Technologies for image-guided surgery for managing lymphatic metastases in prostate cancer


One of the challenges for the surgical management of prostate cancer is the lymphatic spread of metastases. Lymph node metastases vary in size (micrometastases (<2 mm) or macrometastases (>2 mm)), and their interactions with the lymphatic environment differ (whether they are hypoxic or connected to blood flow). Thus, devising a universal imaging system and an image-guided surgical approach that supports the resection of all affected lymph nodes is difficult. Two complementary approaches to identifying affected lymph nodes have been described as alternatives to performing a traditional pelvic lymph node dissection: lymphatic mapping using radioguidance (the most widely applied modality), fluorescence guidance, integrated hybrid radioguidance and fluorescence guidance or magnetic guidance; and surgery guided by radiolabelled prostate-specific membrane antigen. Careful patient selection using preoperative imaging seems to be a crucial aspect in determining whether one of the individual image-guided surgery procedures alone would be optimal or whether a combination would be considered to be the most desirable course of action. The successful implementation and dissemination of both lymph-node-targeted and disease-targeted procedures are very much reliant on ongoing technical developments in the field and their standardization and interpretation. However, when these innovative surgical procedures are fully refined, evaluation of their influence on oncological outcome is imperative.

Key points

  • Technologies for image-guided surgery for the management of lymphatic prostate cancer metastases are in much demand.

  • Lymphatic mapping procedures are the most reliable modalities for identifying micrometastases.

  • To date, approaches targeting prostate-specific membrane antigen seem to yield the most reliable identification of macrometastases, enabling efficient resection.

  • Preoperative imaging is an essential aspect of image-guided surgery as it provides the anatomical context required to guide the urologist to the area of interest, enabling optimal application of intraoperative imaging or tracing modalities.

  • The physical restrictions of the imaging signatures and tracers used to achieve surgical guidance (such as specificity, tissue penetration and spatial resolution) define the way in which imaging modalities are applied in medical care.

  • Combining the ability of lymphatic mapping to identify micrometastases (<2 mm) with tumour-targeted approaches that pinpoint the location of macrometastases (>2 mm) could provide superior identification of tumour-infiltrated lymph nodes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: An extended pelvic lymph node dissection template.
Fig. 2
Fig. 3: Attenuation of fluorescence by tissue.
Fig. 4: Lymphatic tracing using superparamagnetic iron oxide nanoparticles.
Fig. 5: Radioguided surgery after injection of 99mTc-labelled PSMA tracer in a patient with recurrent prostate cancer.
Fig. 6: The relationship between the size of lymphatic metastases and the most valuable imaging approach clinically.
Fig. 7: Multiparametric imaging solutions are needed to cover the complexity encountered in the surgical setting.


  1. 1.

    American Cancer Society. Cancer Facts and Figures 2017. ACS (2017).

  2. 2.

    Center, M. M. et al. International variation in prostate cancer incidence and mortality rates. Eur. Urol. 61, 1079–1092 (2012).

    Article  PubMed  Google Scholar 

  3. 3.

    Hamdy, F. C. et al. 10-year outcomes after monitoring, surgery, or radiotherapy for localized prostate cancer. N. Engl. J. Med. 375, 1415–1424 (2016).

    Article  PubMed  Google Scholar 

  4. 4.

    Seisen, T. et al. Efficacy of local treatment in prostate cancer patients with clinically pelvic lymph node-positive disease at initial diagnosis. Eur. Urol. 73, 452–461 (2017).

    Article  Google Scholar 

  5. 5.

    James, N. D. et al. Abiraterone for prostate cancer not previously treated with hormone therapy. N. Engl. J. Med. 377, 338–351 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Gundem, G. et al. The evolutionary history of lethal metastatic prostate cancer. Nature 520, 353–357 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Shou, J., Zhang, Q., Wang, S. & Zhang, D. The prognosis of different distant metastases pattern in prostate cancer: a population based retrospective study. Prostate 78, 491–497 (2018).

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Duchesne, G. M. et al. Health-related quality of life for immediate versus delayed androgen-deprivation therapy in patients with asymptomatic, non-curable prostate cancer (TROG 03.06 and VCOG PR 01-03 [TOAD]): a randomised, multicentre, non-blinded, phase 3 trial. Lancet Oncol. 18, 1192–1201 (2017).

    Article  PubMed  Google Scholar 

  9. 9.

    Morizane, S. et al. Comparison of the diagnostic efficacy and perioperative outcomes of limited versus extended pelvic lymphadenectomy during robot-assisted radical prostatectomy: a multi-institutional retrospective study in Japan. Int. J. Clin. Oncol. 23, 568–575 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Touijer, K. A. et al. Survival outcomes of men with lymph node-positive prostate cancer after radical prostatectomy: a comparative analysis of different postoperative management strategies. Eur. Urol. 73, 890–896 (2017).

    Article  PubMed  Google Scholar 

  11. 11.

    Fossati, N. et al. The benefits and harms of different extents of lymph node dissection during radical prostatectomy for prostate cancer: a systematic review. Eur. Urol. 72, 84–109 (2017).

    Article  PubMed  Google Scholar 

  12. 12.

    Choo, M. S. et al. Extended versus standard pelvic lymph node dissection in radical prostatectomy on oncological and functional outcomes: a systematic review and meta-analysis. Ann. Surg. Oncol. 24, 2047–2054 (2017).

    Article  PubMed  Google Scholar 

  13. 13.

    Abdollah, F. et al. More extensive pelvic lymph node dissection improves survival in patients with node-positive prostate cancer. Eur. Urol. 67, 212–219 (2015).

    Article  PubMed  Google Scholar 

  14. 14.

    Grivas, N. et al. The impact of adding sentinel node biopsy to extended pelvic lymph node dissection on the biochemical recurrence of prostate cancer patients treated with robot-assisted radical prostatectomy. J. Nucl. Med. 59, 204–209 (2018).

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Colicchia, M. et al. Therapeutic value of standard versus extended pelvic lymph node dissection during radical prostatectomy for high-risk prostate cancer. Curr. Urol. Rep. 18, 51 (2017).

    Article  PubMed  Google Scholar 

  16. 16.

    US National Library of Medicine. (2018).

  17. 17.

    US National Library of Medicine. (2017).

  18. 18.

    Mottet, N. et al. EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent. Eur. Urol. 71, 618–629 (2017).

    Article  PubMed  Google Scholar 

  19. 19.

    Cornford, P. et al. EAU-ESTRO-SIOG guidelines on prostate cancer. Part II: treatment of relapsing, metastatic, and castration-resistant prostate cancer. Eur. Urol. 71, 630–642 (2017).

    Article  PubMed  Google Scholar 

  20. 20.

    Gandaglia, G. et al. Development and internal validation of a novel model to identify the candidates for extended pelvic lymph node dissection in prostate cancer. Eur. Urol. 72, 632–640 (2017).

    Article  PubMed  Google Scholar 

  21. 21.

    Briganti, A. et al. Complications and other surgical outcomes associated with extended pelvic lymphadenectomy in men with localized prostate cancer. Eur. Urol. 50, 1006–1013 (2006).

    Article  PubMed  Google Scholar 

  22. 22.

    Briganti, A., Rigatti, P. & Montorsi, F. The importance of the extent of pelvic-lymph-node dissection in the diagnosis of lymph-node metastases in prostate cancer. Lancet Oncol. 9, 915–917 (2008).

    Article  PubMed  Google Scholar 

  23. 23.

    Briganti, A. et al. What evidence do we need to support the use of extended pelvic lymph node dissection in prostate cancer? Eur. Urol. 67, 597–598 (2015).

    Article  PubMed  Google Scholar 

  24. 24.

    Heck, M. M. et al. Topography of lymph node metastases in prostate cancer patients undergoing radical prostatectomy and extended lymphadenectomy: results of a combined molecular and histopathologic mapping study. Eur. Urol. 66, 222–229 (2014).

    Article  PubMed  Google Scholar 

  25. 25.

    Wit, E. M. K. et al. Sentinel node procedure in prostate cancer: a systematic review to assess diagnostic accuracy. Eur. Urol. 71, 596–605 (2017).

    Article  PubMed  Google Scholar 

  26. 26.

    Joniau, S. et al. Mapping of pelvic lymph node metastases in prostate cancer. Eur. Urol. 63, 450–458 (2013).

    Article  PubMed  Google Scholar 

  27. 27.

    Mattei, A. et al. The template of the primary lymphatic landing sites of the prostate should be revisited: results of a multimodality mapping study. Eur. Urol. 53, 118–125 (2008).

    Article  PubMed  Google Scholar 

  28. 28.

    Wawroschek, F. et al. The influence of serial sections, immunohistochemistry, and extension of pelvic lymph node dissection on the lymph node status in clinically localized prostate cancer. Eur. Urol. 43, 132–136; discussion 137 (2003).

    Article  PubMed  Google Scholar 

  29. 29.

    Lestingi, J. F. P. et al. Extended versus limited pelvic lymphadenectomy during radical prostatectomy for intermediate- and high-risk prostate cancer: early outcomes from a randomized controlled phase III study [abstract]. J. Clin. Oncol. 35 (Suppl. 15), 5018 (2017).

    Article  Google Scholar 

  30. 30.

    Harter, P. et al. LION: lymphadenectomy in ovarian neoplasms—a prospective randomized AGO study group led gynecologic cancer intergroup trial. J. Clin. Oncol. 35 (Suppl. 15), 5500 (2017).

    Article  Google Scholar 

  31. 31.

    Winter, A. et al. [Complications of pelvic lymphadenectomy in clinically localised prostate cancer: different techniques in comparison and dependency on the number of removed lymph nodes]. Aktuelle Urol 42, 179–183 (2011).

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Datta, K. et al. Mechanism of lymph node metastasis in prostate cancer. Future Oncol. 6, 823–836 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Swartz, M. A. Immunomodulatory roles of lymphatic vessels in cancer progression. Cancer Immunol. Res. 2, 701–707 (2014).

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Eales, K. L., Hollinshead, K. E. & Tennant, D. A. Hypoxia and metabolic adaptation of cancer cells. Oncogenesis 5, e190 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Jeong, H. S. et al. Investigation of the lack of angiogenesis in the formation of lymph node metastases. J. Natl Cancer Inst. 107, djv155 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Fee, H. J. et al. The determination of lymph shed by colloidal gold scanning in patients with malignant melanoma: a preliminary study. Surgery 84, 626–632 (1978).

    CAS  PubMed  Google Scholar 

  37. 37.

    Van Den Berg, N. S. et al. Hybrid tracers for sentinel node biopsy. Q. J. Nucl. Med. Mol. Imaging 58, 193–206 (2014).

    Google Scholar 

  38. 38.

    Farnsworth, R. H. et al. Vascular remodeling in cancer. Oncogene 33, 3496–3505 (2014).

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Jilg, C. A. et al. Diagnostic accuracy of Ga-68-HBED-CC-PSMA-ligand-PET/CT before salvage lymph node dissection for recurrent prostate cancer. Theranostics 7, 1770–1780 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Rauscher, I. et al. Value of 68Ga-PSMA HBED-CC PET for the assessment of lymph node metastases in prostate cancer patients with biochemical recurrence: comparison with histopathology after salvage lymphadenectomy. J. Nucl. Med. 57, 1713–1719 (2016).

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Fortuin, A. S. et al. Value of PET/CT and MR lymphography in treatment of prostate cancer patients with lymph node metastases. Int. J. Radiat. Oncol. Biol. Phys. 84, 712–718 (2012).

    Article  PubMed  Google Scholar 

  42. 42.

    Birkhauser, F. D. et al. Combined ultrasmall superparamagnetic particles of iron oxide-enhanced and diffusion-weighted magnetic resonance imaging facilitates detection of metastases in normal-sized pelvic lymph nodes of patients with bladder and prostate cancer. Eur. Urol. 64, 953–960 (2013).

    Article  PubMed  Google Scholar 

  43. 43.

    Heesakkers, R. A. et al. MRI with a lymph-node-specific contrast agent as an alternative to CT scan and lymph-node dissection in patients with prostate cancer: a prospective multicohort study. Lancet Oncol. 9, 850–856 (2008).

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Evangelista, L. et al. New clinical indications for 18F/11C-choline, new tracers for positron emission tomography and a promising hybrid device for prostate cancer staging: a systematic review of the literature. Eur. Urol. 70, 161–175 (2016).

    Article  PubMed  Google Scholar 

  45. 45.

    Fortuin, A. S. et al. Ultra-small superparamagnetic iron oxides for metastatic lymph node detection: back on the block. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 10, e1471 (2018).

    Article  CAS  Google Scholar 

  46. 46.

    Maurer, T. et al. Current use of PSMA-PET in prostate cancer management. Nat. Rev. Urol. 13, 226–235 (2016).

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Ploussard, G. et al. Management of node only recurrence after primary local treatment for prostate cancer: a systematic review of the literature. J. Urol. 194, 983–988 (2015).

    Article  PubMed  Google Scholar 

  48. 48.

    Woo, S. et al. The diagnostic performance of MRI for detection of lymph node metastasis in bladder and prostate cancer: an updated systematic review and diagnostic meta-analysis. AJR Am. J. Roentgenol. 210, W95–W109 (2018).

    Article  PubMed  Google Scholar 

  49. 49.

    KleinJan, G. H. et al. Optimisation of fluorescence guidance during robot-assisted laparoscopic sentinel node biopsy for prostate cancer. Eur. Urol. 66, 991–998 (2014).

    Article  PubMed  Google Scholar 

  50. 50.

    Briganti, A. et al. Updated nomogram predicting lymph node invasion in patients with prostate cancer undergoing extended pelvic lymph node dissection: the essential importance of percentage of positive cores. Eur. Urol. 61, 480–487 (2012).

    Article  PubMed  Google Scholar 

  51. 51.

    Godoy, G. et al. Extent of pelvic lymph node dissection and the impact of standard template dissection on nomogram prediction of lymph node involvement. Eur. Urol. 60, 195–201 (2011).

    Article  PubMed  Google Scholar 

  52. 52.

    Makarov, D. V. et al. Updated nomogram to predict pathologic stage of prostate cancer given prostate-specific antigen level, clinical stage, and biopsy Gleason score (Partin tables) based on cases from 2000 to 2005. Urology 69, 1095–1101 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Sormani, M. P. The Will Rogers phenomenon: the effect of different diagnostic criteria. J. Neurol. Sci. 287, S46–S49 (2009).

    Article  PubMed  Google Scholar 

  54. 54.

    KleinJan, G. H. et al. The best of both worlds: a hybrid approach for optimal pre- and intraoperative identification of sentinel lymph nodes. Eur. J. Nucl. Med. Mol. Imaging 45, 1915–1925 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Land, S. R. et al. Patient-reported outcomes in sentinel node-negative adjuvant breast cancer patients receiving sentinel-node biopsy or axillary dissection: National Surgical Adjuvant Breast and Bowel Project phase III protocol B-32. J. Clin. Oncol. 28, 3929–3936 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Buckle, T. et al. Relationship between intraprostatic tracer deposits and sentinel lymph node mapping in prostate cancer patients. J. Nucl. Med. 53, 1026–1033 (2012).

    Article  PubMed  Google Scholar 

  57. 57.

    Wawroschek, F. et al. Prostate lymphoscintigraphy and radio-guided surgery for sentinel lymph node identification in prostate cancer. Technique and results of the first 350 cases. Urol. Int. 70, 303–310 (2003).

    Article  PubMed  Google Scholar 

  58. 58.

    van Leeuwen, F. W., Hardwick, J. C. & van Erkel, A. R. Luminescence-based imaging approaches in the field of interventional molecular imaging. Radiology 276, 12–29 (2015).

    Article  PubMed  Google Scholar 

  59. 59.

    Winter, A., Engels, S. & Wawroschek, F. Sentinel lymph node surgery in prostate cancer using magnetic particles. Curr. Opin. Urol. 28, 184–190 (2018).

    PubMed  Google Scholar 

  60. 60.

    Janetschek, G. Radioisotope-guided lymph node dissection for prostate cancer: potential and limitations. Eur. Urol. 53, 16–18; discussion 18–20 (2008).

    Article  PubMed  Google Scholar 

  61. 61.

    Kaplan, W. D., Whitmore, W. F. 3rd & Gittes, R. F. Visualization of canine and human prostatic lymph nodes following intraprostatic injection of technetium-99m-antimony sulfide colloid. Invest. Radiol. 15, 34–38 (1980).

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    Zuckier, L. S. et al. Technetium-99m antimony sulphide colloid lymphoscintigraphy of the prostate by direct transrectal injection. Nucl. Med. Commun. 11, 589–596 (1990).

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Brouwer, O. R. et al. Comparing the hybrid fluorescent-radioactive tracer indocyanine green-99mTc-nanocolloid with 99mTc-nanocolloid for sentinel node identification: a validation study using lymphoscintigraphy and SPECT/CT. J. Nucl. Med. 53, 1034–1040 (2012).

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Giammarile, F. et al. The EANM and SNMMI practice guideline for lymphoscintigraphy and sentinel node localization in breast cancer. Eur. J. Nucl. Med. Mol. Imaging 40, 1932–1947 (2013).

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Wawroschek, F. et al. The sentinel lymph node concept in prostate cancer - first results of gamma probe-guided sentinel lymph node identification. Eur. Urol. 36, 595–600 (1999).

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Brenot-Rossi, I. et al. Radioguided sentinel lymph node dissection in patients with localised prostate carcinoma: influence of the dose of radiolabelled colloid to avoid failure of the procedure. Eur. J. Nucl. Med. Mol. Imaging 35, 32–38 (2008).

    Article  PubMed  Google Scholar 

  67. 67.

    Holl, G. et al. Validation of sentinel lymph node dissection in prostate cancer: experience in more than 2,000 patients. Eur. J. Nucl. Med. Mol. Imaging 36, 1377–1382 (2009).

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Sadeghi, R. et al. Sentinel node mapping in the prostate cancer. Meta-analysis. Nuklearmedizin 50, 107–115 (2011).

    CAS  Article  PubMed  Google Scholar 

  69. 69.

    Vermeeren, L. et al. Paraaortic sentinel lymph nodes: toward optimal detection and intraoperative localization using SPECT/CT and intraoperative real-time imaging. J. Nucl. Med. 51, 376–382 (2010).

    Article  PubMed  Google Scholar 

  70. 70.

    van den Berg, N. S. et al. Sentinel lymph node biopsy for prostate cancer: a hybrid approach. J. Nucl. Med. 54, 493–496 (2013).

    Article  PubMed  Google Scholar 

  71. 71.

    Fuerst, B. et al. First robotic SPECT for minimally invasive sentinel lymph node mapping. IEEE Trans. Med. Imaging 35, 830–838 (2016).

    Article  PubMed  Google Scholar 

  72. 72.

    Vermeeren, L. et al. Lymphatic drainage from the treated versus untreated prostate: feasibility of sentinel node biopsy in recurrent cancer. Eur. J. Nucl. Med. Mol. Imaging 37, 2021–2026 (2010).

    Article  PubMed  Google Scholar 

  73. 73.

    Vermeeren, L. et al. Intraoperative radioguidance with a portable gamma camera: a novel technique for laparoscopic sentinel node localisation in urological malignancies. Eur. J. Nucl. Med. Mol. Imaging 36, 1029–1036 (2009).

    CAS  Article  PubMed  Google Scholar 

  74. 74.

    Meershoek, P. et al. Robot-assisted laparoscopic surgery using DROP-IN radioguidance: first-in-human translation. Eur. J. Nucl. Med. Mol. Imaging 46, 49–53 (2019).

    CAS  Article  PubMed  Google Scholar 

  75. 75.

    van Oosterom, M. N. et al. Revolutionizing (robot-assisted) laparoscopic gamma tracing using a drop-in gamma probe technology. Am. J. Nucl. Med. Mol. Imaging 6, 1–17 (2016).

    PubMed  PubMed Central  Google Scholar 

  76. 76.

    van den Berg, N. S. et al. Multispectral fluorescence imaging during robot-assisted laparoscopic sentinel node biopsy: a first step towards a fluorescence-based anatomic roadmap. Eur. Urol. 72, 110–117 (2017).

    Article  PubMed  Google Scholar 

  77. 77.

    Food and Drug Administration. NDA 11-525-S-017: IC-GREEN™: Indocyanine-green for injection. FDA (2006).

  78. 78.

    Jeschke, S. et al. Visualisation of the lymph node pathway in real time by laparoscopic radioisotope- and fluorescence-guided sentinel lymph node dissection in prostate cancer staging. Urology 80, 1080–1086 (2012).

    Article  PubMed  Google Scholar 

  79. 79.

    van Leeuwen, A. C. et al. Tracer-cocktail injections for combined pre- and intraoperative multimodal imaging of lymph nodes in a spontaneous mouse prostate tumor model. J. Biomed. Opt. 16, 016004 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. 80.

    Hruby, S. et al. Fluorescence guided targeted pelvic lymph node dissection for intermediate and high risk prostate cancer. J. Urol. 194, 357–363 (2015).

    Article  PubMed  Google Scholar 

  81. 81.

    Chennamsetty, A. et al. Lymph node fluorescence during robot-assisted radical prostatectomy with indocyanine green: prospective dosing analysis. Clin. Genitourin Cancer 15, e529–e534 (2017).

    Article  PubMed  Google Scholar 

  82. 82.

    Manny, T. B., Patel, M. & Hemal, A. K. Fluorescence-enhanced robotic radical prostatectomy using real-time lymphangiography and tissue marking with percutaneous injection of unconjugated indocyanine green: the initial clinical experience in 50 patients. Eur. Urol. 65, 1162–1168 (2014).

    Article  PubMed  Google Scholar 

  83. 83.

    Morozov, A. O. et al. Near-infrared fluorescence with indocyanine green for diagnostics in urology: initial experience. Urologia 84, 197–202 (2017).

    Article  PubMed  Google Scholar 

  84. 84.

    Nguyen, D. P. et al. A specific mapping study using fluorescence sentinel lymph node detection in patients with intermediate- and high-risk prostate cancer undergoing extended pelvic lymph node dissection. Eur. Urol. 70, 734–737 (2016).

    Article  PubMed  Google Scholar 

  85. 85.

    Ramirez-Backhaus, M. et al. Indocyanine green guided pelvic lymph node dissection: an efficient technique to classify the lymph node status of patients with prostate cancer who underwent radical prostatectomy. J. Urol. 196, 1429–1435 (2016).

    Article  PubMed  Google Scholar 

  86. 86.

    Yuen, K. et al. Intraoperative fluorescence imaging for detection of sentinel lymph nodes and lymphatic vessels during open prostatectomy using indocyanine green. J. Urol. 194, 371–377 (2015).

    Article  PubMed  Google Scholar 

  87. 87.

    Buckle, T. et al. A self-assembled multimodal complex for combined pre- and intraoperative imaging of the sentinel lymph node. Nanotechnology 21, 355101 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. 88.

    KleinJan, G. H. et al. Multimodal hybrid imaging agents for sentinel node mapping as a means to (re)connect nuclear medicine to advances made in robot-assisted surgery. Eur. J. Nucl. Med. Mol. Imaging 43, 1278–1287 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  89. 89.

    van der Poel, H. G. et al. Intraoperative laparoscopic fluorescence guidance to the sentinel lymph node in prostate cancer patients: clinical proof of concept of an integrated functional imaging approach using a multimodal tracer. Eur. Urol. 60, 826–833 (2011).

    Article  PubMed  Google Scholar 

  90. 90.

    van den Berg, N. S. et al. (Near-infrared) fluorescence-guided surgery under ambient light conditions: a next step to embedment of the technology in clinical routine. Ann. Surg. Oncol. 23, 2586–2595 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  91. 91.

    KleinJan, G. H. et al. Hybrid surgical guidance: does hardware integration of γ- and fluorescence imaging modalities make sense? J. Nucl. Med. 58, 646–650 (2017).

    Article  PubMed  Google Scholar 

  92. 92.

    van den Berg, N. S. et al. First-in-human evaluation of a hybrid modality that allows combined radio- and (near-infrared) fluorescence tracing during surgery. Eur. J. Nucl. Med. Mol. Imaging 42, 1639–1647 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. 93.

    Douek, M. et al. Sentinel node biopsy using a magnetic tracer versus standard technique: SentiMAG Multicentre Trial. Ann. Surg. Oncol. 21, 1237–1245 (2014).

    Article  PubMed  Google Scholar 

  94. 94.

    Thill, M. et al. The Central-European SentiMag study: sentinel lymph node biopsy with superparamagnetic iron oxide (SPIO) versus radioisotope. Breast 23, 175–179 (2014).

    Article  PubMed  Google Scholar 

  95. 95.

    Ahmed, M., de Rosales, R. T. & Douek, M. Preclinical studies of the role of iron oxide magnetic nanoparticles for nonpalpable lesion localization in breast cancer. J. Surg. Res. 185, 27–35 (2013).

    CAS  Article  PubMed  Google Scholar 

  96. 96.

    Johnson, L., Pinder, S. E. & Douek, M. Deposition of superparamagnetic iron-oxide nanoparticles in axillary sentinel lymph nodes following subcutaneous injection. Histopathology 62, 481–486 (2013).

    Article  PubMed  Google Scholar 

  97. 97.

    Sekino, M. et al. Handheld magnetic probe with permanent magnet and Hall sensor for identifying sentinel lymph nodes in breast cancer patients. Sci. Rep. 8, 1195 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Winter, A., Woenkhaus, J. & Wawroschek, F. A novel method for intraoperative sentinel lymph node detection in prostate cancer patients using superparamagnetic iron oxide nanoparticles and a handheld magnetometer: the initial clinical experience. Ann. Surg. Oncol. 21, 4390–4396 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Winter, A. et al. Magnetometer guided sentinel lymphadenectomy after intraprostatic injection of superparamagnetic iron oxide nanoparticles in intermediate- and high-risk prostate cancer patients [abstract PD42-01]. J. Urol. 195 (Suppl. 4), e987 (2016).

    Article  Google Scholar 

  100. 100.

    Heesakkers, R. A. et al. Prostate cancer: detection of lymph node metastases outside the routine surgical area with ferumoxtran-10-enhanced MR imaging. Radiology 251, 408–414 (2009).

    Article  PubMed  Google Scholar 

  101. 101.

    Iida, S. et al. In vivo identification of sentinel lymph nodes using MRI and size-controlled and monodispersed magnetite nanoparticles. J. Magn. Reson. Imaging 38, 1346–1355 (2013).

    Article  PubMed  Google Scholar 

  102. 102.

    Stark, D. D. et al. Superparamagnetic iron oxide: clinical application as a contrast agent for MR imaging of the liver. Radiology 168, 297–301 (1988).

    CAS  Article  PubMed  Google Scholar 

  103. 103.

    Pouw, J. J. et al. Pre-operative sentinel lymph node localization in breast cancer with superparamagnetic iron oxide MRI: the SentiMAG Multicentre Trial imaging subprotocol. Br. J. Radiol. 88, 20150634 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Winter, A. et al. Magnetic resonance sentinel lymph node imaging in prostate cancer using intraprostatic injection of superparamagnetic iron oxide nanoparticles: the first in-human results [abstract 1060]. Eur. Urol. Suppl. 15, e1060 (2016).

    Article  Google Scholar 

  105. 105.

    Li, R. et al. The use of PET/CT in prostate cancer. Prostate Cancer Prostatic Dis. 21, 4–21 (2017).

    Article  PubMed  Google Scholar 

  106. 106.

    Perera, M. et al. Sensitivity, specificity, and predictors of positive 68Ga-prostate-specific membrane antigen positron emission tomography in advanced prostate cancer: a systematic review and meta-analysis. Eur. Urol. 70, 926–937 (2016).

    Article  PubMed  Google Scholar 

  107. 107.

    Rauscher, I. et al. Efficacy, predictive factors, and prediction nomograms for 68Ga-labeled prostate-specific membrane antigen-ligand positron-emission tomography/computed tomography in early biochemical recurrent prostate cancer after radical prostatectomy. Eur. Urol. 73, 656–661 (2018).

    Article  PubMed  Google Scholar 

  108. 108.

    Eiber, M. et al. Prostate-specific membrane antigen ligands for imaging and therapy. J. Nucl. Med. 58 (Suppl. 2), 67S–76S (2017).

    CAS  Article  PubMed  Google Scholar 

  109. 109.

    Robu, S. et al. Preclinical evaluation and first patient application of 99mTc-PSMA-I&S for SPECT imaging and radioguided surgery in prostate cancer. J. Nucl. Med. 58, 235–242 (2017).

    CAS  Article  PubMed  Google Scholar 

  110. 110.

    Schottelius, M. et al. [111In]PSMA-I&T: expanding the spectrum of PSMA-I&T applications towards SPECT and radioguided surgery. EJNMMI Res. 5, 68 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Herrmann, K., Nieweg, O. E. & Povoski, S. P. (eds) Radioguided Surgery: Current Applications and Innovative Directions in Clinical Practice (Springer, 2016).

  112. 112.

    Rauscher, I. et al. Value of 111In-prostate-specific membrane antigen (PSMA)-radioguided surgery for salvage lymphadenectomy in recurrent prostate cancer: correlation with histopathology and clinical follow-up. BJU Int. 120, 40–47 (2017).

    CAS  Article  PubMed  Google Scholar 

  113. 113.

    Suardi, N. et al. Long-term outcomes of salvage lymph node dissection for clinically recurrent prostate cancer: results of a single-institution series with a minimum follow-up of 5 years. Eur. Urol. 67, 299–309 (2015).

    Article  PubMed  Google Scholar 

  114. 114.

    Maurer, T. R. et al. 99mTechnetium-based prostate-specific membrane antigen-radioguided surgery in recurrent prostate cancer. Eur. Urol. (2018).

  115. 115.

    KleinJan, G. H. et al. Hybrid radioguided occult lesion localization (hybrid ROLL) of 18F-FDG-avid lesions using the hybrid tracer indocyanine green-99mTc-nanocolloid. Rev. Esp. Med. Nucl. Imagen Mol. 35, 292–297 (2016).

    CAS  PubMed  Google Scholar 

  116. 116.

    Boorjian, S. A. et al. Long-term risk of clinical progression after biochemical recurrence following radical prostatectomy: the impact of time from surgery  to recurrence. Eur. Urol. 59, 893–899 (2011).

    Article  PubMed  Google Scholar 

  117. 117.

    Ost, P. et al. Metastasis-directed therapy of regional and distant recurrences after curative treatment of prostate cancer: a systematic review of the literature. Eur. Urol. 67, 852–863 (2015).

    Article  PubMed  Google Scholar 

  118. 118.

    Keskek, M. et al. Re-evaluation of axillary skip metastases in the era of sentinel lymph node biopsy in breast cancer. Surg. Today 36, 1047–1052 (2006).

    Article  PubMed  Google Scholar 

  119. 119.

    Perera, M. et al. Pelvic lymph node dissection during radical cystectomy for muscle-invasive bladder cancer. Nat. Rev. Urol. 15, 686–692 (2018).

    Article  PubMed  Google Scholar 

Download references


Reviewer information

Nature Reviews Urology thanks B. Brown, A. Green and the other anonymous reviewer(s), for their contribution to the peer review of this work.

Author information




F.W.B.v.L., A.W., H.G.v.D.P., M.E., F.W. and T.M. researched data for the article. F.W.B.v.L., A.W., H.G.v.D.P. and T.M. wrote the manuscript. All authors made a substantial contribution to discussions of content and edited the manuscript before submission.

Corresponding author

Correspondence to Fijs W. B. van Leeuwen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

van Leeuwen, F.W.B., Winter, A., van Der Poel, H.G. et al. Technologies for image-guided surgery for managing lymphatic metastases in prostate cancer. Nat Rev Urol 16, 159–171 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing