Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Physical activity as an adjunct treatment for erectile dysfunction

Abstract

Increasing data are available to suggest that physical activity and lifestyle modification in general can benefit erectile function, with effect sizes comparable with established treatment options such as testosterone therapy and phosphodiesterase type 5 inhibitors. Despite this evidence, primary-care physicians are rarely afforded critical information on the underlying mechanisms through which physical activity works as a treatment, severely hampering treatment credibility for both physician and patient. Physical activity is associated with psychological and metabolic adaptations that are compatible with the adaptations required for the treatment of erectile dysfunction (ED). These adaptations include increased expression and activity of nitric oxide synthase, strengthened endothelial function, acute rises in testosterone, decreased stress and anxiety, and improved body image. Use of physical activity as a first-line treatment option for ED is limited, and explicit physical activity guidelines for the treatment of ED are required. Such guidelines should include not only a suggested exercise programme but also guidelines for physician–patient communication that might enhance patient receptivity and therapy continuation. An understanding of how physical activity affects erectile function, as well as its effectiveness in treating ED compared with other established treatments, can benefit urologists and primary-care physicians searching for noninvasive treatment options for men presenting with poor erectile function.

Key points

  • Erectile function is a haemodynamic process governed by multiple regulatory systems; notably endothelial nitric oxide (NO), testosterone and psychological factors.

  • Physical activity is the most effective way to increase NO and strengthen endothelial function, and can also increase testosterone and positive body image, and decrease stress and anxiety.

  • Pharmacotherapy is the most common method of treating erectile dysfunction (ED), with testosterone therapy and phosphodiesterase type 5 inhibitors identified as effective treatments.

  • Physical activity interventions show the largest effect sizes in terms of efficacy for the treatment of ED.

  • Different exercise modalities — aerobic, resistance, combat training and group sports — have effects on different inputs into erectile function and can, therefore, be used together to maximize the therapeutic benefit.

  • Regular physical activity should be considered the first-line treatment option for men presenting with poor erectile function.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Mechanisms of penile erection.
Fig. 2: Physical activity and NO homeostasis.
Fig. 3: Differential effects of different exercise modalities.

References

  1. 1.

    McCabe, M. P. et al. Definitions of sexual dysfunctions in women and men: a consensus statement from the Fourth International Consultation on Sexual Medicine 2015. J. Sex. Med. 13, 135–143 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Cheng, J. Y. W., Ng, E. M. L., Chen, R. Y. L. & Ko, J. S. N. Prevalence of erectile dysfunction in Asian populations: a meta-analysis. Int. J. Impot. Res. 19, 229–244 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Wang, W. et al. Meta-analysis of prevalence of erectile dysfunction in mainland China: evidence based on epidemiological surveys. Sex. Med. 5, e19–e30 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Mulhall, J. P., Luo, X., Zou, K. H., Stecher, V. & Galaznik, A. Relationship between age and erectile dysfunction diagnosis or treatment using real-world observational data in the USA. Int. J. Clin. Pract. 70, 1012–1018 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    De Tejada, I. S. et al. Pathophysiology of erectile dysfunction. J. Sex. Med. 2, 26–39 (2005).

    Article  Google Scholar 

  6. 6.

    Andersson, K. E. Mechanisms of penile erection and basis for pharmacological treatment of erectile dysfunction. Pharmacol. Rev. 63, 811–859 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Prieto, D. Physiological regulation of penile arteries and veins. Int. J. Impot. Res. 20, 17–29 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Shamloul, R. & Ghanem, H. Erectile dysfunction. Lancet 381, 153–165 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Hackett, G. et al. British Society for Sexual Medicine guidelines on the management of erectile dysfunction in men — 2017. J. Sex. Med. 15, 430–457 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Burnett, A. L. et al. Erectile dysfunction: AUA guideline. J. Urol. 200, 633–641 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Corona, G. et al. Meta-analysis of results of testosterone therapy on sexual function based on international index of erectile function scores. Eur. Urol. 72, 1000–1011 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Ponce, O. J. et al. The efficacy and adverse events of testosterone replacement therapy in hypogonadal men: a systematic review and meta-analysis of randomized, placebo-controlled trials. J. Clin. Endocrinol. Metab. 103, 1745–1754 (2018).

    Article  Google Scholar 

  13. 13.

    Chen, L. et al. Phosphodiesterase 5 inhibitors for the treatment of erectile dysfunction: a trade-off network meta-analysis. Eur. Urol. 68, 674–680 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Yuan, J. Q. et al. Comparative effectiveness and safety of oral phosphodiesterase type 5 inhibitors for erectile dysfunction: a systematic review and network meta-analysis. Eur. Urol. 63, 902–912 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Gong, B. et al. Direct comparison of tadalafil with sildenafil for the treatment of erectile dysfunction: a systematic review and meta-analysis. Int. Urol. Nephrol. 49, 1731–1740 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Schmidt, H. M., Munder, T., Gerger, H., Frühauf, S. & Barth, J. Combination of psychological intervention and phosphodiesterase-5 inhibitors for erectile dysfunction: a narrative review and meta-analysis. J. Sex. Med. 11, 1376–1391 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Frühauf, S., Gerger, H., Schmidt, H. M., Munder, T. & Barth, J. Efficacy of psychological interventions for sexual dysfunction: a systematic review and meta-analysis. Arch. Sex. Behav. 42, 915–933 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Melnik, T., Soares, B. G. O. & Nasello, A. G. The effectiveness of psychological interventions for the treatment of erectile dysfunction: systematic review and meta-analysis, including comparisons to sildenafil treatment, intracavernosal injection, and vacuum devices. J. Sex. Med. 5, 2562–2574 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Man, L. & Li, G. Low-intensity extracorporeal shock wave therapy for erectile dysfunction: a systematic review and meta-analysis. Urology 119, 97–103 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Allen, M. S. & Walter, E. E. Erectile dysfunction: an umbrella review of meta-analyses of risk-factors, treatment, and prevalence outcomes. J. Sex. Med. 16, 531–541 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Hallal, P. C. et al. Global physical activity levels: surveillance progress, pitfalls, and prospects. Lancet 380, 247–257 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Kyu, H. H. et al. Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: systematic review and dose-response meta-analysis for the Global Burden of Disease Study 2013. BMJ 354, i3857 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Warburton, D. E. & Bredin, S. S. Health benefits of physical activity: a systematic review of current systematic reviews. Curr. Opin. Cardiol. 32, 541–556 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Bauman, A., Merom, D., Bull, F. C., Buchner, D. M. & Fiatarone Singh, M. A. Updating the evidence for physical activity: summative reviews of the epidemiological evidence, prevalence, and interventions to promote “active aging”. Gerontologist 56, S268–S280 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Blondell, S. J., Hammersley-Mather, R. & Veerman, J. L. Does physical activity prevent cognitive decline and dementia? A systematic review and meta-analysis of longitudinal studies. BMC Public Health 14, 510 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Rebar, A. L. et al. A meta-meta-analysis of the effect of physical activity on depression and anxiety in non-clinical adult populations. Health Psychol. Rev. 9, 366–378 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Allen, M. S. & Walter, E. E. Health-related lifestyle factors and sexual dysfunction: a meta-analysis of population-based research. J. Sex. Med. 15, 458–475 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Corona, G. et al. Erectile dysfunction and central obesity: an Italian perspective. Asian J. Androl. 16, 581–591 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Ning, L. & Yang, L. Hypertension might be a risk factor for erectile dysfunction: a meta-analysis. Andrologia 49, e12644 (2017).

    Article  Google Scholar 

  30. 30.

    Besiroglu, H., Otunctemur, A. & Ozbek, E. The relationship between metabolic syndrome, its components, and erectile dysfunction: a systematic review and a meta-analysis of observational studies. J. Sex. Med. 12, 1309–1318 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Vlachopoulos, C. V., Terentes-Printzios, D. G., Ioakeimidis, N. K., Aznaouridis, K. A. & Stefanadis, C. I. Prediction of cardiovascular events and all-cause mortality with erectile dysfunction: a systematic review and meta-analysis of cohort studies. Circ. Cardiovasc. Qual. Outcomes 6, 99–109 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Dong, J. Y., Zhang, Y. H. & Qin, L. Q. Erectile dysfunction and risk of cardiovascular disease: meta-analysis of prospective cohort studies. J. Am. Coll. Cardiol. 58, 1378–1385 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Fan, Y., Hu, B., Man, C. & Cui, F. Erectile dysfunction and risk of cardiovascular and all-cause mortality in the general population: a meta-analysis of cohort studies. World J. Urol. 36, 1681–1689 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Kouidrat, Y. et al. High prevalence of erectile dysfunction in diabetes: a systematic review and meta-analysis of 145 studies. Diabet. Med. 34, 1185–1192 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Guh, D. P. et al. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health 9, 88 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Wilmot, E. G. et al. Sedentary time in adults and the association with diabetes, cardiovascular disease and death: systematic review and meta-analysis. Diabetologia 55, 2895–2905 (2012).

    CAS  Article  Google Scholar 

  37. 37.

    Carter, P., Gray, L. J., Troughton, J., Khunti, K. & Davies, M. J. Fruit and vegetable intake and incidence of type 2 diabetes mellitus: systematic review and meta-analysis. BMJ 34, c4229 (2010).

    Article  Google Scholar 

  38. 38.

    Ioakeimidis, N. & Kostis, J. B. Pharmacologic therapy for erectile dysfunction and its interaction with the cardiovascular system. J. Cardiovasc. Pharmacol. Ther. 19, 53–64 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Maiorino, M. I., Bellastella, G. & Esposito, K. Lifestyle modifications and erectile dysfunction: what can be expected? Asian J. Androl 17, 5–10 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Gupta, B. P. et al. The effect of lifestyle modification and cardiovascular risk factor reduction on erectile dysfunction: a systematic review and meta-analysis. Arch. Intern. Med. 171, 1797–1803 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Maiorino, M. I. et al. Effects of Mediterranean diet on sexual function in people with newly diagnosed type 2 diabetes: the MÈDITA trial. J. Diabetes Complicat. 30, 1519–1524 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Esfahani, S. B. & Pal, S. Obesity, mental health, and sexual dysfunction: a critical review. Health Psychol. Open 5, 2055102918786867 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Moran, L. J. et al. Long-term effects of a randomised controlled trial comparing high protein or high carbohydrate weight loss diets on testosterone, SHBG, erectile and urinary function in overweight and obese men. PLOS ONE 11, e0161297 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  44. 44.

    Silva, A. B., Sousa, N., Azevedo, L. F. & Martins, C. Physical activity and exercise for erectile dysfunction: systematic review and meta-analysis. Br. J. Sports Med. 51, 1419–1424 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Gerbild, H., Larsen, C. M., Graugaard, C. & Josefsson, K. A. Physical activity to improve erectile function: a systematic review of intervention studies. Sex. Med. 6, 75–89 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Maio, G., Saraeb, S. & Marchiori, A. Physical activity and PDE5 inhibitors in the treatment of erectile dysfunction: results of a randomized controlled study. J. Sex. Med. 7, 2201–2208 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    La Vignera, S., Condorelli, R., Vicari, E., D’agata, R. & Calogero, A. Aerobic physical activity improves endothelial function in the middle-aged patients with erectile dysfunction. Aging Male 14, 265–272 (2011).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  48. 48.

    Khoo, J. et al. Comparing effects of low-and high-volume moderate-intensity exercise on sexual function and testosterone in obese men. J. Sex. Med. 10, 1823–1832 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Esposito, K. et al. Effects of intensive lifestyle changes on erectile dysfunction in men. J. Sex. Med. 6, 243–250 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Kalka, D. et al. Association between physical exercise and quality of erection in men with ischaemic heart disease and erectile dysfunction subjected to physical training. Kardiol. Pol. 71, 573–580 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  51. 51.

    Kalka, D. et al. Effect of endurance cardiovascular training intensity on erectile dysfunction severity in men with ischemic heart disease. Am. J. Mens. Health 9, 360–369 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    Kalka, D. et al. Heart rate recovery, cardiac rehabilitation and erectile dysfunction in males with ischaemic heart disease. Anatol. J. Cardiol. 16, 256–263 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Lamina, S., Okoye, C. G. & Dagogo, T. T. Therapeutic effect of an interval exercise training program in the management of erectile dysfunction in hypertensive patients. J. Clin. Hypertens. 11, 125–129 (2009).

    Article  Google Scholar 

  54. 54.

    Maresca, L. et al. Exercise training improves erectile dysfunction (ED) in patients with metabolic syndrome on phosphodiesterase-5 (PDE-5) inhibitors. Monaldi Arch. Chest Dis. 80, 177–183 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    Begot, I. et al. A home-based walking program improves erectile dysfunction in men with an acute myocardial infarction. Am. J. Cardiol. 115, 571–575 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  56. 56.

    Gillespie, L. D. et al. Interventions for preventing falls in older people living in the community. Cochrane Database Syst. Rev. 9, CD007146 (2012).

    Google Scholar 

  57. 57.

    Andersson, K. E. & Wagner, G. Physiology of penile erection. Physiol. Rev. 75, 191–236 (1995).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. 58.

    Burnett, A. L., Lowenstein, C. J., Bredt, D. S., Chang, T. S. & Snyder, S. H. Nitric oxide: a physiologic mediator of penile erection. Science 257, 401–403 (1992).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. 59.

    Hawley, J. A., Hargreaves, M., Joyner, M. J. & Zierath, J. R. Integrative biology of exercise. Cell 159, 738–749 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. 60.

    Neufer, P. D. et al. Understanding the cellular and molecular mechanisms of physical activity-induced health benefits. Cell Metab. 22, 4–11 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. 61.

    Calvert, J. W. & Lefer, D. J. Role of β-adrenergic receptors and nitric oxide signaling in exercise-mediated cardioprotection. Physiology 28, 216–224 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Akita, Y. et al. Exercise-induced activation of cardiac sympathetic nerve triggers cardioprotection via redox-sensitive activation of eNOS and upregulation of iNOS. Am. J. Physiol. Heart Circ. Physiol. 292, H2051–H2059 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  63. 63.

    Jungersten, L., Ambring, A., Wall, B. & Wennmalm, A. Both physical fitness and acute exercise regulate nitric oxide formation in healthy humans. J. Appl. Physiol. 82, 760–764 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  64. 64.

    Förstermann, U. & Sessa, W. C. Nitric oxide synthases: regulation and function. Eur. Heart J. 33, 829–837 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  65. 65.

    Anderson, T. J. Assessment and treatment of endothelial dysfunction in humans. J. Am. Coll. Cardiol. 34, 631–638 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  66. 66.

    Moyna, N. M. & Thompson, P. D. The effect of physical activity on endothelial function in man. Acta Physiol. Scand. 180, 113–123 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  67. 67.

    Esposito, K. et al. Effect of a Mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: a randomized trial. JAMA 292, 1440–1446 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  68. 68.

    Woodman, C. R., Muller, J. M., Laughlin, M. H. & Price, E. M. Induction of nitric oxide synthase mRNA in coronary resistance arteries isolated from exercise-trained pigs. Am. J. Physiol. Heart Circ. Physiol. 273, H2575–H2579 (1997).

    CAS  Article  Google Scholar 

  69. 69.

    Green, D. J., Maiorana, A., O’Driscoll, G. & Taylor, R. Effect of exercise training on endothelium-derived nitric oxide function in humans. J. Physiol. 561, 1–25 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. 70.

    Hambrecht, R. et al. Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase. Circulation 107, 3152–3158 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. 71.

    Travison, T. G. et al. Harmonized reference ranges for circulating testosterone levels in men of four cohort studies in the United States and Europe. J. Clin. Endocrinol. Metab. 102, 1161–1173 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  72. 72.

    Isidori, A. M. et al. A critical analysis of the role of testosterone in erectile function: from pathophysiology to treatment—a systematic review. Eur. Urol. 65, 99–112 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  73. 73.

    Elkhoury, F. F., Rambhatla, A., Mills, J. N. & Rajfer, J. Cardiovascular health, erectile dysfunction, and testosterone replacement: controversies and correlations. Urology 110, 1–8 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  74. 74.

    Lugg, J. A., Ng, C. H., Rajfer, J. A. & Gonzalez-Cadavid, N. E. Cavernosal nerve stimulation in the rat reverses castration-induced decrease in penile NOS activity. Am. J. Physiol. 271, E354–E361 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  75. 75.

    Travison, T. G., Araujo, A. B., Kupelian, V., O’Donnell, A. B. & McKinlay, J. B. The relative contributions of aging, health, and lifestyle factors to serum testosterone decline in men. J. Clin. Endocrinol. Metab. 92, 549–555 (2006).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  76. 76.

    Svartberg, J. et al. The associations of age, lifestyle factors and chronic disease with testosterone in men: the Tromso Study. Eur. J. Endocrinol. 149, 145–152 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  77. 77.

    Corona, G. et al. Body weight loss reverts obesity-associated hypogonadotropic hypogonadism: a systematic review and meta-analysis. Eur. J. Endocrinol. 168, 829–843 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  78. 78.

    MacDonald, A. A., Herbison, G. P., Showell, M. & Farquhar, C. M. The impact of body mass index on semen parameters and reproductive hormones in human males: a systematic review with meta-analysis. Hum. Reprod. Update 16, 293–311 (2009).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  79. 79.

    Rossow, L. M., Fukuda, D. H., Fahs, C. A., Loenneke, J. P. & Stout, J. R. Natural bodybuilding competition preparation and recovery: a 12-month case study. Int. J. Sport Physiol. 8, 582–592 (2013).

    Google Scholar 

  80. 80.

    Hooper, D. R. et al. Endocrinological roles for testosterone in resistance exercise responses and adaptations. Sports Med. 47, 1709–1720 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  81. 81.

    Slimani, M. et al. Hormonal responses to striking combat sports competition: a systematic review and meta-analysis. Biol. Sport 35, 121–136 (2018).

    PubMed  PubMed Central  Google Scholar 

  82. 82.

    Geniole, S. N., Bird, B. M., Ruddick, E. L. & Carré, J. M. Effects of competition outcome on testosterone concentrations in humans: an updated meta-analysis. Horm. Behav. 92, 37–50 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  83. 83.

    Salvador, A. & Costa, R. Coping with competition: neuroendocrine responses and cognitive variables. Neurosci. Biobehav. Rev. 33, 160–170 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  84. 84.

    Wood, R. I. & Stanton, S. J. Testosterone and sport: current perspectives. Horm. Behav. 61, 147–155 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  85. 85.

    Ronay, R. & Hippel, W. V. The presence of an attractive woman elevates testosterone and physical risk taking in young men. Soc. Psychol. Personal. Sci. 1, 57–64 (2010).

    Google Scholar 

  86. 86.

    Gonzalez-Bono, E., Salvador, A., Ricarte, J., Serrano, M. A. & Arnedo, M. Testosterone and attribution of successful competition. Aggress. Behav. 26, 235–240 (2000).

    CAS  Article  Google Scholar 

  87. 87.

    Carré, J. M. No place like home: testosterone responses to victory depend on game location. Am. J. Hum. Biol. 21, 392–394 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  88. 88.

    Allen, M. S. & Jones, M. V. The “home advantage” in athletic competitions. Curr. Dir. Psychol. Sci. 23, 48–53 (2014).

    Article  Google Scholar 

  89. 89.

    Ahtiainen, J. P. et al. Effects of resistance training on testosterone metabolism in younger and older men. Exp. Gerontol. 69, 148–158 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  90. 90.

    Ponholzer, A. et al. Prevalence and risk factors for erectile dysfunction in 2869 men using a validated questionnaire. Eur. Urol. 47, 80–86 (2005).

    PubMed  Article  PubMed Central  Google Scholar 

  91. 91.

    Liu, Q. et al. Erectile dysfunction and depression: a systematic review and meta-analysis. J. Sex. Med. 15, 1073–1082 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  92. 92.

    Hedon, F. Anxiety and erectile dysfunction: a global approach to ED enhances results and quality of life. Int. J. Impot. Res. 15, S16–S19 (2003).

    PubMed  Article  PubMed Central  Google Scholar 

  93. 93.

    Schuch, F. B. et al. Physical activity and incident depression: a meta-analysis of prospective cohort studies. Am. J. Psychiatry 175, 631–648 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  94. 94.

    Allen, M. S., Walter, E. E. & Swann, C. Sedentary behaviour and risk of anxiety: a systematic review and meta-analysis. J. Affect. Disord. 242, 5–13 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  95. 95.

    De Moor, M. H., Boomsma, D. I., Stubbe, J. H., Willemsen, G. & de Geus, E. J. Testing causality in the association between regular exercise and symptoms of anxiety and depression. Arch. Gen. Psychiatry 65, 897–905 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  96. 96.

    Stubbs, B. et al. An examination of the anxiolytic effects of exercise for people with anxiety and stress-related disorders: a meta-analysis. Psychiatry Res. 249, 102–108 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  97. 97.

    Rosenbaum, S. et al. Physical activity in the treatment of post-traumatic stress disorder: a systematic review and meta-analysis. Psychiatry Res. 230, 130–136 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  98. 98.

    Steptoe, A. & Kivimäki, M. Stress and cardiovascular disease. Nat. Rev. Cardiol. 9, 360–370 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  99. 99.

    Brotman, D. J., Golden, S. H. & Wittstein, I. S. The cardiovascular toll of stress. Lancet 370, 1089–1100 (2007).

    Article  Google Scholar 

  100. 100.

    Black, P. H. The inflammatory response is an integral part of the stress response: implications for atherosclerosis, insulin resistance, type II diabetes and metabolic syndrome X. Brain Behav. Immun. 17, 350–364 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  101. 101.

    Kobori, Y. et al. The relationship of serum and salivary cortisol levels to male sexual dysfunction as measured by the international index of erectile function. Int. J. Impot. Res. 21, 207–212 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  102. 102.

    Brumby, S. et al. The effect of physical activity on psychological distress, cortisol and obesity: results of the farming fit intervention program. BMC Public Health 13, 1018 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  103. 103.

    Reed, J. & Buck, S. The effect of regular aerobic exercise on positive-activated affect: a meta-analysis. Psychol. Sport Exerc. 10, 581–594 (2009).

    Article  Google Scholar 

  104. 104.

    Ekkekakis, P., Parfitt, G. & Petruzzello, S. J. The pleasure and displeasure people feel when they exercise at different intensities. Sports Med. 41, 641–671 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  105. 105.

    Alderman, B. L., Arent, S. M., Landers, D. M. & Rogers, T. J. Aerobic exercise intensity and time of stressor administration influence cardiovascular responses to psychological stress. Psychophysiology 44, 759–766 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  106. 106.

    Goldfarb, A. H. & Jamurtas, A. Z. β-Endorphin response to exercise. Sports Med. 24, 8–16 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  107. 107.

    Chaouloff, F. Effects of acute physical exercise on central serotonergic systems. Med. Sci. Sport Exerc. 29, 58–62 (1997).

    CAS  Article  Google Scholar 

  108. 108.

    Landers, D. M., Arent, S. M. in Handbook of Sport Psychology (eds Tenenbaum, G. & Eklund, R. C.) 3rd edn 469–491 (Wiley, 2007).

  109. 109.

    Fabbri, A. et al. Endorphins in male impotence: evidence for naltrexone stimulation of erectile activity in patient therapy. Psychoneuroendocrinology 14, 103–111 (1989).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  110. 110.

    Bala, A., Nguyen, H. M. & Hellstrom, W. J. Post-SSRI sexual dysfunction: a literature review. Sex. Med. Rev. 6, 29–34 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  111. 111.

    Woertman, L. & Van den Brink, F. Body image and female sexual functioning and behavior: a review. J. Sex. Res. 49, 184–211 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  112. 112.

    Stanton, A. M., Handy, A. B. & Meston, C. M. The effects of exercise on sexual function in women. Sex. Med. Rev. 6, 548–557 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  113. 113.

    Barlow, D. H. Causes of sexual dysfunction: the role of anxiety and cognitive interference. J. Consult. Clin. Psych 54, 140–148 (1986).

    CAS  Google Scholar 

  114. 114.

    Blashill, A. J. et al. Body dissatisfaction among sexual minority men: psychological and sexual health outcomes. Arch. Sex. Behav. 45, 1241–1247 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  115. 115.

    Sabiston, C. M., Pila, E., Vani, M. & Thogersen-Ntoumani, C. Body image, physical activity and sport: a scoping review. Psychol. Sport Exerc. 42, 48–57 (2019).

    Article  Google Scholar 

  116. 116.

    Hausenblas, H. A. & Fallon, E. A. Exercise and body image: a meta-analysis. Psychol. Health 21, 33–47 (2006).

    Article  Google Scholar 

  117. 117.

    Campbell, A. & Hausenblas, H. A. Effects of exercise interventions on body image: a meta-analysis. J. Health Psychol. 14, 780–793 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  118. 118.

    Frederick, D. A. et al. Desiring the muscular ideal: men’s body satisfaction in the United States, Ukraine, and Ghana. Psychol. Men Masc. 8, 103–117 (2007).

    Article  Google Scholar 

  119. 119.

    Waldorf, M., Erkens, N., Vocks, S., McCreary, D. R. & Cordes, M. A single bout of resistance training improves state body image in male weight-trainers. Sport Exerc. Perform. Psychol. 6, 53–69 (2017).

    Google Scholar 

  120. 120.

    SantaBarbara, N. J., Whitworth, J. W. & Ciccolo, J. T. A systematic review of the effects of resistance training on body image. J. Strength Cond. Res. 31, 2880–2888 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  121. 121.

    World Health Organization. Global recommendations on physical activity for health (WHO, 2010).

  122. 122.

    Picorelli, A. M., Pereira, L. S., Pereira, D. S., Felício, D. & Sherrington, C. Adherence to exercise programs for older people is influenced by program characteristics and personal factors: a systematic review. J. Physiother. 60, 151–156 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  123. 123.

    Jansons, P. S., Haines, T. P. & O’Brien, L. Interventions to achieve ongoing exercise adherence for adults with chronic health conditions who have completed a supervised exercise program: systematic review and meta-analysis. Clin. Rehabil. 31, 465–477 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  124. 124.

    Posner, J. D. et al. Low to moderate intensity endurance training in healthy older adults: physiological responses after four months. J. Am. Geriatr. Soc. 40, 1–7 (1992).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  125. 125.

    Melanson, E. L. & Freedson, P. S. The effect of endurance training on resting heart rate variability in sedentary adult males. Eur. J. Appl. Physiol. 85, 442–449 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  126. 126.

    Abe, T., Kojima, K., Kearns, C. F., Yohena, H. & Fukuda, J. Whole body muscle hypertrophy from resistance training: distribution and total mass. Br. J. Sports Med. 37, 543–545 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  127. 127.

    Chekroud, S. R. et al. Association between physical exercise and mental health in 1·2 million individuals in the USA between 2011 and 2015: a cross-sectional study. Lancet Psychiatry 5, 739–746 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  128. 128.

    Maso, F., Lac, G., Filaire, E., Michaux, O. & Robert, A. Salivary testosterone and cortisol in rugby players: correlation with psychological overtraining items. Br. J. Sports Med. 38, 260–263 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  129. 129.

    Lee, I. M. & Buchner, D. M. The importance of walking to public health. Med. Sci. Sports Exerc. 40, S512–S518 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  130. 130.

    Padilla, J., Harris, R. A., Rink, L. D. & Wallace, J. P. Characterization of the brachial artery shear stress following walking exercise. Vasc. Med. 13, 105–111 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  131. 131.

    Jones, T. W., Howatson, G., Russell, M. & French, D. N. Performance and endocrine responses to differing ratios of concurrent strength and endurance training. J. Strength Cond. Res. 30, 693–702 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  132. 132.

    Fry, A. C. & Kraemer, W. J. Resistance exercise overtraining and overreaching. Sports Med. 23, 106–129 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  133. 133.

    Schoenfeld, B. J., Ogborn, D. & Krieger, J. W. Effects of resistance training frequency on measures of muscle hypertrophy: a systematic review and meta-analysis. Sports Med. 46, 1689–1697 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  134. 134.

    Steib, S., Schoene, D. & Pfeifer, K. Dose-response relationship of resistance training in older adults: a meta-analysis. Med. Sci. Sports Exerc. 42, 902–914 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  135. 135.

    Padilla, J. et al. Vascular effects of exercise: endothelial adaptations beyond active muscle beds. Physiology 26, 132–145 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  136. 136.

    Churchward-Venne, T. A. et al. There are no nonresponders to resistance-type exercise training in older men and women. J. Am. Med. Dir. Assoc. 16, 400–411 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  137. 137.

    Woodward, T. W. A review of the effects of martial arts practice on health. WMJ 108, 40–43 (2009).

    PubMed  PubMed Central  Google Scholar 

  138. 138.

    Sabiston, C. M. et al. Number of years of team and individual sport participation during adolescence and depressive symptoms in early adulthood. J. Sport Exerc. Psychol. 38, 105–110 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  139. 139.

    Thompson Coon, J. et al. Does participating in physical activity in outdoor natural environments have a greater effect on physical and mental wellbeing than physical activity indoors? A systematic review. Environ. Sci. Technol. 45, 1761–1772 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  140. 140.

    White, M. et al. Blue space: the importance of water for preference, affect, and restorativeness ratings of natural and built scenes. J. Environ. Psychol. 30, 482–493 (2010).

    Article  Google Scholar 

  141. 141.

    Gidlow, C., Johnston, L. H., Crone, D. & James, D. Attendance of exercise referral schemes in the UK: a systematic review. Health Educ. J. 64, 168–186 (2005).

    Article  Google Scholar 

  142. 142.

    Craft, L. L. et al. Exercise effects on depressive symptoms in cancer survivors: a systematic review and meta-analysis. Cancer Epidemiol. Biomarkers Prev. 21, 3–19 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  143. 143.

    Foster, C. et al. A new approach to monitoring exercise training. J. Strength Cond. Res. 15, 109–115 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. 144.

    Bhasin, S. et al. The effects of supraphysiologic doses of testosterone on muscle size and strength in normal men. N. Engl. J. Med. 335, 1–7 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  145. 145.

    Fisher, A. J., Medaglia, J. D. & Jeronimus, B. F. Lack of group-to-individual generalizability is a threat to human subjects research. Proc. Natl Acad. Sci. USA 115, E6106–E6115 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  146. 146.

    Allen, M. S. & Laborde, S. The role of personality in sport and physical activity. Curr. Dir. Psychol. Sci. 23, 460–465 (2014).

    Article  Google Scholar 

  147. 147.

    Bauman, A. E. et al. Correlates of physical activity: why are some people physically active and others not? Lancet 380, 258–271 (2012).

    Article  Google Scholar 

Download references

Peer review information

Nature Reviews Urology thanks A. Seftel, P. Jern and K. A. Josefsson for their contribution to the peer review of this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mark S. Allen.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Allen, M.S. Physical activity as an adjunct treatment for erectile dysfunction. Nat Rev Urol 16, 553–562 (2019). https://doi.org/10.1038/s41585-019-0210-6

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing