, 258–264 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Cheng, X., Ming, X. & Croyle, M. A. PEGylated adenoviruses for gene delivery to the intestinal epithelium by the oral route. Pharm. Res. 20, 1444–1451 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Mizumura, Y. et al. Cisplatin-incorporated polymeric micelles eliminate nephrotoxicity, while maintaining antitumor activity. Jpn. J. Cancer Res. 92, 328–336 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Uchino, H. et al. Cisplatin-incorporating polymeric micelles (NC-6004) can reduce nephrotoxicity and neurotoxicity of cisplatin in rats. Br. J. Cancer 93, 678–687 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Plummer, R. et al. A phase I clinical study of cisplatin-incorporated polymeric micelles (NC-6004) in patients with solid tumours. Br. J. Cancer 104, 593–598 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kates, M. et al. Preclinical evaluation of intravesical cisplatin nanoparticles for non-muscle-invasive bladder cancer. Clin. Cancer Res. 23, 6592–6601 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Van Allen, E. M. et al. Somatic ERCC2 mutations correlate with cisplatin sensitivity in muscle-invasive urothelial carcinoma. Cancer Discov. 4, 1140–1153 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Plimack, E. R. et al. Defects in DNA repair genes predict response to neoadjuvant cisplatin-based chemotherapy in muscle-invasive bladder cancer. Eur. Urol. 68, 959–967 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Iyer, G. et al. Multicenter prospective phase II trial of neoadjuvant dose-dense gemcitabine plus cisplatin in patients with muscle-invasive bladder cancer. J. Clin. Oncol. 36, 1949–1956 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Galsky, M. D. et al. Phase 2 trial of gemcitabine, cisplatin, plus ipilimumab in patients with metastatic urothelial cancer and impact of DNA damage response gene mutations on outcomes. Eur. Urol. 73, 751–759 (2018).

    Article  CAS  PubMed  Google Scholar 

  135. Merrill, L., Gonzalez, E. J., Girard, B. M. & Vizzard, M. A. Receptors, channels, and signalling in the urothelial sensory system in the bladder. Nat. Rev. Urol. 13, 193–204 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

G.A.J., M.K. and T.J.B. researched data for the article, made substantial contributions to the discussion of content and reviewed and edited the manuscript before submission. G.A.J. and M.K. wrote the manuscript.

Corresponding author

Correspondence to Max Kates.

Ethics declarations

Competing interests

M.K. and T.J.B. are partial owners of a patent related to cisplatin nanotechnology delivery in bladder cancer. G.A.J. declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joice, G.A., Bivalacqua, T.J. & Kates, M. Optimizing pharmacokinetics of intravesical chemotherapy for bladder cancer. Nat Rev Urol 16, 599–612 (2019). https://doi.org/10.1038/s41585-019-0220-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-019-0220-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing