Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Merging new-age biomarkers and nanodiagnostics for precision prostate cancer management

Abstract

The accurate identification and stratified treatment of clinically significant early-stage prostate cancer have been ongoing concerns since the outcomes of large international prostate cancer screening trials were reported. The controversy surrounding clinical and cost benefits of prostate cancer screening has highlighted the lack of strategies for discriminating high-risk disease (that requires early treatment) from low-risk disease (that could be managed using watchful waiting or active surveillance). Advances in molecular subtyping and multiomics nanotechnology-based prostate cancer risk delineation can enable refinement of prostate cancer molecular taxonomy into clinically meaningful and treatable subtypes. Furthermore, the presence of intertumoural and intratumoural heterogeneity in prostate cancer warrants the development of novel nanodiagnostic technologies to identify clinically significant prostate cancer in a rapid, cost-effective and accurate manner. Circulating and urinary next-generation prostate cancer biomarkers for disease molecular subtyping and the newest complementary nanodiagnostic platforms for enhanced biomarker detection are promising tools for precision prostate cancer management. However, challenges in merging both aspects and clinical translation still need to be overcome.

Key points

  • The accurate identification and personalized treatment of high-grade, clinically significant prostate cancer have been ongoing concerns since the outcomes of large international prostate cancer screening trials were published.

  • The combination of next-generation prostate cancer biomarker discoveries and the emergence of companion nanodiagnostic technologies could lead to a new era of precision prostate cancer management.

  • In-depth profiling of prostate cancer has resulted in the discovery of next-generation biomarkers such as TMPRSS2–ETS fusion genes, PCA3 and SCHLAP1, which could improve molecular subtyping and risk stratification.

  • Evolving nanotechnologies such as novel nanomaterials and nanoparticles might benefit clinical translation of next-generation prostate cancer biomarkers by improving detection speed and sensitivity for development of point-of-care diagnostics.

  • Challenges for translating both novel biomarkers and nanotechnology platforms into the clinic still need to be overcome by bridging the gap between clinical and diagnostic disciplines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A potential future of diagnostic miniaturization.
Fig. 2: Miniaturized integrated systems.

Similar content being viewed by others

References

  1. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin. 68, 7–30 (2018).

    PubMed  Google Scholar 

  2. DeSantis, C. E. et al. Cancer statistics for African Americans, 2016: progress and opportunities in reducing racial disparities. CA Cancer J. Clin. 66, 290–308 (2016).

    PubMed  Google Scholar 

  3. Quigley, D. A. et al. Genomic hallmarks and structural variation in metastatic prostate cancer. Cell 174, 758–769 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Robinson, D. et al. Integrative clinical genomics of advanced prostate cancer. Cell 161, 1215–1228 (2015). This cohort study provides multi-institutional clinical sequencing information that could effect treatment decisions for patients with metastatic CRPC.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Robinson, D. R. et al. Integrative clinical genomics of metastatic cancer. Nature 548, 297–303 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Gundem, G. et al. The evolutionary history of lethal metastatic prostate cancer. Nature 520, 353–357 (2015). This study details the complex patterns of metastatic spread arising from prostate tumours in ten patients.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Beltran, H. et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat. Med. 22, 298–305 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Fraser, M. et al. Genomic hallmarks of localized, non-indolent prostate cancer. Nature 541, 359–364 (2017).

    CAS  PubMed  Google Scholar 

  9. Hong, M. K. H. et al. Tracking the origins and drivers of subclonal metastatic expansion in prostate cancer. Nat. Commun. 6, 6605 (2015).

    CAS  PubMed  Google Scholar 

  10. Kumar, A. et al. Substantial interindividual and limited intraindividual genomic diversity among tumors from men with metastatic prostate cancer. Nat. Med. 22, 369–378 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Smith, B. A. et al. A basal stem cell signature identifies aggressive prostate cancer phenotypes. Proc. Natl Acad. Sci. USA 112, E6544–E6552 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Carreira, S. et al. Tumor clone dynamics in lethal prostate cancer. Sci. Transl Med. 6, 254ra125 (2014).

    PubMed  PubMed Central  Google Scholar 

  13. Barbieri, C. E. et al. The mutational landscape of prostate cancer. Eur. Urol. 64, 567–576 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Taylor, R. A. et al. Germline BRCA2 mutations drive prostate cancers with distinct evolutionary trajectories. Nat. Commun. 8, 13671 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Spratt, D. E., Zumsteg, Z. S., Feng, F. Y. & Tomlins, S. A. Translational and clinical implications of the genetic landscape of prostate cancer. Nat. Rev. Clin. Oncol. 13, 597–610 (2016). This is a review of molecular prostate cancer drivers and remaining clinical translation challenges.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Schumacher, F. R. et al. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat. Genet. 50, 928–936 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Mijuskovic, M. et al. Rare germline variants in DNA repair genes and the angiogenesis pathway predispose prostate cancer patients to develop metastatic disease. Br. J. Cancer 119, 96–104 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wedge, D. C. et al. Sequencing of prostate cancers identifies new cancer genes, routes of progression and drug targets. Nat. Genet. 50, 682–692 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Attard, G. & Beltran, H. Prioritizing precision medicine for prostate cancer. Ann. Oncol. 26, 1041–1042 (2015).

    CAS  PubMed  Google Scholar 

  20. Irshad, S. et al. A molecular signature predictive of indolent prostate cancer. Sci. Transl Med. 5, 202ra122 (2013).

    PubMed  PubMed Central  Google Scholar 

  21. Polascik, T. J., Oesterling, J. E. & Partin, A. W. Prostate specific antigen: a decade of discovery -what we have learned and where we are going. J. Urol. 162, 293–306 (1999).

    CAS  PubMed  Google Scholar 

  22. Catalona, W. J. et al. Measurement of prostate-specific antigen in serum as a screening-test for prostate cancer. N. Engl. J. Med. 324, 1156–1161 (1991).

    CAS  PubMed  Google Scholar 

  23. Bibbins-Domingo, K., Grossman, D. C. & Curry, S. J. The US preventive services task force 2017 draft recommendation statement on screening for prostate cancer: an invitation to review and comment. JAMA 317, 1949–1950 (2017).

    PubMed  Google Scholar 

  24. Pinsky, P. F., Prorok, P. C. & Kramer, B. S. Prostate cancer screening -a perspective on the current state of the evidence. N. Engl. J. Med. 376, 1285–1289 (2017).

    PubMed  Google Scholar 

  25. Schroeder, F. H. et al. Screening and prostate-cancer mortality in a randomized European study. N. Engl. J. Med. 360, 1320–1328 (2009).

    CAS  Google Scholar 

  26. Andriole, G. L. et al. Mortality results from a randomized prostate-cancer screening trial. N. Engl. J. Med. 360, 1310–1319 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Schroder, F. H. et al. Screening and prostate cancer mortality: results of the European randomised study of screening for prostate cancer (ERSPC) at 13 years of follow-up. Lancet 384, 2027–2035 (2014).

    PubMed  PubMed Central  Google Scholar 

  28. Andriole, G. L. et al. Prostate cancer screening in the randomized prostate, lung, colorectal, and ovarian cancer screening trial: mortality results after 13 years of follow-up. J. Natl Cancer Inst. 104, 125–132 (2012).

    PubMed  PubMed Central  Google Scholar 

  29. Pinsky, P. F. et al. Extended mortality results for prostate cancer screening in the PLCO trial with median follow-up of 15 years. Cancer 123, 592–599 (2017).

    PubMed  Google Scholar 

  30. Tsodikov, A. et al. Reconciling the effects of screening on prostate cancer mortality in the ERSPC and PLCO trials. Ann. Intern. Med. 167, 449–455 (2017).

    PubMed  PubMed Central  Google Scholar 

  31. Shoag, J. E., Mittal, S. & Hu, J. C. Reevaluating PSA testing rates in the PLCO trial. N. Engl. J. Med. 374, 1795–1796 (2016).

    PubMed  Google Scholar 

  32. Pinsky, P. F. et al. Assessing contamination and compliance in the prostate component of the prostate, lung, colorectal, and ovarian (PLCO) cancer screening trial. Clin. Trials 7, 303–311 (2010).

    PubMed  Google Scholar 

  33. Moyer, V. A. U.S. Preventive Services Task Force. Screening for prostate cancer: U. S. Preventive Services Task Force recommendation statement. Ann. Intern. Med. 157, 120–134 (2012).

    PubMed  Google Scholar 

  34. Jemal, A. et al. Prostate cancer incidence and PSA testing patterns in relation to USPSTF screening recommendations. JAMA 314, 2054–2061 (2015).

    CAS  PubMed  Google Scholar 

  35. Sammon, J. D. et al. Prostate-specific antigen screening after 2012 US preventive services task force recommendations. JAMA 314, 2075–2077 (2015).

    Google Scholar 

  36. Kearns, J. T. et al. PSA screening, prostate biopsy, and treatment of prostate cancer in the years surrounding the USPSTF recommendation against prostate cancer screening. Cancer 124, 2733–2739 (2018).

    PubMed  Google Scholar 

  37. Weiner, A. B., Matulewicz, R. S., Eggener, S. E. & Schaeffer, E. M. Increasing incidence of metastatic prostate cancer in the United States (2004–2013). Prostate Cancer Prostatic Dis. 19, 395–397 (2016).

    CAS  PubMed  Google Scholar 

  38. U.S. Preventive Services Task Force et al. Screening for prostate cancer: US Preventive Services Task Force recommendation statement. JAMA 319, 1901–1913 (2018).

  39. Carter, H. B. et al. Early detection of prostate cancer: AUA guideline. J. Urol. 190, 419–426 (2013).

    PubMed  PubMed Central  Google Scholar 

  40. Gandaglia, G. et al. The problem is not what to do with indolent and harmless prostate cancer-the problem is how to avoid finding these cancers. Eur. Urol. 70, 547–548 (2016).

    PubMed  Google Scholar 

  41. Hudis, C. A. Trastuzumab — mechanism of action and use in clinical practice. N. Engl. J. Med. 357, 39–51 (2007).

    CAS  PubMed  Google Scholar 

  42. Carlsson, S. V. & Kattan, M. W. Prostate cancer: personalized risk — stratified screening or abandoning it altogether? Nat. Rev. Clin. Oncol. 13, 140–142 (2016).

    CAS  PubMed  Google Scholar 

  43. Grasso, C. S. et al. Integrative molecular profiling of routine clinical prostate cancer specimens. Ann. Oncol. 26, 1110–1118 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Abeshouse, A. et al. The molecular taxonomy of primary prostate cancer. Cell 163, 1011–1025 (2015). This is a comprehensive molecular analysis of molecular heterogeneity among primary prostate cancers.

    CAS  Google Scholar 

  45. Tomlins, S. A. et al. Characterization of 1577 primary prostate cancers reveals novel biological and clinicopathologic insights into molecular subtypes. Eur. Urol. 68, 555–567 (2015).

    PubMed  PubMed Central  Google Scholar 

  46. Kaffenberger, S. D. & Barbieri, C. E. Molecular subtyping of prostate cancer. Curr. Opin. Urol. 26, 213–218 (2016).

    PubMed  PubMed Central  Google Scholar 

  47. Paulo, P. et al. Molecular subtyping of primary prostate cancer reveals specific and shared target genes of different ETS rearrangements. Neoplasia 14, 600–611 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Smith, S. C. & Tomlins, S. A. Prostate cancer subtyping biomarkers and outcome: is clarity emerging? Clin. Cancer Res. 20, 4733–4736 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Na, R. et al. Germline mutations in ATM and BRCA1/2 distinguish risk for lethal and indolent prostate cancer and are associated with early age at death. Eur. Urol. 71, 740–747 (2017).

    CAS  PubMed  Google Scholar 

  50. Gronberg, H. et al. Prostate cancer screening in men aged 50–69 years (STHLM3): a prospective population-based diagnostic study. Lancet Oncol. 16, 1667–1676 (2015). This is a biomarker-based screening model to examine individualized risk prediction of high-grade prostate cancer in the Swedish population.

    PubMed  Google Scholar 

  51. Ström, P. et al. The Stockholm-3 model for prostate cancer detection: algorithm update, biomarker contribution, and reflex test potential. Eur. Urol. 74, 204–210 (2018).

    PubMed  Google Scholar 

  52. Barbieri, C. E., Chinnaiyan, A. M., Lerner, S. P., Swanton, C. & Rubin, M. A. The emergence of precision urologic oncology: a collaborative review on biomarker-driven therapeutics. Eur. Urol. 71, 237–246 (2017).

    PubMed  Google Scholar 

  53. Prensner, J. R., Rubin, M. A., Wei, J. T. & Chinnaiyan, A. M. Beyond PSA: the next generation of prostate cancer biomarkers. Sci. Transl Med. 4, 127rv3 (2012). This paper provides an introduction to the use of next-generation prostate cancer biomarkers.

    PubMed  PubMed Central  Google Scholar 

  54. Dijkstra, S., Mulders, P. F. A. & Schalken, J. A. Clinical use of novel urine and blood based prostate cancer biomarkers: a review. Clin. Biochem. 47, 889–896 (2014).

    CAS  PubMed  Google Scholar 

  55. Wu, D. et al. Urinary biomarkers in prostate cancer detection and monitoring progression. Crit. Rev. Oncol. Hematol. 118, 15–26 (2017).

    PubMed  Google Scholar 

  56. Velonas, V. M., Woo, H. H., dos Remedios, C. G. & Assinder, S. J. Current status of biomarkers for prostate cancer. Int. J. Mol. Sci. 14, 11034–11060 (2013).

    PubMed  PubMed Central  Google Scholar 

  57. Jedinak, A. et al. Novel non-invasive biomarkers that distinguish between benign prostate hyperplasia and prostate cancer. BMC Cancer 15, 259 (2015).

    PubMed  PubMed Central  Google Scholar 

  58. Cuzick, J. et al. Prevention and early detection of prostate cancer. Lancet Oncol. 15, E484–E492 (2014).

    PubMed  PubMed Central  Google Scholar 

  59. Hessels, D. & Schalken, J. A. Urinary biomarkers for prostate cancer: a review. Asian J. Androl. 15, 333–339 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Narayan, V. M., Konety, B. R. & Warlick, C. Novel biomarkers for prostate cancer: an evidence-based review for use in clinical practice. Int. J. Urol. 24, 352–360 (2017).

    PubMed  Google Scholar 

  61. Ploussard, G. & de la Taille, A. Urine biomarkers in prostate cancer. Nat. Rev. Urol. 7, 101–109 (2010).

    CAS  PubMed  Google Scholar 

  62. Prensner, J. R. & Chinnaiyan, A. M. Oncogenic gene fusions in epithelial carcinomas. Curr. Opin. Genet. Dev. 19, 82–91 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kumar-Sinha, C., Kalyana-Sundaram, S. & Chinnaiyan, A. M. Landscape of gene fusions in epithelial cancers: seq and ye shall find. Genome Med. 7, 129 (2015).

    PubMed  PubMed Central  Google Scholar 

  64. Kumar-Sinha, C., Tomlins, S. A. & Chinnaiyan, A. M. Recurrent gene fusions in prostate cancer. Nat. Rev. Cancer 8, 497–511 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Edwards, P. A. W. Fusion genes and chromosome translocations in the common epithelial cancers. J. Pathol. 220, 244–254 (2010).

    CAS  PubMed  Google Scholar 

  66. Tomlins, S. A. et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310, 644–648 (2005).

    CAS  PubMed  Google Scholar 

  67. Paoloni-Giacobino, A., Chen, H. M., Peitsch, M. C., Rossier, C. & Antonarakis, S. E. Cloning of the TMPRSS2 gene, which encodes a novel serine protease with transmembrane, LDLRA, and SRCR domains and maps to 21q22.3. Genomics 44, 309–320 (1997).

    CAS  PubMed  Google Scholar 

  68. Wilson, S. et al. The membrane-anchored serine protease, TMPRSS2, activates PAR-2 in prostate cancer cells. Biochem. J. 388, 967–972 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Carver, B. S. et al. ETS rearrangements and prostate cancer initiation. Nature 457, E1 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Linn, D. E., Penney, K. L., Bronson, R. T., Mucci, L. A. & Li, Z. Deletion of interstitial genes between TMPRSS2 and ERG promotes prostate cancer progression. Cancer Res. 76, 1869–1881 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Clark, J. et al. Diversity of TMPRSS2-ERG fusion transcripts in the human prostate. Oncogene 26, 2667–2673 (2007).

    CAS  PubMed  Google Scholar 

  72. Clark, J. P. & Cooper, C. S. ETS gene fusions in prostate cancer. Nat. Rev. Urol. 6, 429–439 (2009).

    CAS  PubMed  Google Scholar 

  73. Barbieri, C. E. & Rubin, M. A. Genomic rearrangements in prostate cancer. Curr. Opin. Urol. 25, 71–76 (2015).

    PubMed  PubMed Central  Google Scholar 

  74. Mani, R. S. et al. Inflammation-induced oxidative stress mediates gene fusion formation in prostate cancer. Cell Rep. 17, 2620–2631 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Adamo, P. & Ladomery, M. R. The oncogene ERG: a key factor in prostate cancer. Oncogene 35, 403–414 (2016).

    CAS  PubMed  Google Scholar 

  76. Kron, K. J. et al. TMPRSS2-ERG fusion co-opts master transcription factors and activates NOTCH signaling in primary prostate cancer. Nat. Genet. 49, 1336–1345 (2017).

    CAS  PubMed  Google Scholar 

  77. Bose, R. et al. ERF mutations reveal a balance of ETS factors controlling prostate oncogenesis. Nature 546, 671–675 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Kim, J., Wu, L., Zhao, J. C., Jin, H. J. & Yu, J. TMPRSS2-ERG gene fusions induce prostate tumorigenesis by modulating microRNA miR-200c. Oncogene 33, 5183–5192 (2014).

    CAS  PubMed  Google Scholar 

  79. Wu, L. T. et al. ERG is a critical regulator of Wnt/LEF1 signaling in prostate cancer. Cancer Res. 73, 6068–6079 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Kedage, V. et al. An interaction with Ewing’s sarcoma breakpoint protein EWS defines a specific oncogenic mechanism of ETS factors rearranged in prostate cancer. Cell Rep. 17, 1289–1301 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Lucas, J. M. et al. The androgen-regulated protease TMPRSS2 activates a proteolytic cascade involving components of the tumor microenvironment and promotes prostate cancer metastasis. Cancer Discov. 4, 1310–1325 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Tian, T. V. et al. Identification of novel TMPRSS2: ERG mechanisms in prostate cancer metastasis: involvement of MMP9 and PLXNA2. Oncogene 33, 2204–2214 (2014).

    CAS  PubMed  Google Scholar 

  83. St. John, J., Powell, K., Conley-LaComb, M. K. & Chinni, S. R. TMPRSS2-ERG fusion gene expression in prostate tumor cells and its clinical and biological significance in prostate cancer progression. J. Cancer Sci. Ther. 4, 94–101 (2012).

    Google Scholar 

  84. Hu, Y. et al. Delineation of TMPRSS2-ERG splice variants in prostate cancer. Clin. Cancer Res. 14, 4719–4725 (2008).

    CAS  PubMed  Google Scholar 

  85. Mosquera, J. M. et al. Characterization of TMPRSS2-ERG fusion high-grade prostatic intraepithelial neoplasia and potential clinical implications. Clin. Cancer Res. 14, 3380–3385 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Attard, G. et al. Characterization of ERG, AR and PTEN gene status in circulating tumor cells from patients with castration-resistant prostate cancer. Cancer Res. 69, 2912–2918 (2009).

    CAS  PubMed  Google Scholar 

  87. Wang, X. J. et al. Development of peptidomimetic inhibitors of the ERG gene fusion product in prostate cancer. Cancer Cell 31, 532–548 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Chatterjee, P. et al. The TMPRSS2-ERG gene fusion blocks XRCC4-mediated nonhomologous end-joining repair and radiosensitizes prostate cancer cells to parp inhibition. Mol. Cancer Ther. 14, 1896–1906 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Furusato, B. et al. ERG oncoprotein expression in prostate cancer: clonal progression of ERG-positive tumor cells and potential for ERG-based stratification. Prostate Cancer Prostatic Dis. 13, 228–237 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. White, N. M., Feng, F. Y. & Maher, C. A. Recurrent rearrangements in prostate cancer: causes and therapeutic potential. Curr. Drug Targets 14, 450–459 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Hessels, D. & Schalken, J. A. Recurrent gene fusions in prostate cancer: their clinical implications and uses. Curr. Urol. Rep. 14, 214–222 (2013).

    PubMed  Google Scholar 

  92. Kissick, H. T., Sanda, M. G., Dunn, L. K. & Arredouani, M. S. Development of a peptide-based vaccine targeting TMPRSS2:ERG fusion-positive prostate cancer. Cancer Immunol. Immunother. 62, 1831–1840 (2013).

    CAS  PubMed  Google Scholar 

  93. Sanguedolce, F. et al. Urine TMPRSS2: ERG fusion transcript as a biomarker for prostate cancer: literature review. Clin. Genitourin. Cancer 14, 117–121 (2016).

    PubMed  Google Scholar 

  94. Wang, J. H., Cai, Y., Ren, C. X. & Ittmann, M. Expression of variant TMPRSS2/ERG fusion messenger RNAs is associated with aggressive prostate cancer. Cancer Res. 66, 8347–8351 (2006).

    CAS  PubMed  Google Scholar 

  95. Wang, J. H. et al. Pleiotropic biological activities of alternatively spliced TMPRSS2/ERG fusion gene transcripts. Cancer Res. 68, 8516–8524 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Park, K. et al. TMPRSS2:ERG gene fusion predicts subsequent detection of prostate cancer in patients with high-grade prostatic intraepithelial neoplasia. J. Clin. Oncol. 32, 206–211 (2014).

    PubMed  Google Scholar 

  97. Culig, Z. TMPRSS:ERG fusion in prostate cancer: from experimental approaches to prognostic studies. Eur. Urol. 66, 861–862 (2014).

    PubMed  Google Scholar 

  98. Young, A. et al. Correlation of urine TMPRSS2:ERG and PCA3 to ERG plus and total prostate cancer burden. Am. J. Clin. Pathol. 138, 685–696 (2012).

    PubMed  Google Scholar 

  99. Tomlins, S. A. et al. Urine TMPRSS2:ERG fusion transcript stratifies prostate cancer risk in men with elevated serum PSA. Sci. Transl. Med. 3, 94ra72 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. McKiernan, J. et al. A novel urine exosome gene expression assay to predict high-grade prostate cancer at initial biopsy. JAMA Oncol. 2, 882–889 (2016).

    PubMed  Google Scholar 

  101. Day, J. R., Jost, M., Reynolds, M. A., Groskopf, J. & Rittenhouse, H. PCA3: From basic molecular science to the clinical lab. Cancer Lett. 301, 1–6 (2011).

    CAS  PubMed  Google Scholar 

  102. Ferreira, L. B. et al. PCA3 noncoding RNA is involved in the control of prostate-cancer cell survival and modulates androgen receptor signaling. BMC Cancer 12, 507 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Bussemakers, M. J. G. et al. DD3: A new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res. 59, 5975–5979 (1999).

    CAS  PubMed  Google Scholar 

  104. Groskopf, J. et al. APTIMA PCA3 molecular urine test: development of a method to aid in the diagnosis of prostate cancer. Clin. Chem. 52, 1089–1095 (2006).

    CAS  PubMed  Google Scholar 

  105. Cui, Y. et al. Evaluation of prostate cancer antigen 3 for detecting prostate cancer: a systematic review and meta-analysis. Sci. Rep. 6, 25776 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Lee, G. L., Dobi, A. & Srivastava, S. Diagnostic performance of the PCA3 urine test. Nat. Rev. Urol. 8, 123–124 (2011).

    PubMed  Google Scholar 

  107. Deras, I. L. et al. PCA3: a molecular urine assay for predicting prostate biopsy outcome. J. Urol. 179, 1587–1592 (2008).

    PubMed  Google Scholar 

  108. Marks, L. S. et al. PCA3 molecular urine assay for prostate cancer in men undergoing repeat biopsy. Urology 69, 532–535 (2007).

    PubMed  Google Scholar 

  109. Tinzl, M., Marberger, M., Horvath, S. & Chypre, C. DD3PCA3 RNA analysis in urine—a new perspective for detecting prostate cancer. Eur. Urol. 46, 182–186 (2004).

    CAS  PubMed  Google Scholar 

  110. Salami, S. S. et al. Combining urinary detection of TMPRSS2:ERG and PCA3 with serum PSA to predict diagnosis of prostate cancer. Urol. Oncol. 31, 566–571 (2013).

    CAS  PubMed  Google Scholar 

  111. Laxman, B. et al. A first-generation multiplex biomarker analysis of urine for the early detection of prostate cancer. Cancer Res. 68, 645–649 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Prensner, J. R. et al. The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nat. Genet. 45, 1392–1398 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Prensner, J. R. et al. RNA biomarkers associated with metastatic progression in prostate cancer: a multi-institutional high-throughput analysis of SChLAP1. Lancet Oncol. 15, 1469–1480 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Mehra, R. et al. Overexpression of the long non-coding RNA SChLAP1 independently predicts lethal prostate cancer. Eur. Urol. 70, 549–552 (2016).

    CAS  PubMed  Google Scholar 

  115. Chua, M. L. K. et al. A prostate cancer “nimbosus’’: genomic instability and schlap1 dysregulation underpin aggression of intraductal and cribriform subpathologies. Eur. Urol. 72, 665–674 (2017).

    CAS  PubMed  Google Scholar 

  116. Yin, C. Q. et al. Molecular profiling of pooled circulating tumor cells from prostate cancer patients using a dual-antibody-functionalized microfluidic device. Anal. Chem. 90, 3744–3751 (2018).

    CAS  PubMed  Google Scholar 

  117. Di Cristofano, A. & Pandolfi, P. P. The multiple roles of PTEN in tumor suppression. Cell 100, 387–390 (2000).

    PubMed  Google Scholar 

  118. Yoshimoto, M. et al. Interphase FISH analysis of PTEN in histologic sections shows genomic deletions in 68% of primary prostate cancer and 23% of high-grade prostatic intra-epithelial neoplasias. Cancer Genet. Cytogenet. 169, 128–137 (2006).

    CAS  PubMed  Google Scholar 

  119. Murphy, S. J. et al. Integrated analysis of the genomic instability of PTEN in clinically insignificant and significant prostate cancer. Mod. Pathol. 29, 143–156 (2016).

    CAS  PubMed  Google Scholar 

  120. Phin, S., Moore, M. W. & Cotter, P. D. Genomic rearrangements of PTEN in prostate cancer. Front. Oncol. 3, 00240 (2013).

    Google Scholar 

  121. Lotan, T. L. et al. PTEN loss detection in prostate cancer: comparison of PTEN immunohistochemistry and PTEN FISH in a large retrospective prostatectomy cohort. Oncotarget 8, 65566–65576 (2017).

    PubMed  PubMed Central  Google Scholar 

  122. Carnero, A., Blanco-Aparicio, C., Renner, O., Link, W. & Leal, J. F. M. The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr. Cancer Drug Targets 8, 187–198 (2008).

    CAS  PubMed  Google Scholar 

  123. Krohn, A. et al. Genomic deletion of PTEN is associated with tumor progression and early PSA recurrence in ERG fusion-positive and fusion-negative prostate cancer. Am. J. Pathol. 181, 401–412 (2012).

    CAS  PubMed  Google Scholar 

  124. Yoshimoto, M. et al. Absence of TMPRSS2:ERG fusions and PTEN losses in prostate cancer is associated with a favorable outcome. Mod. Pathol. 21, 1451–1460 (2008).

    CAS  PubMed  Google Scholar 

  125. Han, B. et al. Fluorescence in situ hybridization study shows association of PTEN deletion with ERG rearrangement during prostate cancer progression. Mod. Pathol. 22, 1083–1093 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Ahearn, T. U. et al. A prospective investigation of PTEN Loss and ERG expression in lethal prostate cancer. J. Natl. Cancer Inst. 108, djv346 (2016).

    PubMed  Google Scholar 

  127. King, J. C. et al. Cooperativity of TMPRSS2-ERG with PI3-kinase pathway activation in prostate oncogenesis. Nat. Genet. 41, 524–526 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Carver, B. S. et al. Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat. Genet. 41, 619–624 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Punnoose, E. A. et al. PTEN loss in circulating tumour cells correlates with PTEN loss in fresh tumour tissue from castration-resistant prostate cancer patients. Br. J. Cancer 113, 1225–1233 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Haile, S. & Sadar, M. D. Androgen receptor and its splice variants in prostate cancer. Cell. Mol. Life Sci. 68, 3971–3981 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Hu, R. et al. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res. 69, 16–22 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Hornberg, E. et al. Expression of androgen receptor splice variants in prostate cancer bone metastases is associated with castration-resistance and short survival. PLOS ONE 6, e19059 (2011).

    PubMed  PubMed Central  Google Scholar 

  133. Ware, K. E., Garcia-Blanco, M. A., Armstrong, A. J. & Dehm, S. M. Biologic and clinical significance of androgen receptor variants in castration resistant prostate cancer. Endocr. Relat. Cancer 21, T87–T103 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Dehm, S. M. & Tindall, D. J. Alternatively spliced androgen receptor variants. Endocr. Relat. Cancer 18, R183–R196 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Sun, S. H. et al. Castration resistance in human prostate cancer is conferred by a frequently occurring androgen receptor splice variant. J. Clin. Invest. 120, 2715–2730 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Watson, P. A. et al. Constitutively active androgen receptor splice variants expressed in castration-resistant prostate cancer require full-length androgen receptor. Proc. Natl Acad. Sci. USA 107, 16759–16765 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Liu, L. L. et al. Mechanisms of the androgen receptor splicing in prostate cancer cells. Oncogene 33, 3140–3150 (2014).

    CAS  PubMed  Google Scholar 

  138. Guo, Z. Y. et al. A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res. 69, 2305–2313 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Antonarakis, E. S. et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl. J. Med. 371, 1028–1038 (2014).

    PubMed  PubMed Central  Google Scholar 

  140. Scher, H. I. et al. Assessment of the validity of nuclear-localized androgen receptor splice variant 7 in circulating tumor cells as a predictive biomarker for castration-resistant prostate cancer. JAMA Oncol. 4, 1179–1186 (2018).

    PubMed  PubMed Central  Google Scholar 

  141. Azad, A. A. et al. Androgen receptor gene aberrations in circulating cell-free dna: biomarkers of therapeutic resistance in castration-resistant prostate cancer. Clin. Cancer Res. 21, 2315–2324 (2015).

    CAS  PubMed  Google Scholar 

  142. Salvi, S. et al. Circulating cell-free AR and CYP17A1 copy number variations may associate with outcome of metastatic castration-resistant prostate cancer patients treated with abiraterone. Br. J. Cancer 112, 1717–1724 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Wyatt, A. W. et al. Genomic alterations in cell-free DNA and enzalutamide resistance in castration-resistant prostate cancer. JAMA Oncol. 2, 1598–1606 (2016).

    PubMed  PubMed Central  Google Scholar 

  144. Smith, M. R. et al. Apalutamide treatment and metastasis-free survival in prostate cancer. N. Engl. J. Med. 378, 1408–1418 (2018).

    CAS  PubMed  Google Scholar 

  145. Hussain, M. et al. Enzalutamide in men with nonmetastatic, castration-resistant prostate cancer. N. Engl. J. Med. 378, 2465–2474 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. James, N. D. et al. Abiraterone for prostate cancer not previously treated with hormone therapy. N. Engl. J. Med. 377, 338–351 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Fizazi, K. et al. Abiraterone plus prednisone in metastatic, castration-sensitive prostate cancer. N. Engl. J. Med. 377, 352–360 (2017).

    CAS  PubMed  Google Scholar 

  148. Van Neste, L. et al. The epigenetic promise for prostate cancer diagnosis. Prostate 72, 1248–1261 (2012).

    PubMed  Google Scholar 

  149. Xu, K. et al. EZH2 oncogenic activity in castration-resistant prostate cancer cells is polycomb-independent. Science 338, 1465–1469 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Tomlins, S. A. et al. The role of SPINK1 in ETS rearrangement-negative prostate cancers. Cancer Cell 13, 519–528 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Rubin, M. A. et al. α-Methylacyl coenzyme a racemase as a tissue biomarker for prostate cancer. JAMA 287, 1662–1670 (2002).

    CAS  PubMed  Google Scholar 

  152. Meany, D. L., Zhang, Z., Sokoll, L. J., Zhang, H. & Chan, D. W. Glycoproteomics for prostate cancer detection: changes in serum PSA glycosylation patterns. J. Proteome Res. 8, 613–619 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Sartori, D. A. & Chan, D. W. Biomarkers in prostate cancer: what’s new? Curr. Opin. Oncol. 26, 259–264 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Feng, F., Schaich, M. & Hughes, L. Current and future applications of genetic prostate cancer screening in the urologic clinic. Urol. Nurs. 34, 281–289 (2014).

    PubMed  Google Scholar 

  155. Catalona, W. J. et al. A multicenter study of -2 pro-prostate specific antigen combined with prostate specific antigen and free prostate specific antigen for prostate cancer detection in the 2.0 to 10.0 ng/ml prostate specific antigen range. J. Urol. 185, 1650–1655 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Loeb, S. et al. The prostate health index selectively identifies clinically significant prostate cancer. J. Urol. 193, 1163–1169 (2015).

    PubMed  Google Scholar 

  157. de la Calle, C. et al. Multicenter evaluation of the prostate health index to detect aggressive prostate cancer in biopsy naive men. J. Urol. 194, 65–72 (2015).

    PubMed  PubMed Central  Google Scholar 

  158. Vickers, A. J. et al. A panel of kallikrein markers can reduce unnecessary biopsy for prostate cancer: data from the European randomized study of prostate cancer screening in Göteborg, Sweden. BMC Med. 6, 19 (2008).

    PubMed  PubMed Central  Google Scholar 

  159. Parekh, D. J. et al. A multi-institutional prospective trial in the USA confirms that the 4Kscore accurately identifies men with high-grade prostate cancer. Eur. Urol. 68, 464–470 (2015).

    PubMed  Google Scholar 

  160. Braun, K., Sjoberg, D. D., Vickers, A. J., Lilja, H. & Bjartell, A. S. A four-kallikrein panel predicts high-grade cancer on biopsy: independent validation in a community cohort. Eur. Urol. 69, 505–511 (2016).

    PubMed  Google Scholar 

  161. Vickers, A. et al. Reducing unnecessary biopsy during prostate cancer screening using a four-kallikrein panel: an independent replication. J. Clin. Oncol. 28, 2493–2498 (2010).

    PubMed  PubMed Central  Google Scholar 

  162. Henrique, R. et al. Epigenetic heterogeneity of high-grade prostatic intraepithelial neoplasia: clues for clonal progression in prostate carcinogenesis. Mol. Cancer Res. 4, 1–8 (2006).

    CAS  PubMed  Google Scholar 

  163. Zhou, M., Tokumaru, Y., Sidransky, D. & Epstein, J. I. Quantitative GSTP1 methylation levels correlate with Gleason grade and tumor volume in prostate needle biopsies. J. Urol. 171, 2195–2198 (2004).

    CAS  PubMed  Google Scholar 

  164. Trujillo, K. A., Jones, A. C., Griffith, J. K. & Bisoffi, M. Markers of field cancerization: proposed clinical applications in prostate biopsies. Prostate Cancer 2012, 12 (2012).

    Google Scholar 

  165. Slaughter, D. P., Southwick, H. W. & Smejkal, W. "Field cancerization" in oral stratified squamous epithelium. Clinical implications of multicentric origin. Cancer 6, 963–968 (1953).

    CAS  PubMed  Google Scholar 

  166. Braakhuis, B. J. M., Tabor, M. P., Kummer, J. A., Leemans, C. R. & Brakenhoff, R. H. A genetic explanation of Slaughter’s concept of field cancerization: evidence and clinical implications. Cancer Res. 63, 1727–1730 (2003).

    CAS  PubMed  Google Scholar 

  167. Mehrotra, J. et al. Quantitative, spatial resolution of the epigenetic field effect in prostate cancer. Prostate 68, 152–160 (2008).

    CAS  PubMed  Google Scholar 

  168. Djavan, B., Remzi, M., Schulman, C. C., Marberger, M. & Zlotta, A. R. Repeat prostate biopsy: who, how and when?: a review. Eur. Urol. 42, (93–103 (2002).

    Google Scholar 

  169. Partin, A. W. et al. Clinical validation of an epigenetic assay to predict negative histopathological results in repeat prostate biopsies. J. Urol. 192, 1081–1087 (2014).

    PubMed  PubMed Central  Google Scholar 

  170. Van Neste, L. et al. Risk score predicts high-grade prostate cancer in DNA-methylation positive, histopathologically negative biopsies. Prostate 76, 1078–1087 (2016).

    PubMed  PubMed Central  Google Scholar 

  171. Stewart, G. D. et al. Clinical utility of an epigenetic assay to detect occult prostate cancer in histopathologically negative biopsies: results of the MATLOC study. J. Urol. 189, 1110–1116 (2013).

    PubMed  Google Scholar 

  172. Wojno, K. J. et al. Reduced rate of repeated prostate biopsies observed in ConfirmMDx clinical utility field study. Am. Health Drug Benefits 7, 129–134 (2014).

    PubMed  PubMed Central  Google Scholar 

  173. Dall’Era, M. A. et al. Utility of the Oncotype DX® prostate cancer assay in clinical practice for treatment selection in men newly diagnosed with prostate cancer: a retrospective chart review analysis. Urol. Pract. 2, 343–348 (2015).

    Google Scholar 

  174. Cullen, J. et al. A biopsy-based 17-gene genomic prostate score predicts recurrence after radical prostatectomy and adverse surgical pathology in a racially diverse population of men with clinically low-and intermediate-risk prostate cancer. Eur. Urol. 68, 123–131 (2015).

    PubMed  Google Scholar 

  175. Klein, E. A. et al. A 17-gene assay to predict prostate cancer aggressiveness in the context of Gleason grade heterogeneity, tumor multifocality, and biopsy undersampling. Eur. Urol. 66, 550–560 (2014).

    PubMed  Google Scholar 

  176. Canfield, S. E. et al. A guide for clinicians in the evaluation of emerging molecular diagnostics for newly diagnosed prostate cancer. Rev. Urol. 16, 172–180 (2014).

    PubMed  PubMed Central  Google Scholar 

  177. Cuzick, J. et al. Prognostic value of an RNA expression signature derived from cell cycle proliferation genes in patients with prostate cancer: a retrospective study. Lancet Oncol. 12, 245–255 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Cuzick, J. et al. Prognostic value of a cell cycle progression signature for prostate cancer death in a conservatively managed needle biopsy cohort. Br. J. Cancer 106, 1095–1099 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Whitfield, M. L. et al. Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol. Biol. Cell 13, 1977–2000 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Tosoian, J. J. et al. Prognostic utility of biopsy-derived cell cycle progression score in patients with national comprehensive cancer network low-risk prostate cancer undergoing radical prostatectomy: implications for treatment guidance. BJU Int. 120, 808–814 (2017).

    CAS  PubMed  Google Scholar 

  181. Marrone, M., Potosky, A. L., Penson, D. & Freedman, A. N. A 22 gene-expression assay, Decipher(R) (GenomeDx Biosciences) to predict five-year risk of metastatic prostate cancer in men treated with radical prostatectomy. PLOS Curr. https://doi.org/10.1371/currents.eogt.761b81608129ed61b0b48d42c04f92a4 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Spratt, D. E. et al. Individual patient-level meta-analysis of the performance of the decipher genomic classifier in high-risk men after prostatectomy to predict development of metastatic disease. J. Clin. Oncol. 35, 1991–1998 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Karnes, R. J. et al. Validation of a genomic risk classifier to predict prostate cancer-specific mortality in men with adverse pathologic features. Eur. Urol. 73, 168–175 (2018).

    PubMed  Google Scholar 

  184. Klein, E. A. et al. Decipher genomic classifier measured on prostate biopsy predicts metastasis risk. Urology 90, 148–152 (2016).

    PubMed  Google Scholar 

  185. Klein, E. A. et al. A genomic classifier improves prediction of metastatic disease within 5 years after surgery in node-negative high-risk prostate cancer patients managed by radical prostatectomy without adjuvant therapy. Eur. Urol. 67, 778–786 (2015).

    PubMed  Google Scholar 

  186. Badani, K. K. et al. Effect of a genomic classifier test on clinical practice decisions for patients with high-risk prostate cancer after surgery. BJU Int. 115, 419–429 (2015).

    PubMed  Google Scholar 

  187. Badani, K. et al. Impact of a genomic classifier of metastatic risk on postoperative treatment recommendations for prostate cancer patients: a report from the DECIDE study group. Oncotarget 4, 600–609 (2013).

    PubMed  PubMed Central  Google Scholar 

  188. Haese, A. et al. Clinical utility of the PCA3 urine assay in European men scheduled for repeat biopsy. Eur. Urol. 54, 1081–1088 (2008).

    PubMed  Google Scholar 

  189. Chun, F. K. et al. Prostate cancer gene 3 (PCA3): development and internal validation of a novel biopsy nomogram. Eur. Urol. 56, 659–667 (2009).

    CAS  PubMed  Google Scholar 

  190. Ploussard, G. et al. Prostate cancer antigen 3 score accurately predicts tumour volume and might help in selecting prostate cancer patients for active surveillance. Eur. Urol. 59, 422–429 (2011).

    PubMed  Google Scholar 

  191. Roobol, M. J. et al. Performance of the prostate cancer antigen 3 (PCA3) gene and prostate-specific antigen in prescreened men: exploring the value of PCA3 for a first-line diagnostic test. Eur. Urol. 58, 475–481 (2010).

    CAS  PubMed  Google Scholar 

  192. Gittelman, M. C. et al. PCA3 molecular urine test as a predictor of repeat prostate biopsy outcome in men with previous negative biopsies: a prospective multicenter clinical study. J. Urol. 190, 64–69 (2013).

    CAS  PubMed  Google Scholar 

  193. Wei, J. T. et al. Can urinary PCA3 supplement PSA in the early detection of prostate cancer? J. Clin. Oncol. 32, 4066–4072 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Hessels, D. & Schalken, J. A. The use of PCA3 in the diagnosis of prostate cancer. Nat. Rev. Urol. 6, 255–261 (2009).

    CAS  PubMed  Google Scholar 

  195. Tomlins, S. A. et al. Urine TMPRSS2:ERG plus PCA3 for individualized prostate cancer risk assessment. Eur. Urol. 70, 45–53 (2016).

    CAS  PubMed  Google Scholar 

  196. Merdan, S. et al. Assessment of long-term outcomes associated with urinary prostate cancer antigen 3 and TMPRSS2:ERG gene fusion at repeat biopsy. Cancer 121, 4071–4079 (2015).

    CAS  PubMed  Google Scholar 

  197. Sanda, M. G. et al. Association between combined TMPRSS2:ERG and PCA3 RNA urinary testing and detection of aggressive prostate cancer. JAMA Oncol. 3, 1083–1093 (2017).

    Google Scholar 

  198. Leyten, G. et al. Prospective multicentre evaluation of PCA3 and TMPRSS2-ERG gene fusions as diagnostic and prognostic urinary biomarkers for prostate cancer. Eur. Urol. 65, 534–542 (2014).

    CAS  PubMed  Google Scholar 

  199. Leyten, G. et al. Identification of a candidate gene panel for the early diagnosis of prostate cancer. Clin. Cancer Res. 21, 3061–3070 (2015).

    CAS  PubMed  Google Scholar 

  200. Van Neste, L. et al. Detection of high-grade prostate cancer using a urinary molecular biomarker-based risk score. Eur. Urol. 70, 740–748 (2016).

    PubMed  Google Scholar 

  201. Duijvesz, D., Luider, T., Bangma, C. H. & Jenster, G. Exosomes as biomarker treasure chests for prostate cancer. Eur. Urol. 59, 823–831 (2011).

    CAS  PubMed  Google Scholar 

  202. Nilsson, J. et al. Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer. Br. J. Cancer 100, 1603–1607 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Overbye, A. et al. Identification of prostate cancer biomarkers in urinary exosomes. Oncotarget 6, 30357–30376 (2015).

    PubMed  PubMed Central  Google Scholar 

  204. Futterer, J. J. et al. Can clinically significant prostate cancer be detected with multiparametric magnetic resonance imaging? a systematic review of the literature. Eur. Urol. 68, 1045–1053 (2015).

    PubMed  Google Scholar 

  205. Mehralivand, S. et al. A magnetic resonance imaging-based prediction model for prostate biopsy risk stratification. JAMA Oncol. 4, 678–685 (2018).

    PubMed  PubMed Central  Google Scholar 

  206. Ahmed, H. U. et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 389, 815–822 (2017).

    PubMed  Google Scholar 

  207. Pokorny, M. R. et al. Prospective study of diagnostic accuracy comparing prostate cancer detection by transrectal ultrasound-guided biopsy versus magnetic resonance (MR) imaging with subsequent MR-guided biopsy in men without previous prostate biopsies. Eur. Urol. 66, 22–29 (2014).

    PubMed  Google Scholar 

  208. Moore, C. M. et al. Image-guided prostate biopsy using magnetic resonance imaging-derived targets: a systematic review. Eur. Urol. 63, 125–140 (2013).

    PubMed  Google Scholar 

  209. Siddiqui, M. M. et al. Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate Cancer. JAMA 313, 390–397 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Kasivisvanathan, V. et al. MRI-targeted or standard biopsy for prostate-cancer diagnosis. N. Engl. J. Med. 378, 1767–1777 (2018).

    PubMed  PubMed Central  Google Scholar 

  211. Ferrari, M. Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer 5, 161–171 (2005).

    CAS  PubMed  Google Scholar 

  212. Nie, S. M., Xing, Y., Kim, G. J. & Simons, J. W. Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng. 9, 257–288 (2007). This paper gives a broad introductory review of various nanotechnologies for cancer applications.

    CAS  PubMed  Google Scholar 

  213. Smith, S. J., Nemr, C. R. & Kelley, S. O. Chemistry-driven approaches for ultrasensitive nucleic acid detection. J. Am. Chem. Soc. 139, 1020–1028 (2017).

    CAS  PubMed  Google Scholar 

  214. Barenholz, Y. Doxil® — the first FDA-approved nano-drug: lessons learned. J. Control. Release 160, 117–134 (2012).

    CAS  PubMed  Google Scholar 

  215. Kang, B. J. et al. Diagnosis of prostate cancer via nanotechnological approach. Int. J. Nanomed. 10, 6555–6569 (2015).

    CAS  Google Scholar 

  216. Wu, G. H. et al. Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nat. Biotechnol. 19, 856–860 (2001). This paper details the pioneering use of nanotechnology to enhance PSA biomarker detection performance.

    CAS  PubMed  Google Scholar 

  217. Zheng, G. F., Patolsky, F., Cui, Y., Wang, W. U. & Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 23, 1294–1301 (2005).

    CAS  PubMed  Google Scholar 

  218. Yu, X. et al. Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. J. Am. Chem. Soc. 128, 11199–11205 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Xu, S. J., Liu, Y., Wang, T. H. & Li, J. H. Positive potential operation of a cathodic electrogenerated chemiluminescence immunosensor based on luminol and graphene for cancer biomarker detection. Anal. Chem. 83, 3817–3823 (2011).

    CAS  PubMed  Google Scholar 

  220. Tilki, D., Kim, S. I., Hu, B., Dall’Era, M. A. & Evans, C. P. Ultrasensitive prostate specific antigen and its role after radical prostatectomy: a systematic review. J. Urol. 193, 1525–1531 (2015).

    CAS  PubMed  Google Scholar 

  221. Grubisha, D. S., Lipert, R. J., Park, H. Y., Driskell, J. & Porter, M. D. Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced Raman scattering and immunogold labels. Anal. Chem. 75, 5936–5943 (2003).

    CAS  PubMed  Google Scholar 

  222. Mani, V., Chikkaveeraiah, B. V., Patel, V., Gutkind, J. S. & Rusling, J. F. Ultrasensitive immunosensor for cancer biomarker proteins using gold nanoparticle film electrodes and multienzyme-particle amplification. ACS Nano 3, 585–594 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Liu, X. et al. A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering. J. Am. Chem. Soc. 130, 2780–2782 (2008).

    CAS  PubMed  Google Scholar 

  224. Wang, J., Koo, K. M., Wang, Y. & Trau, M. “Mix-to-go” silver colloidal strategy for prostate cancer molecular profiling and risk prediction. Anal. Chem. 90, 12698–12705 (2018).

    CAS  PubMed  Google Scholar 

  225. Gupta, A. K., Naregalkar, R. R., Vaidya, V. D. & Gupta, M. Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine (Lond.) 2, 23–39 (2007).

    CAS  Google Scholar 

  226. Sarkar, P., Ghosh, D., Bhattacharyay, D., Setford, S. J. & Turner, A. P. F. Electrochemical immunoassay for free prostate specific antigen (f-PSA) using magnetic beads. Electroanalysis 20, 1414–1420 (2008).

    CAS  Google Scholar 

  227. Song, E. Q. et al. Fluorescent-magnetic-biotargeting multifunctional nanobioprobes for detecting and isolating multiple types of tumor cells. ACS Nano 5, 761–770 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Koo, K. M., Carrascosa, L. G., Shiddiky, M. J. A. & Trau, M. Poly(A) extensions of miRNAs for amplification-free electrochemical detection on screen-printed gold electrodes. Anal. Chem. 88, 2000–2005 (2016).

    CAS  PubMed  Google Scholar 

  229. Koo, K. M., Carrascosa, L. G., Shiddiky, M. J. A. & Trau, M. Amplification-free detection of gene fusions in prostate cancer urinary samples using mRNA-gold affinity interactions. Anal. Chem. 88, 6781–6788 (2016).

    CAS  PubMed  Google Scholar 

  230. Koo, K. M., Carrascosa, L. G. & Trau, M. DNA-directed assembly of copper nanoblocks with inbuilt fluorescent and electrochemical properties: application in simultaneous amplification-free analysis of multiple RNA species. Nano Res. 11, 940–952 (2018).

    CAS  Google Scholar 

  231. Koo, K. M., Wee, E. J. H. & Trau, M. Colorimetric TMPRSS2-ERG gene fusion detection in prostate cancer urinary samples via recombinase polymerase amplification. Theranostics 6, 1415–1424 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Koo, K. M., Dey, S. & Trau, M. Amplification-free multi-RNA-type profiling for cancer risk stratification via alternating current electrohydrodynamic nanomixing. Small 14, 1704025 (2018). This paper describes a nanodevice for amplification-free detection of multiple types of prostate cancer RNA biomarkers.

    Google Scholar 

  233. Koo, K. M., Wee, E. J. H., Mainwaring, P. N. & Trau, M. A simple, rapid, low-cost technique for naked-eye detection of urine-isolated TMPRSS2: ERG gene fusion RNA. Sci. Rep. 6, 30722 (2016). This paper describes a miniaturized solution-based technique for visual detection of urinary TMPRSS2–ERG status.

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Koo, K. M., Dey, S. & Trau, M. A sample-to-targeted gene analysis biochip for nanofluidic manipulation of solid-phase circulating tumor nucleic acid amplification in liquid biopsies. ACS Sens. 3, 2597–2603 (2018). This paper details an integrated biochip platform for complex liquid biopsy sample-to-targeted genetic analysis.

    CAS  PubMed  Google Scholar 

  235. Brus, L. Quantum crystallites and nonlinear optics. Appl. Phys. A 53, 465–474 (1991).

    Google Scholar 

  236. Chinen, A. B. et al. Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem. Rev. 115, 10530–10574 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Li, X. et al. Rapid and quantitative detection of prostate specific antigen with a quantum dot nanobeads-based immunochromatography test strip. ACS Appl. Mater. Interfaces 6, 6406–6414 (2014).

    CAS  PubMed  Google Scholar 

  238. Zhang, W., Hubbard, A., Brunhoeber, P., Wang, Y. & Tang, L. Automated multiplexing quantum dots in situ hybridization assay for simultaneous detection of ERG and PTEN gene status in prostate cancer. J. Mol. Diagn. 15, 754–764 (2013).

    CAS  PubMed  Google Scholar 

  239. Fleischmann, M., Hendra, P. J. & McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163–166 (1974).

    CAS  Google Scholar 

  240. Koo, K. M., Wee, E. J. H., Wang, Y. & Trau, M. Enabling miniaturised personalised diagnostics: from lab-on-a-chip to lab-in-a-drop. Lab. Chip 17, 3200–3220 (2017). This paper provides an introduction to the concept of miniaturized ‘lab-in-a-drop’ systems.

    CAS  PubMed  Google Scholar 

  241. Zong, C. et al. Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges. Chem. Rev. 118, 4946–4980 (2018).

    CAS  PubMed  Google Scholar 

  242. Cheng, Z. et al. Simultaneous detection of dual prostate specific antigens using surface-enhanced raman scattering-based immunoassay for accurate diagnosis of prostate cancer. ACS Nano 11, 4926–4933 (2017). This paper details the duplexed evaluation of free to total PSA ratio in clinical serum samples.

    CAS  PubMed  Google Scholar 

  243. Koo, K. M., McNamara, B., Wee, E. J. H., Wang, Y. & Trau, M. Rapid and sensitive fusion gene detection in prostate cancer urinary specimens by label-free surface-enhanced Raman scattering. J. Biomed. Nanotechnol. 12, 1798–1805 (2016).

    CAS  PubMed  Google Scholar 

  244. Koo, K. M., Wee, E. J. H., Mainwaring, P. N., Wang, Y. & Trau, M. Toward precision medicine: a cancer molecular subtyping nano-strategy for RNA biomarkers in tumor and urine. Small 12, 6233–6242 (2016). This paper details the pentaplexed detection of next-generation prostate cancer RNA biomarkers in clinical patient samples.

    CAS  PubMed  Google Scholar 

  245. Wang, J., Koo, K. M., Wee, E. J. H., Wang, Y. L. & Trau, M. A nanoplasmonic label-free surface-enhanced Raman scattering strategy for non-invasive cancer genetic subtyping in patient samples. Nanoscale 9, 3496–3503 (2017).

    CAS  PubMed  Google Scholar 

  246. Mir-Simon, B., Reche-Perez, I., Guerrini, L., Pazos-Perez, N. & Alvarez-Puebla, R. A. Universal one-pot and scalable synthesis of SERS encoded nanoparticles. Chem. Mater. 27, 950–958 (2015).

    CAS  Google Scholar 

  247. Kim, H. M. et al. Large scale synthesis of surface-enhanced Raman scattering nanoprobes with high reproducibility and long-term stability. J. Ind. Eng. Chem. 33, 22–27 (2016).

    CAS  Google Scholar 

  248. Whitesides, G. M. The origins and the future of microfluidics. Nature 442, 368 (2006).

    CAS  PubMed  Google Scholar 

  249. Chin, C. D., Linder, V. & Sia, S. K. Commercialization of microfluidic point-of-care diagnostic devices. Lab. Chip 12, 2118–2134 (2012).

    CAS  PubMed  Google Scholar 

  250. Armenia, J. et al. The long tail of oncogenic drivers in prostate cancer. Nat. Genet. 50, 645–651 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Brooks, J. D. Translational genomics: the challenge of developing cancer biomarkers. Genome Res. 22, 183–187 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  252. Yamoah, K. et al. Novel biomarker signature that may predict aggressive disease in African American men with prostate cancer. J. Clin. Oncol. 33, 2789–2796 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  253. Simon, N. & Simon, R. Adaptive enrichment designs for clinical trials. Biostatistics 14, 613–625 (2013).

    PubMed  PubMed Central  Google Scholar 

  254. Simon, R. & Simon, N. Inference for multimarker adaptive enrichment trials. Stat. Med. 36, 4083–4093 (2017).

    PubMed  PubMed Central  Google Scholar 

  255. Koo, K. M. et al. Design and clinical verification of surface enhanced Raman spectroscopy diagnostic technology for individual cancer risk prediction. ACS Nano 12, 8362–8371 (2018). This is the first comprehensive clinical evaluation of a prostate cancer nanodiagnostic technology.

    CAS  PubMed  Google Scholar 

  256. Hessels, D. et al. Analytical validation of an mRNA-based urine test to predict the presence of high-grade prostate cancer. Transl Med. Commun. 2, 5 (2017).

    Google Scholar 

Download references

Acknowledgements

K.M.K. acknowledges support from the Australian Government Research Training Program Scholarship and the University of Queensland Graduate School International Travel Award. Although not directly funding this work, K.M.K., P.N.M. and M.T. acknowledge funding from the National Breast Cancer Foundation of Australia (CG 1207), Australian Research Council (DP 140104006 and DP 160102836) and Royal Brisbane Women’s Hospital Foundation (2018 Research Project Grant). These grants have considerably contributed to the environment that stimulates this work. Prostate cancer research in the laboratory of S.A.T. is supported by the US National Institutes of Health, the US Department of Defense and the Prostate Cancer Foundation. S.A.T. is supported by the A. Alfred Taubman Medical Research Institute. The authors thank all patients for their consent, which progresses the research developments mentioned herein.

Reviewer information

Nature Reviews Urology thanks T. van der Kwast and other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

K.M.K. researched data for and wrote the manuscript. All authors made substantial contributions to discussion of content and reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Paul N. Mainwaring, Scott A. Tomlins or Matt Trau.

Ethics declarations

Competing interests

The University of Michigan has been issued a patent on ETS gene fusions in prostate cancer on which S.A.T. is a coinventor. The diagnostic field of use has been licensed to Hologic (which acquired Gen-Probe), which has sublicensed rights to Roche (which owns Ventana Medical Systems). S.A.T. has received travel support from, and had a sponsored research agreement with, Compendia Bioscience (which was acquired by Life Technologies, which was acquired by ThermoFisher Scientific). S.A.T. has sponsored research agreements with Astellas and GenomeDx. S.A.T. has served as a consultant for and received honoraria from Roche, Ventana Medical Systems, Almac Diagnostics, Janssen, AbbVie, Sanofi and Astellas (which acquired Medivation). S.A.T. is a cofounder of, consultant for and the Laboratory Director of Strata Oncology. P.N.M. and M.T. are co-founders of XING Technologies, which has licensed intellectual property from the University of Queensland, Australia. P.N.M. is a shareholder of XING Technologies. P.N.M. has served as a consultant, advisory board member and lecturer for and received honoraria, travel support and grant support from Astellas, Bristol-Myers Squibb, Ipsen, Janssen, Medivation, Merck, Novartis, Pfizer and Genentech (a subsidiary of Roche). K.M.K. declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koo, K.M., Mainwaring, P.N., Tomlins, S.A. et al. Merging new-age biomarkers and nanodiagnostics for precision prostate cancer management. Nat Rev Urol 16, 302–317 (2019). https://doi.org/10.1038/s41585-019-0178-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-019-0178-2

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research