Multiparametric MRI for prostate cancer diagnosis: current status and future directions

Abstract

The current diagnostic pathway for prostate cancer has resulted in overdiagnosis and consequent overtreatment as well as underdiagnosis and missed diagnoses in many men. Multiparametric MRI (mpMRI) of the prostate has been identified as a test that could mitigate these diagnostic errors. The performance of mpMRI can vary depending on the population being studied, the execution of the MRI itself, the experience of the radiologist, whether additional biomarkers are considered and whether mpMRI-targeted biopsy is carried out alone or in addition to systematic biopsy. A number of challenges to implementation remain, such as ensuring high-quality execution and reporting of mpMRI and ensuring that this diagnostic pathway is cost-effective. Nevertheless, emerging clinical trial data support the adoption of this technology as part of the standard of care for the diagnosis of prostate cancer.

Key points

  • Multiparametric MRI (mpMRI) of the prostate is a novel promising tool for diagnosis of prostate cancer that might help to reduce overdiagnosis of insignificant prostate cancer.

  • mpMRI should include four sequences: T1-weighted images, T2-weighted images, diffusion-weighted images (DWI) and dynamic contrast-enhanced imaging (DCEI).

  • Interpretation and reporting of mpMRI must be carried out following standardized scoring systems (such as Prostate Imaging Reporting and Data System (PI-RADS) v2).

  • The use of mpMRI is considered useful; the use of mpMRI-targeted biopsy is increasing the detection of clinically significant prostate cancer in both biopsy-naive and previous negative biopsy settings.

  • The use of mpMRI as a triage test is still controversial. In men with negative mpMRI, omitting a biopsy can only be considered when the clinical suspicion of prostate cancer is low.

  • Improvements in inter-reader agreement, development of computer-aided diagnostic systems and assessment of biomarkers to use in combination with mpMRI are needed.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: mpMRI of a non-malignant prostate gland.
Fig. 2: mpMRI of a cancerous prostate.
Fig. 3: mpMRI of a cancerous prostate using magnetic resonance spectroscopy imaging.
Fig. 4: The anatomy of the prostate and T2-weighted mpMRI imaging.
Fig. 5: Transrectal versus transperineal approach to biopsy.
Fig. 6: Traditional and mpMRI-influenced prostate cancer diagnostic pathway.
Fig. 7: Comparison between T2-weighted images of a prostate with and without the use of an endorectal coil.

References

  1. 1.

    Fitzmaurice, C. et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015. JAMA Oncol. 3, 524 (2017).

  2. 2.

    Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin. 68, 7–30 (2018).

  3. 3.

    European Association of Urology. EAU guidelines on prostate cancer. EAU https://uroweb.org/guideline/prostate-cancer/ (2019).

  4. 4.

    Martin, R. M. et al. Effect of a low-intensity PSA-based screening intervention on prostate cancer mortality: the CAP randomized clinical trial. JAMA 319, 883–895 (2018).

  5. 5.

    Schröder, F. H. et al. Screening and prostate-cancer mortality in a randomized European study. N. Engl. J. Med. 360, 1320–1328 (2009).

  6. 6.

    Andriole, G. L. et al. Mortality results from a randomized prostate-cancer screening trial. N. Engl. J. Med. 360, 1310–1319 (2009).

  7. 7.

    Moyer, V. A. Screening for prostate cancer: US Preventive Services Task Force recommendation statement. Ann. Intern. Med. 157, 120–134 (2012).

  8. 8.

    Fleshner, K., Carlsson, S. V. & Roobol, M. J. The effect of the USPSTF PSA screening recommendation on prostate cancer incidence patterns in the USA. Nat. Rev. Urol. 14, 26–37 (2017).

  9. 9.

    Ilic, D. et al. Prostate cancer screening with prostate-specific antigen (PSA) test: a systematic review and meta-analysis. BMJ 362, k3519 (2018).

  10. 10.

    Fenton, J. J. et al. Prostate-specific antigen-based screening for prostate cancer evidence report and systematic review for the us preventive services task force. JAMA 319, 1914–1931 (2018).

  11. 11.

    US Preventive Services Task Force. Screening for prostate cancer: US Preventive Services Task force recommendation statement. JAMA 319, 1901–1913 (2018).

  12. 12.

    Gandaglia, G. et al. Structured population-based prostate-specific antigen screening for prostate cancer: the European Association of Urology position in 2019. Eur. Urol. https://doi.org/10.1016/j.eururo.2019.04.033 (2019).

  13. 13.

    Mottet, N. et al. EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent. Eur. Urol. 71, 618–629 (2017).

  14. 14.

    Bjurlin, M. A. et al. Optimization of prostate biopsy: the role of magnetic resonance imaging targeted biopsy in detection, localization and risk assessment. J. Urol. 192, 648–658 (2014).

  15. 15.

    Cohen, M. S. et al. Comparing the Gleason prostate biopsy and Gleason prostatectomy grading system: the Lahey Clinic Medical Center Experience and an international meta-analysis. Eur. Urol. 54, 371–381 (2008).

  16. 16.

    Etzioni, R. et al. Quantifying the role of PSA screening in the US prostate cancer mortality decline. Cancer Causes Control 19, 175–181 (2008).

  17. 17.

    Loeb, S. et al. Overdiagnosis and overtreatment of prostate cancer. Eur. Urol. 65, 1046–1055 (2014).

  18. 18.

    Serefoglu, E. C. et al. How reliable is 12-core prostate biopsy procedure in the detection of prostate cancer? Can. Urol. Assoc. J. 7, E293–E298 (2013).

  19. 19.

    Futterer, J. J. et al. Can clinically significant prostate cancer be detected with multiparametric magnetic resonance imaging? A systematic review of the literature. Eur. Urol. 68, 1045–1053 (2015).

  20. 20.

    Poon, Y., Mccallum, W., Henkelman, M., Sutcliffe, B. & Jewett, A. S. Magnetic resonance imaging of the prostate. Radiology 154, 143–149 (1985).

  21. 21.

    Barentsz, J. O. et al. ESUR prostate MR guidelines 2012. Eur. Radiol. 22, 746–757 (2012).

  22. 22.

    Schoots, I. G. et al. Magnetic resonance imaging-targeted biopsy may enhance the diagnostic accuracy of significant prostate cancer detection compared to standard transrectal ultrasound-guided biopsy: a systematic review and meta-analysis. Eur. Urol. 68, 438–450 (2015).

  23. 23.

    Giganti, F. et al. The evolution of MRI of the prostate: the past, the present, and the future. Am. J. Roentgenol. https://doi.org/10.2214/AJR.18.20796 (2019).

  24. 24.

    Wu, L.-M., Xu, J.-R., Ye, Y.-Q., Lu, Q. & Hu, J. N. The clinical value of diffusion-weighted imaging in combination with T2-weighted imaging in diagnosing prostate carcinoma: a systematic review and meta-analysis. Am. J. Roentgenol. 199, 103–110 (2012).

  25. 25.

    Weinreb, J. C. et al. PI-RADS prostate imaging — reporting and data system: 2015, version 2. Eur. Urol. 69, 16–40 (2015).

  26. 26.

    Rosenkrantz, A. B. & Taneja, S. S. Radiologist, be aware: ten pitfalls that confound the interpretation of multiparametric prostate MRI. Am. J. Roentgenol. 202, 109–120 (2014).

  27. 27.

    Hricak, H. et al. MR imaging of the prostate gland: normal anatomy. Am. J. Roentgenol. 148, 51–58 (1987).

  28. 28.

    Wang, L. et al. Assessment of biologic aggressiveness of prostate cancer: correlation of MR signal intensity with Gleason grade after radical prostatectomy. Radiology 246, 168–176 (2008).

  29. 29.

    Somford, D. M., Fütterer, J. J., Hambrock, T. & Barentsz, J. O. Diffusion and perfusion MR imaging of the prostate. Magn. Reson. Imaging Clin. N. Am. 16, 685–695 (2008).

  30. 30.

    Kim, C. K., Park, B. K. & Kim, B. High-b-value diffusion-weighted imaging at 3 T to detect prostate cancer: comparisons between b values of 1,000 and 2,000 s/mm2. Am. J. Roentgenol. 194, 33–37 (2010).

  31. 31.

    Hambrock, T. et al. Relationship between apparent diffusion coefficients at 3.0-T MR imaging and Gleason grade in peripheral zone prostate cancer. Radiology 259, 453–461 (2011).

  32. 32.

    Jung, S. Il et al. Transition zone prostate cancer: incremental value of diffusion-weighted endorectal MR imaging in tumor detection and assessment of aggressiveness. Radiology 269, 493–503 (2013).

  33. 33.

    Hara, N., Okuizumi, M., Koike, H., Kawaguchi, M. & Bilim, V. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a useful modality for the precise detection and staging of early prostate cancer. Prostate 62, 140–147 (2005).

  34. 34.

    Verma, S. et al. Overview of dynamic contrast-enhanced MRI in prostate cancer diagnosis and management. Am. J. Roentgenol. 198, 1277–1288 (2012).

  35. 35.

    Boesen, L. et al. Assessment of the diagnostic accuracy of biparametric magnetic resonance imaging for prostate cancer in biopsy-naive men: the biparametric MRI for detection of prostate cancer (BIDOC) study. JAMA 1, e180219 (2018).

  36. 36.

    Jambor, I. et al. Novel biparametric MRI and targeted biopsy improves risk stratification in men with a clinical suspicion of prostate cancer (IMPROD Trial). J. Magn. Reson. Imaging 46, 1089–1095 (2017).

  37. 37.

    Del Vescovo, R. et al. Dynamic contrast-enhanced MR evaluation of prostate cancer before and after endorectal high-intensity focused ultrasound. Radiol. Med. 118, 851–862 (2013).

  38. 38.

    Punwani, S. et al. Prostatic cancer surveillance following whole-gland high-intensity focused ultrasound: comparison of MRI and prostate-specific antigen for detection of residual or recurrent disease. Br. J. Radiol. 85, 720–728 (2012).

  39. 39.

    Hricak, H. MR imaging and MR spectroscopic imaging in the pre-treatment evaluation of prostate cancer. Br. J. Radiol. 78, 103–111 (2005).

  40. 40.

    Kumar, V., Jagannathan, N. R., Thulkar, S. & Kumar, R. Prebiopsy magnetic resonance spectroscopy and imaging in the diagnosis of prostate cancer. Int. J. Urol. 19, 602–613 (2012).

  41. 41.

    Vos, E. K. et al. Assessment of prostate cancer aggressiveness using dynamic contrast-enhanced magnetic resonance imaging at 3T. Eur. Urol. 64, 448–455 (2013).

  42. 42.

    Kobus, T., Vos, P. C. & Hambrock, T. Prostate cancer aggressiveness: in vivo assessment of MR spectroscopy and diffusion-weighted. Radiology 265, 457–467 (2013).

  43. 43.

    Kobus, T. et al. In vivo assessment of prostate cancer aggressiveness using magnetic resonance spectroscopic imaging at 3T with an endorectal coil. Eur. Urol. 60, 1074–1080 (2011).

  44. 44.

    Hamoen, E. H. J., de Rooij, M., Witjes, J. A., Barentsz, J. O. & Rovers, M. M. Use of the prostate imaging reporting and data system (PI-RADS) for prostate cancer detection with multiparametric magnetic resonance imaging: a diagnostic meta-analysis. Eur. Urol. 67, 1112–1121 (2014).

  45. 45.

    Woo, S., Suh, C. H., Kim, S. Y., Cho, J. Y. & Kim, S. H. Diagnostic performance of prostate imaging reporting and data system version 2 for detection of prostate cancer: a systematic review and diagnostic meta-analysis. Eur. Urol. 72, 177–188 (2017).

  46. 46.

    Kasivisvanathan, V. et al. MRI-targeted or standard biopsy for prostate-cancer diagnosis. N. Engl. J. Med. 378, 1767–1777 (2018).

  47. 47.

    Ahmed, H. U. et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 389, 815–822 (2017).

  48. 48.

    Renard-Penna, R. et al. Prostate imaging reporting and data system and Likert scoring system: multiparametric MR imaging validation study to screen patients for initial biopsy. Radiology 275, 458–468 (2015).

  49. 49.

    Appayya, M. B. et al. Characterizing indeterminate (Likert-score 3/5) peripheral zone prostate lesions with PSA density, PI-RADS scoring and qualitative descriptors on multiparametric MRI. Br. J. Radiol. 91, 20170645 (2017).

  50. 50.

    Rosenkrantz, A. B. et al. Prostate cancer localization using multiparametric MR imaging: comparison of prostate imaging reporting and data system (PI-RADS) and Likert scales. Radiology 269, 482–492 (2013).

  51. 51.

    National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology. Prostate cancer — version 2.2019. NCCN https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf (2019).

  52. 52.

    Atkins, D. et al. Grading quality of evidence and strength of recommendations. BMJ 328, 7454–1490 (2004).

  53. 53.

    de Rooij, M., Hamoen, E. H. J., Witjes, J. A., Barentsz, J. O. & Rovers, M. M. Accuracy of magnetic resonance imaging for local staging of prostate cancer: a diagnostic meta-analysis. Eur. Urol. 70, 233–245 (2016).

  54. 54.

    Roethke, M. C. et al. Accuracy of preoperative endorectal MRI in predicting extracapsular extension and influence on neurovascular bundle sparing in radical prostatectomy. World J. Urol. 31, 1111–1116 (2013).

  55. 55.

    Hricak, H. et al. The role of preoperative endorectal magnetic resonance imaging in the decision regarding whether to preserve or resect neurovascular bundles during radical retropubic prostatectomy. Cancer 100, 2655–2663 (2004).

  56. 56.

    Rud, E. et al. Does preoperative magnetic resonance imaging reduce the rate of positive surgical margins at radical prostatectomy in a randomised clinical trial? Eur. Urol. 68, 487–496 (2015).

  57. 57.

    De Rooij, M., Hamoen, E. H. J., Fütterer, J. J., Barentsz, J. O. & Rovers, M. M. Accuracy of multiparametric MRI for prostate cancer detection: a meta-analysis. Am. J. Roentgenol. 202, 343–351 (2014).

  58. 58.

    Guichard, G. et al. Extended 21-sample needle biopsy protocol for diagnosis of prostate cancer in 1000 consecutive patients. Eur. Urol. 52, 430–435 (2007).

  59. 59.

    Valerio, M. et al. Detection of clinically significant prostate cancer using magnetic resonance imaging-ultrasound fusion targeted biopsy: a systematic review. Eur. Urol. 68, 8–19 (2015).

  60. 60.

    van Hove, A. et al. Comparison of image-guided targeted biopsies versus systematic randomized biopsies in the detection of prostate cancer: a systematic literature review of well-designed studies. World J. Urol. 32, 847–858 (2014).

  61. 61.

    Porpiglia, F. et al. Diagnostic pathway with multiparametric magnetic resonance imaging versus standard pathway: results from a randomized prospective study in biopsy-naïve patients with suspected prostate cancer. Eur. Urol. 78, 282–288 (2016).

  62. 62.

    Panebianco, V. et al. Multiparametric magnetic resonance imaging vs. standard care in men being evaluated for prostate cancer: a randomized study. Urol. Oncol. 33, 17.e1–17.e7 (2015).

  63. 63.

    Tonttila, P. P. et al. Prebiopsy multiparametric magnetic resonance imaging for prostate cancer diagnosis in biopsy-naive men with suspected prostate cancer based on elevated prostate-specific antigen values: results from a randomized prospective blinded controlled trial. Eur. Urol. 69, 419–425 (2015).

  64. 64.

    Baco, E. et al. A randomized controlled trial to assess and compare the outcomes of two-core prostate biopsy guided by fused magnetic resonance and transrectal ultrasound images and traditional 12-core systematic biopsy. Eur. Urol. 69, 149–156 (2015).

  65. 65.

    Rouvière, O. et al. Use of prostate systematic and targeted biopsy on the basis of multiparametric MRI in biopsy-naive patients (MRI-FIRST): a prospective, multicentre, paired diagnostic study. Lancet Oncol. 20, 100–109 (2019).

  66. 66.

    van der Leest, M. et al. Head-to-head comparison of transrectal ultrasound-guided prostate biopsy versus multiparametric prostate resonance imaging with subsequent magnetic resonance-guided biopsy in biopsy-naïve men with elevated prostate-specific antigen: a large prospective multicenter clinical study. Eur. Urol. 75, 570–578 (2019).

  67. 67.

    Mendhiratta, N. et al. Magnetic resonance imaging-ultrasound fusion targeted prostate biopsy in a consecutive cohort of men with no previous biopsy: reduction of over detection through improved risk stratification. J. Urol. 194, 1601–1606 (2015).

  68. 68.

    Haffner, J. et al. Role of magnetic resonance imaging before initial biopsy: comparison of magnetic resonance imaging-targeted and systematic biopsy for significant prostate cancer detection. BJU Int. 102, 171–178 (2011).

  69. 69.

    Mozer, P. et al. First round of targeted biopsies using magnetic resonance imaging/ultrasonography fusion compared with conventional transrectal ultrasonography-guided biopsies for the diagnosis of localised prostate cancer. BJU Int. 115, 50–57 (2015).

  70. 70.

    Hansen, N. et al. Multicentre evaluation of magnetic resonance imaging supported transperineal prostate biopsy in biopsy-naïve men with suspicion of prostate cancer. BJU Int. 38, 3218–3221 (2017).

  71. 71.

    Zaytoun, O. M., Moussa, A. S., Gao, T., Fareed, K. & Jones, J. S. Office based transrectal saturation biopsy improves prostate cancer detection compared to extended biopsy in the repeat biopsy population. J. Urol. 186, 850–854 (2011).

  72. 72.

    Meng, M. V., Franks, J. H., Presti, J. C. & Shinohara, K. The utility of apical anterior horn biopsies in prostate cancer detection. Urol. Oncol. 21, 361–365 (2003).

  73. 73.

    Allen, E. A., Kahane, H. & Epstein, J. I. Repeat biopsy strategies for men with atypical diagnoses on initial prostate needle biopsy. Urology 52, 803–807 (1998).

  74. 74.

    Mabjeesh, N. J., Lidawi, G., Chen, J., German, L. & Matzkin, H. High detection rate of significant prostate tumours in anterior zones using transperineal ultrasound-guided template saturation biopsy. BJU Int. 110, 993–997 (2012).

  75. 75.

    Zaytoun, O. M. et al. When serial prostate biopsy is recommended: most cancers detected are clinically insignificant. BJU Int. 110, 987–992 (2012).

  76. 76.

    Merrick, G. S. et al. The morbidity of transperineal template-guided prostate mapping biopsy. BJU Int. 101, 1524–1529 (2008).

  77. 77.

    Simmons, L. A. M. et al. The PICTURE study: diagnostic accuracy of multiparametric MRI in men requiring a repeat prostate biopsy. Br. J. Cancer 116, 1159–1165 (2017).

  78. 78.

    Zhang, Z. X. et al. The value of magnetic resonance imaging in the detection of prostate cancer in patients with previous negative biopsies and elevated prostate-specific antigen levels: a meta-analysis. Acad. Radiol. 21, 578–589 (2014).

  79. 79.

    Radtke, J. P. et al. Comparative analysis of transperineal template saturation prostate biopsy versus magnetic resonance imaging targeted biopsy with magnetic resonance imaging-ultrasound fusion guidance. J. Urol. 193, 87–94 (2015).

  80. 80.

    Boesen, L., Nørgaard, N., Løgager, V., Balslev, I. & Thomsen, H. S. A prospective comparison of selective multiparametric magnetic resonance imaging fusion-targeted and systematic transrectal ultrasound-guided biopsies for detecting prostate cancer in men undergoing repeated biopsies. Urol. Int. 99, 384–391 (2017).

  81. 81.

    Arsov, C. et al. Prospective randomized trial comparing magnetic resonance imaging (MRI)-guided in-bore biopsy to MRI-ultrasound fusion and transrectal ultrasound-guided prostate biopsy in patients with prior negative biopsies. Eur. Urol. 68, 713–720 (2015).

  82. 82.

    Moore, C. M. et al. Standards of reporting for MRI-targeted biopsy studies (START) of the prostate: recommendations from an international working group. Eur. Urol. 64, 544–552 (2013).

  83. 83.

    Wegelin, O. et al. Comparing three different techniques for magnetic resonance imaging-targeted prostate biopsies: a systematic review of in-bore versus magnetic resonance imaging-transrectal ultrasound fusion versus cognitive registration. Is there a preferred technique? Eur. Urol. 71, 517–531 (2016).

  84. 84.

    Stabile, A. et al. Not all multiparametric magnetic resonance imaging–targeted biopsies are equal: the impact of the type of approach and operator expertise on the detection of clinically significant prostate cancer. Eur. Urol. Oncol. 1, 120–128 (2018).

  85. 85.

    Calio, B. et al. Changes in prostate cancer detection rate of MRI-TRUS fusion versus systematic biopsy over time: evidence of a learning curve. Prostate Cancer Prostatic Dis. 20, 436–441 (2017).

  86. 86.

    Gaziev, G. et al. Defining the learning curve for multiparametric magnetic resonance imaging (MRI) of the prostate using MRI-transrectal ultrasonography (TRUS) fusion-guided transperineal prostate biopsies as a validation tool. BJU Int. 117, 80–86 (2016).

  87. 87.

    Marra, G. et al. Controversies in MR targeted biopsy: alone or combined, cognitive versus software-based fusion, transrectal versus transperineal approach? World J. Urol. 37, 277–287 (2019).

  88. 88.

    Logan, J. K. et al. Current status of MRI and ultrasound fusion software platforms for guidance of prostate biopsies. BJU Int. 114, 641–652 (2015).

  89. 89.

    Gayet, M. et al. The value of magnetic resonance imaging and ultrasonography (MRI/US)-fusion biopsy platforms in prostate cancer detection: a systematic review. BJU Int. 117, 392–400 (2016).

  90. 90.

    Cash, H. et al. Prostate cancer detection on transrectal ultrasonography-guided random biopsy despite negative real-time magnetic resonance imaging/ultrasonography fusion-guided targeted biopsy: reasons for targeted biopsy failure. BJU Int. 118, 35–43 (2015).

  91. 91.

    Muthigi, A. et al. Missing the mark: prostate cancer upgrading by systematic biopsy over magnetic resonance imaging/transrectal ultrasound fusion biopsy. J. Urol. 197, 327–334 (2017).

  92. 92.

    Wegelin, O. et al. The FUTURE trial: a multicenter randomised controlled trial on target biopsy techniques based on magnetic resonance imaging in the diagnosis of prostate cancer in patients with prior negative biopsies. Eur. Urol. 75, 582–590 (2018).

  93. 93.

    Hamid, S. et al. The SmartTarget Biopsy trial: a prospective, within-person randomised, blinded trial comparing the accuracy of visual-registration and magnetic resonance imaging/ultrasound image-fusion targeted biopsies for prostate cancer risk stratification. Eur. Urol. 75, 733–740 (2018).

  94. 94.

    Hambrock, T. et al. Prospective assessment of prostate cancer aggressiveness using 3-T diffusion-weighted magnetic resonance imaging-guided biopsies versus a systematic 10-core transrectal ultrasound prostate biopsy cohort. Eur. Urol. 61, 177–184 (2012).

  95. 95.

    Baco, E. et al. Magnetic resonance imaging — transectal ultrasound image-fusion biopsies accurately characterize the index tumor: correlation with step-sectioned radical prostatectomy specimens in 135 patients. Eur. Urol. 67, 787–794 (2015).

  96. 96.

    Borghesi, M. et al. Complications after systematic, random, and image-guided prostate biopsy. Eur. Urol. 71, 353–365 (2017).

  97. 97.

    Loeb, S. et al. Systematic review of complications of prostate biopsy. Eur. Urol. 64, 876–892 (2013).

  98. 98.

    Grummet, J., Pepdjonovic, L., Huang, S., Anderson, E. & Hadaschik, B. Transperineal versus transrectal biopsy in MRI targeting. Transl Androl. Urol. 6, 368–375 (2017).

  99. 99.

    Pepe, P., Garufi, A., Priolo, G. & Pennisi, M. Transperineal versus transrectal MRI/TRUS fusion targeted biopsy: detection rate of clinically significant prostate cancer. Clin. Genitourin. Cancer 15, e33–e36 (2017).

  100. 100.

    Murphy, D. G. & Grummet, J. P. Planning for the post-antibiotic era — why we must avoid TRUS-guided biopsy sampling. Nat. Rev. Urol. 13, 559–560 (2016).

  101. 101.

    Schoots, I. G. & Roobol, M. J. From PROMIS to PRO-MRI in primary prostate cancer diagnosis. Transl Androl. Urol. 6, 604–607 (2017).

  102. 102.

    Moore, C. M. et al. Image-guided prostate biopsy using magnetic resonance imaging-derived targets: a systematic review. Eur. Urol. 63, 125–140 (2013).

  103. 103.

    Stabile, A., Giganti, F., Emberton, M. & Moore, C. M. MRI in prostate cancer diagnosis: do we need to add standard sampling? A review of the last 5 years. Prostate Cancer Prostatic Dis. 21, 473–487 (2018).

  104. 104.

    Hamdy, F. C. et al. 10-year outcomes after monitoring, surgery, or radiotherapy for localized prostate cancer. N. Engl. J. Med. 375, 1415–1424 (2016).

  105. 105.

    Marenco, J., Orczyk, C., Collins, T., Moore, C. & Emberton, M. Role of MRI in planning radical prostatectomy: what is the added value? World J. Urol. https://doi.org/10.1007/s00345-019-02762-2 (2019).

  106. 106.

    Algaba, F. & Montironi, R. Impact of prostate cancer multifocality on its biology and treatment. J. Endourol. 24, 799–804 (2010).

  107. 107.

    Le, J. D. et al. Multifocality and prostate cancer detection by multiparametric magnetic resonance imaging: correlation with whole-mount histopathology. Eur. Urol. 67, 569–576 (2015).

  108. 108.

    Radtke, J. P. et al. Multiparametric magnetic resonance imaging (MRI) and MRI — transrectal ultrasound fusion biopsy for index tumor detection: correlation with radical prostatectomy specimen. Eur. Urol. 70, 846–853 (2016).

  109. 109.

    Stabile, A. et al. Association between prostate imaging reporting and data system (PI-RADS) score for the index lesion and multifocal, clinically significant prostate cancer. Eur. Urol. Oncol. 1, 29–36 (2018).

  110. 110.

    Panebianco, V. et al. Negative multiparametric magnetic resonance imaging for prostate cancer: what’s next? Eur. Urol. 74, 48–54 (2018).

  111. 111.

    Moldovan, P. C. et al. What is the negative predictive value of multiparametric magnetic resonance imaging in excluding prostate cancer at biopsy? A systematic review and meta-analysis from the European Association of Urology Prostate Cancer Guidelines Panel. Eur. Urol. 72, 250–266 (2017).

  112. 112.

    Panebianco, V. et al. An update of pitfalls in prostate mpMRI: a practical approach through the lens of PI-RADS v. 2 guidelines. Insights Imaging 9, 87–101 (2017).

  113. 113.

    Soher, B. J., Dale, B. M. & Merkle, E. M. A review of MR physics: 3T versus 1.5T. Magn. Reson. Imaging Clin. N. Am. 15, 277–290 (2007).

  114. 114.

    Shah, Z. K. et al. Performance comparison of 1.5T endorectal coil MRI with non-endorectal coil 3.0T MRI in patients with prostate cancer. Acad. Radiol. 36, 1011–1014 (2016).

  115. 115.

    Beyersdorff, D. et al. MRI of prostate cancer at 1.5 and 3.0T: comparison of image quality in tumor detection and staging. Am. J. Roentgenol. 185, 1214–1220 (2005).

  116. 116.

    Ullrich, T. et al. Magnetic resonance imaging of the prostate at 1.5 versus 3.0T: a prospective comparison study of image quality. Eur. J. Radiol. 90, 192–197 (2017).

  117. 117.

    Thompson, J. E. et al. Multiparametric magnetic resonance imaging guided diagnostic biopsy detects significant prostate cancer and could reduce unnecessary biopsies and over detection: a prospective study. J. Urol. 192, 67–74 (2014).

  118. 118.

    Gawlitza, J. et al. Impact of the use of an endorectal coil for 3T prostate MRI on image quality and cancer detection rate. Sci. Rep. 7, 40640 (2017).

  119. 119.

    Turkbey, B. et al. Comparison of endorectal coil and non-endorectal coil T2W and DW MRI at 3T for localizing prostate cancer: correlation with whole-mount histopathology. J. Magn. Reson. Imaging 25, 713–724 (2014).

  120. 120.

    Engelbrecht, M. R. et al. Local staging of prostate cancer using magnetic resonance imaging: a meta-analysis. Eur. Radiol. 12, 2294–2302 (2002).

  121. 121.

    Heijmink, S. W. T. P. J. et al. Prostate cancer: body-array versus endorectal coil MR imaging at 3T—comparison of image quality, localization, and staging performance. Radiology 244, 184–195 (2007).

  122. 122.

    Platzek, I. et al. Multiparametric prostate magnetic resonance imaging at 3T: failure of magnetic resonance spectroscopy to provide added value. J. Comput. Assist. Tomogr. 39, 674–680 (2015).

  123. 123.

    Panebianco, V. et al. Role of magnetic resonance spectroscopic imaging ([1H]MRSI) and dynamic contrast-enhanced MRI (DCE-MRI) in identifying prostate cancer foci in patients with negative biopsy and high levels of prostate-specific antigen (PSA). Radiol. Med. 115, 1314–1329 (2010).

  124. 124.

    Polanec, S. H. et al. Multiparametric MRI of the prostate at 3T: limited value of 3D 1H-MR spectroscopy as a fourth parameter. World J. Urol. 34, 649–656 (2016).

  125. 125.

    Mowatt, G. et al. The diagnostic accuracy and cost-effectiveness of magnetic resonance spectroscopy and enhanced magnetic resonance imaging techniques in aiding the localisation of prostate abnormalities for biopsy: a systematic review and economic evaluation. Health Technol. Assess. 17, 20 (2013).

  126. 126.

    Leapman, M. S. et al. Impact of the integration of proton magnetic resonance imaging spectroscopy to PI-RADS 2 for prediction of high grade and high stage prostate cancer. Radiol. Bras. 50, 299–307 (2017).

  127. 127.

    Peng, Y. et al. Validation of quantitative analysis of multiparametric prostate MR images for prostate cancer detection and aggressiveness assessment: a cross-imager study. Radiology 271, 461–471 (2014).

  128. 128.

    Hoang Dinh, A. et al. Quantitative analysis of prostate multiparametric MR images for detection of aggressive prostate cancer in the peripheral zone: a multiple imager study. Radiology 280, 117–127 (2016).

  129. 129.

    Hoang Dinh, A. et al. Characterization of prostate cancer using T2 mapping at 3 T: a multi-scanner study. Diagn. Interv. Imaging 96, 365–372 (2015).

  130. 130.

    Briganti, A. et al. Active surveillance for low-risk prostate cancer: the European Association of Urology position in 2018. Eur. Urol. 74, 357–368 (2018).

  131. 131.

    Bruinsma, S. M. et al. The Movember Foundation’s GAP3 cohort: a profile of the largest global prostate cancer active surveillance database to date. BJU Int. 12, 3218–3221 (2017).

  132. 132.

    Bruinsma, S. M. et al. Active surveillance for prostate cancer: a narrative review of clinical guidelines. Nat. Rev. Urol. 13, 151–167 (2016).

  133. 133.

    Filson, C. P. & Marks, L. S. Expectant management for men with early stage prostate cancer expectant management for men with early stage prostate cancer. CA Cancer J. Clin. 65, 265–282 (2015).

  134. 134.

    Schoots, I. G. et al. Magnetic resonance imaging in active surveillance of prostate cancer: a systematic review. Eur. Urol. 67, 627–636 (2015).

  135. 135.

    Schoots, I. G. et al. Is MRI-targeted biopsy a useful addition to systematic confirmatory biopsy in men on active surveillance for low-risk prostate cancer? A systematic review and meta-analysis. BJU Int. 122, 946–958 (2018).

  136. 136.

    Ghavimi, S. et al. Natural history of prostatic lesions on serial multiparametric magnetic resonance imaging. Can. Urol. Assoc. J. 12, 270–275 (2018).

  137. 137.

    Ma, T. M. et al. The role of multiparametric magnetic resonance imaging/ultrasound fusion biopsy in active surveillance. Eur. Urol. 71, 174–180 (2017).

  138. 138.

    Velasquez, M. C., Prakash, N. S., Venkatramani, V., Nahar, B. & Punnen, S. Imaging for the selection and monitoring of men on active surveillance for prostate cancer. Transl Androl. Urol. 7, 228–235 (2018).

  139. 139.

    Moore, C. M. et al. Reporting magnetic resonance imaging in men on active surveillance for prostate cancer: the PRECISE recommendations — a report of a European School of Oncology Task Force. Eur. Urol. 71, 648–655 (2017).

  140. 140.

    Benson, M. C. et al. Prostate specific antigen density: a means of distinguishing benign prostatic hypertrophy and prostate cancer. J. Urol. 147, 815–816 (1992).

  141. 141.

    Magheli, A. et al. Prostate specific antigen density to predict prostate cancer upgrading in a contemporary radical prostatectomy series: a single center experience. J. Urol. 183, 126–132 (2010).

  142. 142.

    Washino, S. et al. Combination of prostate imaging reporting and data system (PI-RADS) score and prostate-specific antigen (PSA) density predicts biopsy outcome in prostate biopsy naïve patients. BJU Int. 119, 225–233 (2017).

  143. 143.

    Distler, F. A. et al. The value of PSA density in combination with PI-RADSTM for the accuracy of prostate cancer prediction. J. Urol. 198, 575–582 (2017).

  144. 144.

    Hansen, N. L. et al. The influence of prostate-specific antigen density on positive and negative predictive values of multiparametric magnetic resonance imaging to detect Gleason score 7–10 prostate cancer in a repeat biopsy setting. BJU Int. 119, 724–730 (2017).

  145. 145.

    Hessels, D. et al. PCA3-based molecular urine analysis for the diagnosis of prostate cancer. Eur. Urol. 44, 8–16 (2003).

  146. 146.

    Busetto, G. M. et al. Prostate cancer gene 3 and multiparametric magnetic resonance can reduce unnecessary biopsies: decision curve analysis to evaluate predictive models. Urology 82, 1355–1360 (2013).

  147. 147.

    Catalona, W. J. et al. Serum pro-prostate specific antigen preferentially detects aggressive prostate cancers in men with 2 to 4 ng/ml prostate specific antigen. J. Urol. 171, 2239–2244 (2004).

  148. 148.

    Filella, X., Foj, L., Augé, J. M., Molina, R. & Alcover, J. Clinical utility of %p2PSA and prostate health index in the detection of prostate cancer. Clin. Chem. Lab. Med. 52, 1347–1355 (2014).

  149. 149.

    Catalona, W. J. et al. A multicenter study of [-2]pro-prostate specific antigen combined with prostate specific antigen and free prostate specific antigen for prostate cancer detection in the 2.0 to 10.0 ng/ml prostate specific antigen range. J. Urol. 185, 1650–1655 (2011).

  150. 150.

    Loeb, S. et al. The prostate health index selectively identifies clinically significant prostate cancer. J. Urol. 193, 1163–1169 (2015).

  151. 151.

    Gnanapragasam, V. J. et al. The prostate health index adds predictive value to multi-parametric MRI in detecting significant prostate cancers in a repeat biopsy population. Sci. Rep. 72, 654–655 (2016).

  152. 152.

    Druskin, S. C. et al. Incorporating prostate health index density, MRI, and prior negative biopsy status to improve the detection of clinically significant prostate cancer. BJU Int. 12, 3218–3221 (2018).

  153. 153.

    de Rooij, M. et al. Cost-effectiveness of magnetic resonance (MR) imaging and MR-guided targeted biopsy versus systematic transrectal ultrasound-guided biopsy in diagnosing prostate cancer: a modelling study from a health care perspective. Eur. Urol. 66, 430–436 (2014).

  154. 154.

    Faria, R. et al. Optimising the diagnosis of prostate cancer in the era of multiparametric magnetic resonance imaging: a cost-effectiveness analysis based on the prostate MR imaging study (PROMIS). Eur. Urol. 73, 23–30 (2017).

  155. 155.

    Pepe, P. et al. Cost-effectiveness of multiparametric MRI in 800 men submitted to repeat prostate biopsy: results of a public health model. Anticancer Res. 38, 2395–2398 (2018).

  156. 156.

    Cerantola, Y. et al. Cost-effectiveness of multiparametric magnetic resonance imaging and targeted biopsy in diagnosing prostate cancer. Urol. Oncol. 34, 119.e1–119.e9 (2016).

  157. 157.

    Barnett, C. L. et al. Cost-effectiveness of magnetic resonance imaging and targeted fusion biopsy for early detection of prostate cancer. BJU Int. 122, 50–58 (2018).

  158. 158.

    Barentsz, J. O. et al. Synopsis of the PI-RADS v2 guidelines for multiparametric prostate magnetic resonance imaging and recommendations for use. Eur. Urol. 69, 41–49 (2015).

  159. 159.

    Thomas, S. & Oto, A. Multiparametric MR imaging of the prostate: pitfalls in interpretation. Radiol. Clin. North Am. 56, 277–287 (2017).

  160. 160.

    Rosenkrantz, A. B. et al. Online interactive case-based instruction in prostate magnetic resonance imaging interpretation using prostate imaging and reporting data system version 2: effect for novice readers. Curr. Probl. Diagn. Radiol. 48, 132–141 (2018).

  161. 161.

    Rosenkrantz, A. B. et al. Interobserver reproducibility of the PI-RADS version 2 lexicon: a multicenter study of six experienced prostate radiologists. Radiology 280, 793–804 (2016).

  162. 162.

    Akin, O. et al. Interactive dedicated training curriculum improves accuracy in the interpretation of MR imaging of prostate cancer. Eur. Radiol. 20, 995–1002 (2010).

  163. 163.

    Garcia-Reyes, K. et al. Detection of prostate cancer with multiparametric MRI (mpMRI): effect of dedicated reader education on accuracy and confidence of index and anterior cancer diagnosis. Abdom. Imaging 40, 134–142 (2015).

  164. 164.

    Rosenkrantz, A. B. et al. The learning curve in prostate MRI interpretation: self-directed learning versus continual reader feedback. Am. J. Roentgenol. 208, W92–W100 (2017).

  165. 165.

    Muller, B. G. et al. Prostate cancer: interobserver agreement and accuracy with the revised prostate imaging reporting and data system at multiparametric MR imaging. Radiology 277, 741–750 (2015).

  166. 166.

    Riney, J. C. et al. Prostate magnetic resonance imaging: the truth lies in the eye of the beholder. Urol. Oncol. 36, 159.e1–159.e5 (2018).

  167. 167.

    Chau, E. M. et al. Performance characteristics of multiparametric-MRI at a non-academic hospital using transperineal template mapping biopsy as a reference standard. Int. J. Surg. Open 10, 66–71 (2018).

  168. 168.

    Di Campli, E. et al. Diagnostic accuracy of biparametric versus multiparametric MRI in clinically significant prostate cancer: comparison between readers with different experience. Eur. J. Radiol. 101, 17–23 (2018).

  169. 169.

    Scialpi, M. et al. Biparametric MRI of the prostate. Turk. J. Urol. 43, 401–409 (2017).

  170. 170.

    Thestrup, K. C. D. et al. Biparametric versus multiparametric MRI in the diagnosis of prostate cancer. Acta Radiol. Open 5, 2058460116663046 (2016).

  171. 171.

    Le, M. H., Chen, J., Wang, L. & Wang, Z. Automated diagnosis of prostate cancer in multi-parametric MRI based on multimodal convolutional neural networks. Phys. Med. Biol. 62, 6497–6514 (2017).

  172. 172.

    Niaf, E., Rouviere, O., Mège-Lechevallier, F., Bratan, F. & Lartizien, C. Computer-aided diagnosis of prostate cancer in the peripheral zone using multiparametric MRI. Phys. Med. Biol. 263, 3833–3851 (2013).

  173. 173.

    Vos, P. C., Barentsz, J. O., Karssemeijer, N. & Huisman, H. J. Automatic computer-aided detection of prostate cancer based on multiparametric magnetic resonance image analysis. Phys. Med. Biol. 57, 1527–1542 (2012).

  174. 174.

    Hambrock, T., Vos, P. C. Hulsbergen–Van de Kaa, C. A., Barentsz, J. O. & Hulsman, H. J. Computer-aided diagnosis with multiparametric 3-T MR imaging—effect on observer performance. Radiology 266, 521–530 (2013).

  175. 175.

    Lemaitre, G., Marti, R., Rastgoo, M. & Meriaudeau, F. Computer-aided detection for prostate cancer detection based on multi-parametric magnetic resonance imaging. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2017, 3138–3141 (2017).

  176. 176.

    Litjens, G., Debats, O., Barentsz, J., Karssemeijer, N. & Huisman, H. Computer-aided detection of prostate cancer in MRI. IEEE Trans. Med. Imaging 33, 1083–1092 (2014).

  177. 177.

    Wang, J. et al. Machine learning-based analysis of MR radiomics can help to improve the diagnostic performance of PI-RADS v2 in clinically relevant prostate cancer. Eur. Radiol. 27, 4082–4090 (2017).

  178. 178.

    Thompson, M. I. et al. Prevalence of prostate cancer among men with a prostate-specific antigen level ≤4.0 ng per milliliter. N. Engl. J. Med. 350, 2239–2246 (2004).

  179. 179.

    Abd-alazeez, M. et al. The accuracy of multiparametric MRI in men with negative biopsy and elevated PSA level—can it rule out clinically significant prostate cancer? Urol. Oncol. 32, 45.e17–45.e22 (2013).

  180. 180.

    Thompson, J. E. et al. The diagnostic performance of multiparametric magnetic resonance imaging to detect significant prostate cancer. J. Urol. 195, 1428–1435 (2016).

  181. 181.

    Nam, R. K. et al. A pilot study to evaluate the role of magnetic resonance imaging for prostate cancer screening in the general population. J. Urol. 196, 361–366 (2016).

  182. 182.

    Brennen, W. N. & Isaacs, J. T. Mesenchymal stem cells and the embryonic reawakening theory of BPH. Nat. Rev. Urol. 15, 703–715 (2018).

Download references

Author information

A.S. and F.G. researched the data for the article. A.S. wrote the article. All authors made substantial contributions to the discussion of the content. A.S., A.B.R., S.S.T., G.V., I.S.G., C.A., M.E., C.M.M. and V.K. reviewed and edited the manuscript before submission.

Correspondence to Armando Stabile.

Ethics declarations

Competing interests

M.E. receives research support from the UK’s National Institute of Health Research (NIHR) UCLH/UCL Biomedical Research Centre. C.M.M. has received research funding from NI Health, the European Association of Urology Research Foundation, Prostate Cancer UK, Movember, and the Cancer Vaccine Institute and advisory board fees from Genomic Health. A.B.R. has royalties from Thieme Medical Publisher. F.G. is funded by the UCL Graduate Scholarship and the Brahm PhD scholarship. The remaining authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Urology thanks T. Hambrock, P. Choyke and A. George for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark