Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epigenetics in renal cell cancer: mechanisms and clinical applications

Abstract

Renal cell carcinoma (RCC) is characterized by an infrequent number of somatic mutations. By contrast, epigenetic aberrations are commonly found in RCC, indicating that epigenetic reprogramming is an important event in RCC development. Epigenetic alterations comprise several different aberrations, such as changes in histone modifications, DNA methylation, and microRNA levels, and occur in the most important signalling pathways in RCC, such as the von Hippel–Lindau disease tumour suppressor (VHL)–hypoxia-inducible factor (HIF) pathway, the WNT–β-catenin pathway, and pathways involved in epithelial–mesenchymal transition. Owing to their involvement in these pathways and frequent occurrence in RCC, epigenetic alterations are regarded as potential biomarkers for the early detection of disease and for prediction of prognosis and treatment response. In addition, most of these alterations are potentially reversible, so they also provide new targets for therapy. At the moment, epigenetic biomarkers for RCC are not being used in clinical practice, but targeted epigenetic therapies are under investigation. Understanding the extent of epigenetic changes occurring in RCC and the mechanisms by which they influence disease progression and treatment response, as well as knowledge of current research on biomarkers and treatments, is crucial to successful clinical translation of epigenetics in RCC.

Key points

  • Somatic mutations occur infrequently in renal cell carcinoma (RCC) and, for a long time, mutations in VHL were the only commonly found genetic aberrations.

  • Exome sequencing also revealed relatively frequent mutations in genes that encode histone-modifying and chromatin-modifying proteins, implicating epigenetic reprogramming as a key feature of renal carcinogenesis.

  • Epigenetic modifications are frequent in RCC, and important signalling pathways are epigenetically deregulated by aberrant promoter methylation of pathway components or by abnormal expression of microRNAs.

  • Epigenetic alterations might be promising biomarkers for RCC diagnosis, as well as for prognosis and prediction of therapy response in patients with RCC, and provide new targets for therapy.

  • Despite great interest in epigenetic alterations in RCC, no epigenetic markers are currently used in the clinic, and the quality of research and reporting has to be improved to enable clinical translation.

  • Therapeutic targeting of the epigenome might be attractive in RCC; in particular, the combination of epigenetic therapy and antiangiogenic or immune checkpoint treatments is a promising paradigm that could overcome frequent monotherapy resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the epigenetic regulation of gene expression.
Fig. 2: Epigenetic deregulation of the VHL–HIF pathway in RCC.
Fig. 3: Effect of epigenetic alterations on key signalling pathways in RCC.

Similar content being viewed by others

References

  1. Ferlay, J. et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136, E359–E386 (2015).

    Article  PubMed  CAS  Google Scholar 

  2. Moch, H. An overview of renal cell cancer: pathology and genetics. Semin. Cancer Biol. 23, 3–9 (2013).

    Article  PubMed  CAS  Google Scholar 

  3. Maher, E. R. Genomics and epigenomics of renal cell carcinoma. Semin. Cancer Biol. 23, 10–17 (2013).

    Article  PubMed  CAS  Google Scholar 

  4. Baldewijns, M. M. et al. Genetics and epigenetics of renal cell cancer. Biochim. Biophys. Acta 1785, 133–155 (2008).

    PubMed  CAS  Google Scholar 

  5. Banks, R. E. et al. Genetic and epigenetic analysis of von Hippel-Lindau (VHL) gene alterations and relationship with clinical variables in sporadic renal cancer. Cancer Res. 66, 2000–2011 (2006).

    Article  PubMed  CAS  Google Scholar 

  6. Gnarra, J. R. et al. Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat. Genet. 7, 85–90 (1994).

    Article  PubMed  CAS  Google Scholar 

  7. Schmidt, L. S. & Linehan, W. M. Genetic predisposition to kidney cancer. Semin. Oncol. 43, 566–574 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Schmidt, L. S. & Linehan, W. M. Hereditary leiomyomatosis and renal cell carcinoma. Int. J. Nephrol. Renovasc Dis. 7, 253–260 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Schmidt, L. S. & Linehan, W. M. Molecular genetics and clinical features of Birt-Hogg-Dube syndrome. Nat. Rev. Urol. 12, 558–569 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Dalgliesh, G. L. et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463, 360–363 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Sato, Y. et al. Integrated molecular analysis of clear-cell renal cell carcinoma. Nat. Genet. 45, 860–867 (2013).

    Article  PubMed  CAS  Google Scholar 

  12. Guo, G. et al. Frequent mutations of genes encoding ubiquitin-mediated proteolysis pathway components in clear cell renal cell carcinoma. Nat. Genet. 44, 17–19 (2012).

    Article  CAS  Google Scholar 

  13. Hakimi, A. A. et al. Adverse outcomes in clear cell renal cell carcinoma with mutations of 3p21 epigenetic regulators BAP1 and SETD2: a report by MSKCC and the KIRC TCGA research network. Clin. Cancer Res. 19, 3259–3267 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Hakimi, A. A. et al. Clinical and pathologic impact of select chromatin-modulating tumor suppressors in clear cell renal cell carcinoma. Eur. Urol. 63, 848–854 (2013).

    Article  PubMed  Google Scholar 

  15. van Haaften, G. et al. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat. Genet. 41, 521–523 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Pena-Llopis, S. et al. BAP1 loss defines a new class of renal cell carcinoma. Nat. Genet. 44, 751–759 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Varela, I. et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469, 539–542 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Morris, M. R. & Maher, E. R. Epigenetics of renal cell carcinoma: the path towards new diagnostics and therapeutics. Genome Med. 2, 59 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43–49 (2013).

    Article  CAS  Google Scholar 

  20. Tessarz, P. & Kouzarides, T. Histone core modifications regulating nucleosome structure and dynamics. Nat. Rev. Mol. Cell Biol. 15, 703–708 (2014).

    Article  PubMed  CAS  Google Scholar 

  21. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Article  PubMed  CAS  Google Scholar 

  22. Dawson, M. A. & Kouzarides, T. Cancer epigenetics: from mechanism to therapy. Cell 150, 12–27 (2012).

    Article  PubMed  CAS  Google Scholar 

  23. Herman, J. G. & Baylin, S. B. Gene silencing in cancer in association with promoter hypermethylation. N. Engl. J. Med. 349, 2042–2054 (2003).

    Article  PubMed  CAS  Google Scholar 

  24. Esteller, M. Molecular origins of cancer: epigenetics in cancer. N. Engl. J. Med. 358, 1148–1159 (2008).

    Article  PubMed  CAS  Google Scholar 

  25. Jones, P. A., Issa, J. P. & Baylin, S. Targeting the cancer epigenome for therapy. Nat. Rev. Genet. 17, 630–641 (2016).

    Article  PubMed  CAS  Google Scholar 

  26. Seles, M. et al. Current insights into long non-coding RNAs in renal cell carcinoma. Int. J. Mol. Sci. 17, 573 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Du, Z. et al. Integrative analyses reveal a long noncoding RNA-mediated sponge regulatory network in prostate cancer. Nat. Commun. 7, 10982 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Morris, M. R. et al. Identification of candidate tumour suppressor genes frequently methylated in renal cell carcinoma. Oncogene 29, 2104–2117 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Ricketts, C. J., Hill, V. K. & Linehan, W. M. Tumor-specific hypermethylation of epigenetic biomarkers, including SFRP1, predicts for poorer survival in patients from the TCGA kidney renal clear cell carcinoma (KIRC) project. PLoS ONE 9, e85621 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. van Vlodrop, I. J. H. et al. A four-gene promoter methylation marker panel consisting of GREM1, NEURL, LAD1, and NEFH predicts survival of clear cell renal cell cancer patients. Clin. Cancer Res. 23, 2006–2018 (2017).

    Article  PubMed  CAS  Google Scholar 

  31. Esteller, M. et al. p14ARF silencing by promoter hypermethylation mediates abnormal intracellular localization of MDM2. Cancer Res. 61, 2816–2821 (2001).

    PubMed  CAS  Google Scholar 

  32. Dulaimi, E. et al. Promoter hypermethylation profile of kidney cancer. Clin. Cancer Res. 10, 3972–3979 (2004).

    Article  PubMed  CAS  Google Scholar 

  33. Hoque, M. O. et al. Quantitative detection of promoter hypermethylation of multiple genes in the tumor, urine, and serum DNA of patients with renal cancer. Cancer Res. 64, 5511–5517 (2004).

    Article  PubMed  CAS  Google Scholar 

  34. Okuda, H. et al. Epigenetic inactivation of the candidate tumor suppressor gene HOXB13 in human renal cell carcinoma. Oncogene 25, 1733–1742 (2006).

    Article  PubMed  CAS  Google Scholar 

  35. Hori, Y. et al. Oxidative stress and DNA hypermethylation status in renal cell carcinoma arising in patients on dialysis. J. Pathol. 212, 218–226 (2007).

    Article  PubMed  CAS  Google Scholar 

  36. Costa, V. L. et al. Quantitative promoter methylation analysis of multiple cancer-related genes in renal cell tumors. BMC Cancer 7, 133 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Hauser, S., Zahalka, T., Fechner, G., Muller, S. C. & Ellinger, J. Serum DNA hypermethylation in patients with kidney cancer: results of a prospective study. Anticancer Res. 33, 4651–4656 (2013).

    PubMed  CAS  Google Scholar 

  38. Battagli, C. et al. Promoter hypermethylation of tumor suppressor genes in urine from kidney cancer patients. Cancer Res. 63, 8695–8699 (2003).

    PubMed  CAS  Google Scholar 

  39. Tanaka, T., Iwasa, Y., Kondo, S., Hiai, H. & Toyokuni, S. High incidence of allelic loss on chromosome 5 and inactivation of p15INK4B and p16INK4A tumor suppressor genes in oxystress-induced renal cell carcinoma of rats. Oncogene 18, 3793–3797 (1999).

    Article  PubMed  CAS  Google Scholar 

  40. Sanz-Casla, M. T. et al. Loss of heterozygosity and methylation of p16 in renal cell carcinoma. Urol. Res. 31, 159–162 (2003).

    Article  PubMed  CAS  Google Scholar 

  41. Arai, E. et al. Regional DNA hypermethylation and DNA methyltransferase (DNMT) 1 protein overexpression in both renal tumors and corresponding nontumorous renal tissues. Int. J. Cancer 119, 288–296 (2006).

    Article  PubMed  CAS  Google Scholar 

  42. Vidaurreta, M. et al. Inactivation of p16 by CpG hypermethylation in renal cell carcinoma. Urol. Oncol. 26, 239–245 (2008).

    Article  PubMed  CAS  Google Scholar 

  43. Arai, E. et al. Genetic clustering of clear cell renal cell carcinoma based on array-comparative genomic hybridization: its association with DNA methylation alteration and patient outcome. Clin. Cancer Res. 14, 5531–5539 (2008).

    Article  PubMed  CAS  Google Scholar 

  44. Onay, H., Pehlivan, S., Koyuncuoglu, M., Kirkali, Z. & Ozkinay, F. Multigene methylation analysis of conventional renal cell carcinoma. Urol. Int. 83, 107–112 (2009).

    Article  PubMed  CAS  Google Scholar 

  45. de Martino, M., Klatte, T., Haitel, A. & Marberger, M. Serum cell-free DNA in renal cell carcinoma: a diagnostic and prognostic marker. Cancer 118, 82–90 (2012).

    Article  PubMed  CAS  Google Scholar 

  46. Girgis, A. H. et al. Multilevel whole-genome analysis reveals candidate biomarkers in clear cell renal cell carcinoma. Cancer Res. 72, 5273–5284 (2012).

    Article  PubMed  CAS  Google Scholar 

  47. Dreijerink, K. et al. The candidate tumor suppressor gene, RASSF1A, from human chromosome 3p21.3 is involved in kidney tumorigenesis. Proc. Natl Acad. Sci. USA 98, 7504–7509 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Morrissey, C. et al. Epigenetic inactivation of the RASSF1A 3p21.3 tumor suppressor gene in both clear cell and papillary renal cell carcinoma. Cancer Res. 61, 7277–7281 (2001).

    PubMed  CAS  Google Scholar 

  49. Yoon, J. H., Dammann, R. & Pfeifer, G. P. Hypermethylation of the CpG island of the RASSF1A gene in ovarian and renal cell carcinomas. Int. J. Cancer 94, 212–217 (2001).

    Article  PubMed  CAS  Google Scholar 

  50. Yano, T. et al. Hypermethylation of the CpG island of connexin 32, a candiate tumor suppressor gene in renal cell carcinomas from hemodialysis patients. Cancer Lett. 208, 137–142 (2004).

    Article  PubMed  CAS  Google Scholar 

  51. Tokinaga, K. et al. Hypermethylation of the RASSF1A tumor suppressor gene in Japanese clear cell renal cell carcinoma. Oncol. Rep. 12, 805–810 (2004).

    PubMed  CAS  Google Scholar 

  52. Gonzalgo, M. L. et al. Molecular profiling and classification of sporadic renal cell carcinoma by quantitative methylation analysis. Clin. Cancer Res. 10, 7276–7283 (2004).

    Article  PubMed  CAS  Google Scholar 

  53. Kawai, Y. et al. Methylation level of the RASSF1A promoter is an independent prognostic factor for clear-cell renal cell carcinoma. Ann. Oncol. 21, 1612–1617 (2010).

    Article  PubMed  CAS  Google Scholar 

  54. Ellinger, J. et al. DNA hypermethylation in papillary renal cell carcinoma. BJU Int. 107, 664–669 (2011).

    Article  PubMed  Google Scholar 

  55. Klacz, J. et al. Decreased expression of RASSF1A tumor suppressor gene is associated with worse prognosis in clear cell renal cell carcinoma. Int. J. Oncol. 48, 55–66 (2016).

    Article  PubMed  CAS  Google Scholar 

  56. Skrypkina, I. et al. Concentration and methylation of cell-free DNA from blood plasma as diagnostic markers of renal cancer. Dis. Markers 2016, 3693096 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Minciu, R., Tudor, A., Pupca, G., Daminescu, L. & Dumache, R. Renal cancer diagnosed by noninvasive methods from body fluids by quantitative methylation-specific PCR(qMSP). Clin. Lab 62, 1563–1568 (2016).

    PubMed  CAS  Google Scholar 

  58. Morris, M. R. et al. Multigene methylation analysis of Wilms’ tumour and adult renal cell carcinoma. Oncogene 22, 6794–6801 (2003).

    Article  PubMed  CAS  Google Scholar 

  59. Wethkamp, N. et al. Expression of death-associated protein kinase during tumour progression of human renal cell carcinomas: hypermethylation-independent mechanisms of inactivation. Eur. J. Cancer 42, 264–274 (2006).

    Article  PubMed  CAS  Google Scholar 

  60. Christoph, F. et al. Promoter hypermethylation profile of kidney cancer with new proapoptotic p53 target genes and clinical implications. Clin. Cancer Res. 12, 5040–5046 (2006).

    Article  PubMed  CAS  Google Scholar 

  61. Christoph, F. et al. mRNA expression profiles of methylated APAF-1 and DAPK-1 tumor suppressor genes uncover clear cell renal cell carcinomas with aggressive phenotype. J. Urol. 178, 2655–2659 (2007).

    Article  PubMed  CAS  Google Scholar 

  62. Christoph, F. et al. Comparative promoter methylation analysis of p53 target genes in urogenital cancers. Urol. Int. 80, 398–404 (2008).

    Article  PubMed  CAS  Google Scholar 

  63. Ahmad, S. T., Arjumand, W., Seth, A., Saini, A. K. & Sultana, S. Methylation of the APAF-1 and DAPK-1 promoter region correlates with progression of renal cell carcinoma in North Indian population. Tumour Biol. 33, 395–402 (2012).

    Article  PubMed  CAS  Google Scholar 

  64. Esteller, M. et al. Inactivation of glutathione S-transferase P1 gene by promoter hypermethylation in human neoplasia. Cancer Res. 58, 4515–4518 (1998).

    PubMed  CAS  Google Scholar 

  65. Schouten, L. J., Deckers, I. A., van den Brandt, P. A., Baldewijns, M. M. & van Engeland, M. Alcohol and dietary folate intake and promoter CpG island methylation in clear-cell renal cell cancer. Nutr. Cancer 68, 1097–1107 (2016).

    Article  PubMed  CAS  Google Scholar 

  66. Deckers, I. A. et al. Promoter methylation of CDO1 identifies clear-cell renal cell cancer patients with poor survival outcome. Clin. Cancer Res. 21, 3492–3500 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Banumathy, G. & Cairns, P. Signaling pathways in renal cell carcinoma. Cancer Biol. Ther. 10, 658–664 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Shenoy, N. & Pagliaro, L. Sequential pathogenesis of metastatic VHL mutant clear cell renal cell carcinoma: putting it together with a translational perspective. Ann. Oncol. 27, 1685–1695 (2016).

    Article  PubMed  CAS  Google Scholar 

  69. Joosten, S. C. et al. Resistance to sunitinib in renal cell carcinoma: from molecular mechanisms to predictive markers and future perspectives. Biochim. Biophys. Acta 1855, 1–16 (2015).

    PubMed  CAS  Google Scholar 

  70. Gossage, L., Eisen, T. & Maher, E. R. VHL, the story of a tumour suppressor gene. Nat. Rev. Cancer 15, 55–64 (2015).

    Article  PubMed  CAS  Google Scholar 

  71. Hu, C. J., Wang, L. Y., Chodosh, L. A., Keith, B. & Simon, M. C. Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol. Cell. Biol. 23, 9361–9374 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Raval, R. R. et al. Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol. Cell. Biol. 25, 5675–5686 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Yu, G. et al. Pseudogene PTENP1 functions as a competing endogenous RNA to suppress clear cell renal cell carcinoma progression. Mol. Cancer Ther. 13, 3086–3097 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Dey, N. et al. microRNA-21 governs TORC1 activation in renal cancer cell proliferation and invasion. PLoS ONE 7, e37366 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Szabo, Z. et al. Expression of miRNA-21 and miRNA-221 in clear cell renal cell carcinoma (ccRCC) and their possible role in the development of ccRCC. Urol Oncol 34, 533.e521–533.e527 (2016).

    Article  Google Scholar 

  76. Ma, Q. et al. miR-19a correlates with poor prognosis of clear cell renal cell carcinoma patients via promoting cell proliferation and suppressing PTEN/SMAD4 expression. Int. J. Oncol. 49, 2589–2599 (2016).

    Article  PubMed  CAS  Google Scholar 

  77. Fan, W., Huang, J., Xiao, H. & Liang, Z. MicroRNA-22 is downregulated in clear cell renal cell carcinoma, and inhibits cell growth, migration and invasion by targeting PTEN. Mol. Med. Rep. 13, 4800–4806 (2016).

    Article  PubMed  CAS  Google Scholar 

  78. Lian, J. H., Wang, W. H., Wang, J. Q., Zhang, Y. H. & Li, Y. MicroRNA-122 promotes proliferation, invasion and migration of renal cell carcinoma cells through the PI3K/Akt signaling pathway. Asian Pac. J. Cancer Prev. 14, 5017–5021 (2013).

    Article  PubMed  Google Scholar 

  79. Zaman, M. S. et al. Inhibition of PTEN gene expression by oncogenic miR-23b-3p in renal cancer. PLoS ONE 7, e50203 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Watson, C. J. et al. Hypoxia-induced epigenetic modifications are associated with cardiac tissue fibrosis and the development of a myofibroblast-like phenotype. Hum. Mol. Genet. 23, 2176–2188 (2014).

    Article  PubMed  CAS  Google Scholar 

  81. Mathew, L. K. et al. Restricted expression of miR-30c-2-3p and miR-30a-3p in clear cell renal cell carcinomas enhances HIF2alpha activity. Cancer Discov. 4, 53–60 (2014).

    Article  PubMed  CAS  Google Scholar 

  82. Huang, J. et al. Hypoxia-induced downregulation of miR-30c promotes epithelial-mesenchymal transition in human renal cell carcinoma. Cancer Sci. 104, 1609–1617 (2013).

    Article  PubMed  CAS  Google Scholar 

  83. Yoshino, H. et al. microRNA-210-3p depletion by CRISPR/Cas9 promoted tumorigenesis through revival of TWIST1 in renal cell carcinoma. Oncotarget 8, 20881–20894 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  84. McCormick, R. I. et al. miR-210 is a target of hypoxia-inducible factors 1 and 2 in renal cancer, regulates ISCU and correlates with good prognosis. Br. J. Cancer 108, 1133–1142 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Neal, C. S., Michael, M. Z., Rawlings, L. H., Van der Hoek, M. B. & Gleadle, J. M. The VHL-dependent regulation of microRNAs in renal cancer. BMC Med. 8, 64 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Nakada, C. et al. Overexpression of miR-210, a downstream target of HIF1alpha, causes centrosome amplification in renal carcinoma cells. J. Pathol. 224, 280–288 (2011).

    Article  PubMed  CAS  Google Scholar 

  87. Redova, M. et al. MiR-210 expression in tumor tissue and in vitro effects of its silencing in renal cell carcinoma. Tumour Biol. 34, 481–491 (2013).

    Article  PubMed  CAS  Google Scholar 

  88. Huang, X. & Zuo, J. Emerging roles of miR-210 and other non-coding RNAs in the hypoxic response. Acta Biochim. Biophys. Sin. 46, 220–232 (2014).

    Article  PubMed  CAS  Google Scholar 

  89. van Vlodrop, I. J. et al. Prognostic significance of Gremlin1 (GREM1) promoter CpG island hypermethylation in clear cell renal cell carcinoma. Am. J. Pathol. 176, 575–584 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Mitola, S. et al. Gremlin is a novel agonist of the major proangiogenic receptor VEGFR2. Blood 116, 3677–3680 (2010).

    Article  PubMed  CAS  Google Scholar 

  91. Baldewijns, M. M. et al. High-grade clear cell renal cell carcinoma has a higher angiogenic activity than low-grade renal cell carcinoma based on histomorphological quantification and qRT-PCR mRNA expression profile. Br. J. Cancer 96, 1888–1895 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Jain, R. K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307, 58–62 (2005).

    Article  PubMed  CAS  Google Scholar 

  93. Qi, J. H. et al. A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nat. Med. 9, 407–415 (2003).

    Article  PubMed  CAS  Google Scholar 

  94. Bachman, K. E. et al. Methylation-associated silencing of the tissue inhibitor of metalloproteinase-3 gene suggest a suppressor role in kidney, brain, and other human cancers. Cancer Res. 59, 798–802 (1999).

    PubMed  CAS  Google Scholar 

  95. Masson, D. et al. Loss of expression of TIMP3 in clear cell renal cell carcinoma. Eur. J. Cancer 46, 1430–1437 (2010).

    Article  PubMed  CAS  Google Scholar 

  96. Shay, G., Lynch, C. C. & Fingleton, B. Moving targets: emerging roles for MMPs in cancer progression and metastasis. Matrix Biol. https://doi.org/10.1016/j.matbio.2015.01.019 (2015).

  97. Cai, Y., Li, H. & Zhang, Y. Downregulation of microRNA-206 suppresses clear cell renal carcinoma proliferation and invasion by targeting vascular endothelial growth factor A. Oncol. Rep. 35, 1778–1786 (2016).

    Article  PubMed  CAS  Google Scholar 

  98. Muller, S. & Nowak, K. Exploring the miRNA-mRNA regulatory network in clear cell renal cell carcinomas by next-generation sequencing expression profiles. Biomed. Res. Int. 2014, 948408 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Yuan, H. X. et al. Elevated microRNA-185 is associated with high vascular endothelial growth factor receptor 2 expression levels and high microvessel density in clear cell renal cell carcinoma. Tumour Biol. 35, 12757–12763 (2014).

    Article  PubMed  CAS  Google Scholar 

  100. Jung, M. et al. MicroRNA profiling of clear cell renal cell cancer identifies a robust signature to define renal malignancy. J. Cell. Mol. Med. 13, 3918–3928 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Shinmei, S. et al. MicroRNA-155 is a predictive marker for survival in patients with clear cell renal cell carcinoma. Int. J. Urol. 20, 468–477 (2013).

    Article  PubMed  CAS  Google Scholar 

  102. White, N. M. et al. miRNA profiling for clear cell renal cell carcinoma: biomarker discovery and identification of potential controls and consequences of miRNA dysregulation. J. Urol. 186, 1077–1083 (2011).

    Article  PubMed  CAS  Google Scholar 

  103. Slaby, O. et al. Expression of miRNA-106b in conventional renal cell carcinoma is a potential marker for prediction of early metastasis after nephrectomy. J. Exp. Clin. Cancer Res. 29, 90 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Gao, Y. et al. miR-155 regulates the proliferation and invasion of clear cell renal cell carcinoma cells by targeting E2F2. Oncotarget 7, 20324–20337 (2016).

    PubMed  PubMed Central  Google Scholar 

  105. Wojcicka, A. et al. Epigenetic regulation of thyroid hormone receptor beta in renal cancer. PLoS ONE 9, e97624 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Li, S. et al. microRNA-155 silencing inhibits proliferation and migration and induces apoptosis by upregulating BACH1 in renal cancer cells. Mol. Med. Rep. 5, 949–954 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Kong, W. et al. Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer. Oncogene 33, 679–689 (2014).

    Article  PubMed  CAS  Google Scholar 

  108. Pecot, C. V. et al. Tumour angiogenesis regulation by the miR-200 family. Nat. Commun. 4, 2427 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Komiya, Y. & Habas, R. Wnt signal transduction pathways. Organogenesis 4, 68–75 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Saini, S., Majid, S. & Dahiya, R. The complex roles of Wnt antagonists in RCC. Nat. Rev. Urol. 8, 690–699 (2011).

    Article  PubMed  CAS  Google Scholar 

  111. Urakami, S. et al. Wnt antagonist family genes as biomarkers for diagnosis, staging, and prognosis of renal cell carcinoma using tumor and serum DNA. Clin. Cancer Res. 12, 6989–6997 (2006).

    Article  PubMed  CAS  Google Scholar 

  112. Gumz, M. L. et al. Secreted frizzled-related protein 1 loss contributes to tumor phenotype of clear cell renal cell carcinoma. Clin. Cancer Res. 13, 4740–4749 (2007).

    Article  PubMed  CAS  Google Scholar 

  113. Dahl, E. et al. Frequent loss of SFRP1 expression in multiple human solid tumours: association with aberrant promoter methylation in renal cell carcinoma. Oncogene 26, 5680–5691 (2007).

    Article  PubMed  CAS  Google Scholar 

  114. Awakura, Y., Nakamura, E., Ito, N., Kamoto, T. & Ogawa, O. Methylation-associated silencing of SFRP1 in renal cell carcinoma. Oncol. Rep. 20, 1257–1263 (2008).

    PubMed  CAS  Google Scholar 

  115. Hirata, H. et al. Wnt antagonist DKK1 acts as a tumor suppressor gene that induces apoptosis and inhibits proliferation in human renal cell carcinoma. Int. J. Cancer 128, 1793–1803 (2011).

    Article  PubMed  CAS  Google Scholar 

  116. Hu, G. et al. miR-203a regulates proliferation, migration, and apoptosis by targeting glycogen synthase kinase-3beta in human renal cell carcinoma. Tumour Biol. 35, 11443–11453 (2014).

    Article  PubMed  CAS  Google Scholar 

  117. Kim, M. S. et al. Neurofilament heavy polypeptide regulates the Akt-beta-catenin pathway in human esophageal squamous cell carcinoma. PLoS ONE 5, e9003 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Valenta, T., Hausmann, G. & Basler, K. The many faces and functions of beta-catenin. EMBO J. 31, 2714–2736 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Evans, A. J. et al. VHL promotes E2 box-dependent E-cadherin transcription by HIF-mediated regulation of SIP1 and snail. Mol. Cell. Biol. 27, 157–169 (2007).

    Article  PubMed  CAS  Google Scholar 

  120. Mehlen, P., Delloye-Bourgeois, C. & Chedotal, A. Novel roles for slits and netrins: axon guidance cues as anticancer targets? Nat. Rev. Cancer 11, 188–197 (2011).

    Article  PubMed  CAS  Google Scholar 

  121. Dallol, A. et al. Tumour specific promoter region methylation of the human homologue of the Drosophila Roundabout gene DUTT1 (ROBO1) in human cancers. Oncogene 21, 3020–3028 (2002).

    Article  PubMed  CAS  Google Scholar 

  122. Astuti, D. et al. SLIT2 promoter methylation analysis in neuroblastoma, Wilms’ tumour and renal cell carcinoma. Br. J. Cancer 90, 515–521 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Ma, W. J. et al. Reduced expression of Slit2 in renal cell carcinoma. Med. Oncol. 31, 768 (2014).

    Article  PubMed  CAS  Google Scholar 

  124. Machackova, T. et al. MiR-429 is linked to metastasis and poor prognosis in renal cell carcinoma by affecting epithelial-mesenchymal transition. Tumour Biol. 37, 14653–14658 (2016).

    Article  PubMed  CAS  Google Scholar 

  125. Wu, D. et al. Tumor-suppressing effects of microRNA-429 in human renal cell carcinoma via the downregulation of Sp1. Oncol. Lett. 12, 2906–2911 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Mlcochova, H. et al. Epithelial-mesenchymal transition-associated microRNA/mRNA signature is linked to metastasis and prognosis in clear-cell renal cell carcinoma. Sci. Rep. 6, 31852 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Chen, D. et al. Tumor suppressive microRNA429 regulates cellular function by targeting VEGF in clear cell renal cell carcinoma. Mol. Med. Rep. 13, 1361–1366 (2016).

    Article  PubMed  CAS  Google Scholar 

  128. He, H. et al. MicroRNA expression profiling in clear cell renal cell carcinoma: identification and functional validation of key miRNAs. PLoS ONE 10, e0125672 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Cheng, T. et al. Differential microRNA expression in renal cell carcinoma. Oncol. Lett. 6, 769–776 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Qiu, M. et al. MicroRNA-429 suppresses cell proliferation, epithelial-mesenchymal transition, and metastasis by direct targeting of BMI1 and E2F3 in renal cell carcinoma. Urol Oncol. https://doi.org/10.1016/j.urolonc.2015.03.016 (2015).

  131. Wang, X. et al. MicroRNA-200a-3p suppresses tumor proliferation and induces apoptosis by targeting SPAG9 in renal cell carcinoma. Biochem. Biophys. Res. Commun. 470, 620–626 (2016).

    Article  PubMed  CAS  Google Scholar 

  132. Lu, R. et al. Tumor suppressive microRNA-200a inhibits renal cell carcinoma development by directly targeting TGFB2. Tumour Biol. 36, 6691–6700 (2015).

    Article  PubMed  CAS  Google Scholar 

  133. Silva-Santos, R. M. et al. MicroRNA profile: a promising ancillary tool for accurate renal cell tumour diagnosis. Br. J. Cancer 109, 2646–2653 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Jiang, J. et al. Demethylation drug 5-Aza-2ʹ-deoxycytidine-induced upregulation of miR-200c inhibits the migration, invasion and epithelial-mesenchymal transition of clear cell renal cell carcinoma in vitro. Oncol. Lett. 11, 3167–3172 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Wang, X. et al. miR-200c Targets CDK2 and suppresses tumorigenesis in renal cell carcinoma. Mol. Cancer Res. 13, 1567–1577 (2015).

    Article  PubMed  CAS  Google Scholar 

  136. Butz, H. et al. miRNA-target network reveals miR-124as a key miRNA contributing to clear cell renal cell carcinoma aggressive behaviour by targeting CAV1 and FLOT1. Oncotarget 6, 12543–12557 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Chang, I. et al. Loss of miR-200c up-regulates CYP1B1 and confers docetaxel resistance in renal cell carcinoma. Oncotarget 6, 7774–7787 (2015).

    PubMed  PubMed Central  Google Scholar 

  138. Wang, X. et al. microRNA-200c modulates the epithelial-to-mesenchymal transition in human renal cell carcinoma metastasis. Oncol. Rep. 30, 643–650 (2013).

    Article  PubMed  CAS  Google Scholar 

  139. Liu, H. et al. Identifying mRNA targets of microRNA dysregulated in cancer: with application to clear cell renal cell carcinoma. BMC Syst. Biol. 4, 51 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Nakada, C. et al. Genome-wide microRNA expression profiling in renal cell carcinoma: significant down-regulation of miR-141 and miR-200c. J. Pathol. 216, 418–427 (2008).

    Article  PubMed  CAS  Google Scholar 

  141. Yoshino, H. et al. Epithelial-mesenchymal transition-related microRNA-200s regulate molecular targets and pathways in renal cell carcinoma. J. Hum. Genet. 58, 508–516 (2013).

    Article  PubMed  CAS  Google Scholar 

  142. Liep, J. et al. Cooperative effect of miR-141-3p and miR-145-5p in the regulation of targets in clear cell renal cell carcinoma. PLoS ONE 11, e0157801 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Chen, X. et al. miR-141 is a key regulator of renal cell carcinoma proliferation and metastasis by controlling EphA2 expression. Clin. Cancer Res. 20, 2617–2630 (2014).

    Article  PubMed  CAS  Google Scholar 

  144. Yu, X. Y., Zhang, Z., Liu, J., Zhan, B. & Kong, C. Z. MicroRNA-141 is downregulated in human renal cell carcinoma and regulates cell survival by targeting CDC25B. Onco Targets Ther. 6, 349–354 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  145. Chen, Z. et al. miRNA-205 is a candidate tumor suppressor that targets ZEB2 in renal cell carcinoma. Oncol. Res. Treat. 37, 658–664 (2014).

    Article  PubMed  CAS  Google Scholar 

  146. Majid, S. et al. MicroRNA-205 inhibits Src-mediated oncogenic pathways in renal cancer. Cancer Res. 71, 2611–2621 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Gregory, P. A. et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 10, 593–601 (2008).

    Article  PubMed  CAS  Google Scholar 

  148. Wang, R. N. et al. Bone morphogenetic protein (BMP) signaling in development and human diseases. Genes Dis. 1, 87–105 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Samavarchi-Tehrani, P. et al. Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell 7, 64–77 (2010).

    Article  PubMed  CAS  Google Scholar 

  150. Mitsui, Y. et al. Inactivation of bone morphogenetic protein 2 may predict clinical outcome and poor overall survival for renal cell carcinoma through epigenetic pathways. Oncotarget 6, 9577–9591 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Ricketts, C. J. et al. Genome-wide CpG island methylation analysis implicates novel genes in the pathogenesis of renal cell carcinoma. Epigenetics 7, 278–290 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Massague, J. TGFbeta signalling in context. Nat. Rev. Mol. Cell Biol. 13, 616–630 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Xu, J., Lamouille, S. & Derynck, R. TGF-beta-induced epithelial to mesenchymal transition. Cell Res. 19, 156–172 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Morris, M. R. et al. Genome-wide methylation analysis identifies epigenetically inactivated candidate tumour suppressor genes in renal cell carcinoma. Oncogene 30, 1390–1401 (2011).

    Article  PubMed  CAS  Google Scholar 

  155. ten Dijke, P. & Arthur, H. M. Extracellular control of TGFbeta signalling in vascular development and disease. Nat. Rev. Mol. Cell Biol. 8, 857–869 (2007).

    Article  PubMed  CAS  Google Scholar 

  156. Michos, O. et al. Gremlin-mediated BMP antagonism induces the epithelial-mesenchymal feedback signaling controlling metanephric kidney and limb organogenesis. Development 131, 3401–3410 (2004).

    Article  PubMed  CAS  Google Scholar 

  157. Lin, Y. L., Wang, Y. L., Fu, X. L. & Ma, J. G. Aberrant methylation of PCDH8 is a potential prognostic biomarker for patients with clear cell renal cell carcinoma. Med. Sci. Monit. 20, 2380–2385 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Liu, M., Zhou, J., Chen, Z. & Cheng, A. S. Understanding the epigenetic regulation of tumours and their microenvironments: opportunities and problems for epigenetic therapy. J. Pathol. 241, 10–24 (2017).

    Article  PubMed  Google Scholar 

  159. Dunn, J. & Rao, S. Epigenetics and immunotherapy: the current state of play. Mol. Immunol. 87, 227–239 (2017).

    Article  PubMed  CAS  Google Scholar 

  160. Blondeau, J. J. et al. Identification of novel long non-coding RNAs in clear cell renal cell carcinoma. Clin. Epigenetics 7, 10 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Qin, C. et al. Expression pattern of long non-coding RNAs in renal cell carcinoma revealed by microarray. PLoS ONE 9, e99372 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Yu, G. et al. LncRNAs expression signatures of renal clear cell carcinoma revealed by microarray. PLoS ONE 7, e42377 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Brito, G. C. et al. Identification of protein-coding and intronic noncoding RNAs down-regulated in clear cell renal carcinoma. Mol. Carcinog. 47, 757–767 (2008).

    Article  PubMed  CAS  Google Scholar 

  164. Wu, Y. et al. Suppressed expression of long non-coding RNA HOTAIR inhibits proliferation and tumourigenicity of renal carcinoma cells. Tumour Biol. 35, 11887–11894 (2014).

    Article  PubMed  CAS  Google Scholar 

  165. Mehdi, A. & Riazalhosseini, Y. Epigenome aberrations: emerging driving factors of the clear cell renal cell carcinoma. Int. J. Mol. Sci. 18, 1774 (2017).

    Article  PubMed Central  Google Scholar 

  166. Xia, M. et al. Long noncoding RNA HOTAIR promotes metastasis of renal cell carcinoma by up-regulating histone H3K27 demethylase JMJD3. Oncotarget 8, 19795–19802 (2017).

    PubMed  PubMed Central  Google Scholar 

  167. Liu, L. et al. Enhancer of zeste homolog 2 (EZH2) promotes tumour cell migration and invasion via epigenetic repression of E-cadherin in renal cell carcinoma. BJU Int. 117, 351–362 (2016).

    Article  PubMed  CAS  Google Scholar 

  168. Zhang, H. M., Yang, F. Q., Chen, S. J., Che, J. & Zheng, J. H. Upregulation of long non-coding RNA MALAT1 correlates with tumor progression and poor prognosis in clear cell renal cell carcinoma. Tumour Biol. 36, 2947–2955 (2015).

    Article  PubMed  CAS  Google Scholar 

  169. He, H. & Magi-Galluzzi, C. Epithelial-to-mesenchymal transition in renal neoplasms. Adv. Anat. Pathol. 21, 174–180 (2014).

    Article  PubMed  CAS  Google Scholar 

  170. Xiao, H. et al. LncRNA MALAT1 functions as a competing endogenous RNA to regulate ZEB2 expression by sponging miR-200s in clear cell kidney carcinoma. Oncotarget 6, 38005–38015 (2015).

    PubMed  PubMed Central  Google Scholar 

  171. Wang, L. et al. Down-regulated long non-coding RNA H19 inhibits carcinogenesis of renal cell carcinoma. Neoplasma 62, 412–418 (2015).

    Article  PubMed  CAS  Google Scholar 

  172. Raveh, E., Matouk, I. J., Gilon, M. & Hochberg, A. The H19 Long non-coding RNA in cancer initiation, progression and metastasis - a proposed unifying theory. Mol. Cancer 14, 184 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Zhang, H. M., Yang, F. Q., Yan, Y., Che, J. P. & Zheng, J. H. High expression of long non-coding RNA SPRY4-IT1 predicts poor prognosis of clear cell renal cell carcinoma. Int. J. Clin. Exp. Pathol. 7, 5801–5809 (2014).

    PubMed  PubMed Central  Google Scholar 

  174. Wang, M. et al. Long non-coding RNA MEG3 induces renal cell carcinoma cells apoptosis by activating the mitochondrial pathway. J. Huazhong Univ. Sci. Technolog Med. Sci. 35, 541–545 (2015).

    Article  PubMed  CAS  Google Scholar 

  175. Qiao, H. P., Gao, W. S., Huo, J. X. & Yang, Z. S. Long non-coding RNA GAS5 functions as a tumor suppressor in renal cell carcinoma. Asian Pac. J. Cancer Prev. 14, 1077–1082 (2013).

    Article  PubMed  Google Scholar 

  176. Thompson, M. Polybromo-1: the chromatin targeting subunit of the PBAF complex. Biochimie 91, 309–319 (2009).

    Article  PubMed  CAS  Google Scholar 

  177. Reisman, D., Glaros, S. & Thompson, E. A. The SWI/SNF complex and cancer. Oncogene 28, 1653–1668 (2009).

    Article  PubMed  CAS  Google Scholar 

  178. Morris, M. R. & Latif, F. The epigenetic landscape of renal cancer. Nat. Rev. Nephrol. 13, 47–60 (2017).

    Article  PubMed  CAS  Google Scholar 

  179. Chowdhury, B. et al. PBRM1 regulates the expression of genes involved in metabolism and cell adhesion in renal clear cell carcinoma. PLoS ONE 11, e0153718 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Nargund, A. M. et al. The SWI/SNF protein PBRM1 restrains VHL-loss-driven clear cell renal cell carcinoma. Cell Rep. 18, 2893–2906 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Gao, W., Li, W., Xiao, T., Liu, X. S. & Kaelin, W. G. Jr. Inactivation of the PBRM1 tumor suppressor gene amplifies the HIF-response in VHL−/− clear cell renal carcinoma. Proc. Natl Acad. Sci. USA 114, 1027–1032 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Su, X. et al. NSD1 inactivation and SETD2 mutation drive a convergence toward loss of function of H3K36 writers in clear cell renal cell carcinomas. Cancer Res. 77, 4835–4845 (2017).

    Article  PubMed  CAS  Google Scholar 

  183. Bertolotto, C. et al. A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma. Nature 480, 94–98 (2011).

    Article  PubMed  CAS  Google Scholar 

  184. Linehan, W. M. et al. Comprehensive molecular characterization of papillary renal-cell carcinoma. N. Engl. J. Med. 374, 135–145 (2016).

    Article  PubMed  CAS  Google Scholar 

  185. Calderaro, J. et al. Balanced translocations disrupting SMARCB1 are hallmark recurrent genetic alterations in renal medullary carcinomas. Eur. Urol. 69, 1055–1061 (2016).

    Article  PubMed  CAS  Google Scholar 

  186. Kohashi, K. & Oda, Y. Oncogenic roles of SMARCB1/INI1 and its deficient tumors. Cancer Sci. 108, 547–552 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Knutson, S. K. et al. Durable tumor regression in genetically altered malignant rhabdoid tumors by inhibition of methyltransferase EZH2. Proc. Natl Acad. Sci. USA 110, 7922–7927 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Rydzanicz, M., Wrzesinski, T., Bluyssen, H. A. & Wesoly, J. Genomics and epigenomics of clear cell renal cell carcinoma: recent developments and potential applications. Cancer Lett. 341, 111–126 (2013).

    Article  PubMed  CAS  Google Scholar 

  189. Ambani, S. N. & Wolf, J. S. Jr. Renal mass biopsy for the small renal mass. Urol. Oncol. 36, 4–7 (2018).

    Article  PubMed  Google Scholar 

  190. Rini, B. I. & Atkins, M. B. Resistance to targeted therapy in renal-cell carcinoma. Lancet Onc 10, 992–1000 (2009).

    Article  CAS  Google Scholar 

  191. Heng, D. Y. et al. Primary anti-vascular endothelial growth factor (VEGF)-refractory metastatic renal cell carcinoma: clinical characteristics, risk factors, and subsequent therapy. Ann. Oncol. 23, 1549–1555 (2012).

    Article  PubMed  CAS  Google Scholar 

  192. American Cancer Society. Cancer facts & figures 2015. ACS http://www.cancer.org/research/cancerfactsstatistics/cancerfactsfigures2015/index (2015).

  193. Lerner, S. E. et al. Disease outcome in patients with low stage renal cell carcinoma treated with nephron sparing or radical surgery. J. Urol. 155, 1868–1873 (1996).

    Article  PubMed  CAS  Google Scholar 

  194. Speed, J. M., Trinh, Q. D., Choueiri, T. K. & Sun, M. Recurrence in localized renal cell carcinoma: a systematic review of contemporary data. Curr. Urol. Rep. 18, 15 (2017).

    Article  PubMed  Google Scholar 

  195. Kattan, M. W., Reuter, V., Motzer, R. J., Katz, J. & Russo, P. A postoperative prognostic nomogram for renal cell carcinoma. J. Urol. 166, 63–67 (2001).

    Article  PubMed  CAS  Google Scholar 

  196. Frank, I. et al. An outcome prediction model for patients with clear cell renal cell carcinoma treated with radical nephrectomy based on tumor stage, size, grade and necrosis: the SSIGN score. J. Urol. 168, 2395–2400 (2002).

    Article  PubMed  Google Scholar 

  197. Zisman, A. et al. Improved prognostication of renal cell carcinoma using an integrated staging system. J. Clin. Oncol. 19, 1649–1657 (2001).

    Article  PubMed  CAS  Google Scholar 

  198. Zisman, A. et al. Risk group assessment and clinical outcome algorithm to predict the natural history of patients with surgically resected renal cell carcinoma. J. Clin. Oncol. 20, 4559–4566 (2002).

    Article  PubMed  Google Scholar 

  199. Karakiewicz, P. I. et al. Multi-institutional validation of a new renal cancer-specific survival nomogram. J. Clin. Oncol. 25, 1316–1322 (2007).

    Article  PubMed  Google Scholar 

  200. Cindolo, L. et al. A preoperative clinical prognostic model for non-metastatic renal cell carcinoma. BJU Int. 92, 901–905 (2003).

    Article  PubMed  CAS  Google Scholar 

  201. Patard, J. J. et al. Use of the University of California Los Angeles integrated staging system to predict survival in renal cell carcinoma: an international multicenter study. J. Clin. Oncol. 22, 3316–3322 (2004).

    Article  PubMed  Google Scholar 

  202. Zigeuner, R. et al. External validation of the Mayo Clinic stage, size, grade, and necrosis (SSIGN) score for clear-cell renal cell carcinoma in a single European centre applying routine pathology. Eur. Urol. 57, 102–109 (2010).

    Article  PubMed  Google Scholar 

  203. Cindolo, L. et al. Comparison of predictive accuracy of four prognostic models for nonmetastatic renal cell carcinoma after nephrectomy: a multicenter European study. Cancer 104, 1362–1371 (2005).

    Article  PubMed  Google Scholar 

  204. Ravaud, A. et al. Adjuvant sunitinib in high-risk renal-cell carcinoma after nephrectomy. N. Engl. J. Med. 375, 2246–2254 (2016).

    Article  PubMed  CAS  Google Scholar 

  205. Motzer, R. J. et al. Survival and prognostic stratification of 670 patients with advanced renal cell carcinoma. J. Clin. Oncol. 17, 2530–2540 (1999).

    Article  PubMed  CAS  Google Scholar 

  206. Heng, D. Y. et al. Prognostic factors for overall survival in patients with metastatic renal cell carcinoma treated with vascular endothelial growth factor-targeted agents: results from a large, multicenter study. J. Clin. Oncol. 27, 5794–5799 (2009).

    Article  PubMed  CAS  Google Scholar 

  207. Heng, D. Y. et al. External validation and comparison with other models of the International Metastatic Renal-Cell Carcinoma Database Consortium prognostic model: a population-based study. Lancet Oncol. 14, 141–148 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Gerlinger, M. et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat. Genet. 46, 225–233 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Sharpe, K. et al. The effect of VEGF-targeted therapy on biomarker expression in sequential tissue from patients with metastatic clear cell renal cancer. Clin. Cancer Res. 19, 6924–6934 (2013).

    Article  PubMed  CAS  Google Scholar 

  211. Stewart, G. D. et al. Dynamic epigenetic changes to VHL occur with sunitinib in metastatic clear cell renal cancer. Oncotarget 18, 25241–25250 (2016).

    Google Scholar 

  212. Wei, J. H. et al. A CpG-methylation-based assay to predict survival in clear cell renal cell carcinoma. Nat. Commun. 6, 8699 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Costa, V. L. et al. TCF21 and PCDH17 methylation: an innovative panel of biomarkers for a simultaneous detection of urological cancers. Epigenetics 6, 1120–1130 (2011).

    Article  PubMed  CAS  Google Scholar 

  214. Xin, J. et al. Clinical potential of TCF21 methylation in the diagnosis of renal cell carcinoma. Oncol. Lett. 12, 1265–1270 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Zhao, A., Li, G., Peoc’h, M., Genin, C. & Gigante, M. Serum miR-210 as a novel biomarker for molecular diagnosis of clear cell renal cell carcinoma. Exp. Mol. Pathol. 94, 115–120 (2013).

    Article  PubMed  CAS  Google Scholar 

  216. Iwamoto, H. et al. Serum miR-210 as a potential biomarker of early clear cell renal cell carcinoma. Int. J. Oncol. 44, 53–58 (2014).

    Article  PubMed  CAS  Google Scholar 

  217. Fedorko, M. et al. Combination of MiR-378 and MiR-210 serum levels enables sensitive detection of renal cell carcinoma. Int. J. Mol. Sci. 16, 23382–23389 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. Li, G., Zhao, A., Peoch, M., Cottier, M. & Mottet, N. Detection of urinary cell-free miR-210 as a potential tool of liquid biopsy for clear cell renal cell carcinoma. Urol. Oncol. 35, 294–299 (2017).

    Article  PubMed  CAS  Google Scholar 

  219. Redova, M. et al. Circulating miR-378 and miR-451 in serum are potential biomarkers for renal cell carcinoma. J. Transl. Med. 10, 55 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. Hauser, S. et al. Analysis of serum microRNAs (miR-26a-2*, miR-191, miR-337-3p and miR-378) as potential biomarkers in renal cell carcinoma. Cancer Epidemiol. 36, 391–394 (2012).

    Article  PubMed  CAS  Google Scholar 

  221. Wang, C. et al. A panel of five serum miRNAs as a potential diagnostic tool for early-stage renal cell carcinoma. Sci. Rep. 5, 7610 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Atschekzei, F. et al. SFRP1 CpG island methylation locus is associated with renal cell cancer susceptibility and disease recurrence. Epigenetics 7, 447–457 (2012).

    Article  PubMed  CAS  Google Scholar 

  223. Peters, I. et al. DNA methylation biomarkers predict progression-free and overall survival of metastatic renal cell cancer (mRCC) treated with antiangiogenic therapies. PLoS ONE 9, e91440 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Dubrowinskaja, N. et al. Neurofilament heavy polypeptide CpG island methylation associates with prognosis of renal cell carcinoma and prediction of antivascular endothelial growth factor therapy response. Cancer Med. 3, 300–309 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  225. Peters, I. et al. GATA5 CpG island methylation in renal cell cancer: a potential biomarker for metastasis and disease progression. BJU Int. 110, E144–E152 (2012).

    Article  PubMed  CAS  Google Scholar 

  226. Peters, I. et al. GATA5 CpG island hypermethylation is an independent predictor for poor clinical outcome in renal cell carcinoma. Oncol. Rep. 31, 1523–1530 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  227. Faragalla, H. et al. The clinical utility of miR-21 as a diagnostic and prognostic marker for renal cell carcinoma. J. Mol. Diagn. 14, 385–392 (2012).

    Article  PubMed  Google Scholar 

  228. Tang, K. & Xu, H. Prognostic value of meta-signature miRNAs in renal cell carcinoma: an integrated miRNA expression profiling analysis. Sci. Rep. 5, 10272 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  229. Vergho, D. et al. Combination of expression levels of miR-21 and miR-126 is associated with cancer-specific survival in clear-cell renal cell carcinoma. BMC Cancer 14, 25 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Vergho, D. C. et al. Impact of miR-21, miR-126 and miR-221 as prognostic factors of clear cell renal cell carcinoma with tumor thrombus of the inferior vena cava. PLoS ONE 9, e109877 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Zaman, M. S. et al. Up-regulation of microRNA-21 correlates with lower kidney cancer survival. PLoS ONE 7, e31060 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  232. Samaan, S. et al. miR-210 is a prognostic marker in clear cell renal cell carcinoma. J. Mol. Diagn. 17, 136–144 (2015).

    Article  PubMed  CAS  Google Scholar 

  233. Ge, Y. Z. et al. MicroRNA expression profiles predict clinical phenotypes and prognosis in chromophobe renal cell carcinoma. Sci. Rep. 5, 10328 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  234. Christinat, Y. & Krek, W. Integrated genomic analysis identifies subclasses and prognosis signatures of kidney cancer. Oncotarget 6, 10521–10531 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Wu, X. et al. Identification of a 4-microRNA signature for clear cell renal cell carcinoma metastasis and prognosis. PLoS ONE 7, e35661 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  236. Khella, H. W. et al. Low expression of miR-126 is a prognostic marker for metastatic clear cell renal cell carcinoma. Am. J. Pathol. 185, 693–703 (2015).

    Article  PubMed  CAS  Google Scholar 

  237. Slaby, O. et al. Identification of MicroRNAs associated with early relapse after nephrectomy in renal cell carcinoma patients. Genes Chromosomes Cancer 51, 707–716 (2012).

    Article  PubMed  CAS  Google Scholar 

  238. Liu, W. et al. Pseudohypoxia induced by miR-126 deactivation promotes migration and therapeutic resistance in renal cell carcinoma. Cancer Lett. 394, 65–75 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  239. Rogenhofer, S. et al. Global histone H3 lysine 27 (H3K27) methylation levels and their prognostic relevance in renal cell carcinoma. BJU Int. 109, 459–465 (2012).

    Article  PubMed  CAS  Google Scholar 

  240. Ellinger, J. et al. Prognostic relevance of global histone H3 lysine 4 (H3K4) methylation in renal cell carcinoma. Int. J. Cancer 127, 2360–2366 (2010).

    Article  PubMed  CAS  Google Scholar 

  241. Rogenhofer, S. et al. Decreased levels of histone H3K9me1 indicate poor prognosis in patients with renal cell carcinoma. Anticancer Res. 32, 879–886 (2012).

    PubMed  CAS  Google Scholar 

  242. Ho, T. H. et al. Loss of histone H3 lysine 36 trimethylation is associated with an increased risk of renal cell carcinoma-specific death. Mod. Pathol. 29, 34–42 (2016).

    Article  PubMed  CAS  Google Scholar 

  243. Seligson, D. B. et al. Global levels of histone modifications predict prognosis in different cancers. Am. J. Pathol. 174, 1619–1628 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  244. Wang, J. et al. Prognostic value of UTX expression in patients with clear cell renal cell carcinoma. Urol. Oncol. 34, 338.e319–327 (2016).

    Google Scholar 

  245. Pires-Luis, A. S. et al. Expression of histone methyltransferases as novel biomarkers for renal cell tumor diagnosis and prognostication. Epigenetics 10, 1033–1043 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Pompas-Veganzones, N. et al. Myopodin methylation is a prognostic biomarker and predicts antiangiogenic response in advanced kidney cancer. Tumour Biol. 37, 14301–14310 (2016).

    Article  PubMed  CAS  Google Scholar 

  247. Gamez-Pozo, A. et al. MicroRNA expression profiling of peripheral blood samples predicts resistance to first-line sunitinib in advanced renal cell carcinoma patients. Neoplasia 14, 1144–1152 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  248. Prior, C. et al. Identification of tissue microRNAs predictive of sunitinib activity in patients with metastatic renal cell carcinoma. PLoS ONE 9, e86263 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  249. Merhautova, J. et al. miR-155 and miR-484 are associated with time to progression in metastatic renal cell carcinoma treated with sunitinib. Biomed. Res. Int. 2015, 941980 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  250. Garcia-Donas, J. et al. Deep sequencing reveals microRNAs predictive of antiangiogenic drug response. JCI Insight 1, e86051 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Khella, H. W. et al. miR-221/222 are involved in response to sunitinib treatment in metastatic renal cell carcinoma. Mol. Ther. 23, 1748–1758 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  252. Berkers, J. et al. A possible role for microRNA-141 down-regulation in sunitinib resistant metastatic clear cell renal cell carcinoma through induction of epithelial-to-mesenchymal transition and hypoxia resistance. J. Urol. 189, 1930–1938 (2013).

    Article  PubMed  CAS  Google Scholar 

  253. Ioannidis, J. P. A. & Bossuyt, P. M. M. Waste, leaks, and failures in the biomarker pipeline. Clin. Chem. 63, 963–972 (2017).

    Article  PubMed  CAS  Google Scholar 

  254. van Vlodrop, I. J. et al. Analysis of promoter CpG island hypermethylation in cancer: location, location, location! Clin. Cancer Res. 17, 4225–4231 (2011).

    Article  PubMed  CAS  Google Scholar 

  255. Malouf, G. G. et al. DNA methylation signature reveals cell ontogeny of renal cell carcinomas. Clin. Cancer Res. 22, 6236–6246 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  256. Hainsworth, J. D. et al. A phase II trial of panobinostat, a histone deacetylase inhibitor, in the treatment of patients with refractory metastatic renal cell carcinoma. Cancer Invest. 29, 451–455 (2011).

    Article  PubMed  CAS  Google Scholar 

  257. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00278395 (2017).

  258. Stadler, W. M., Margolin, K., Ferber, S., McCulloch, W. & Thompson, J. A. A phase II study of depsipeptide in refractory metastatic renal cell cancer. Clin. Genitourin Cancer 5, 57–60 (2006).

    Article  PubMed  CAS  Google Scholar 

  259. Gollob, J. A. et al. Phase I trial of sequential low-dose 5-aza-2ʹ-deoxycytidine plus high-dose intravenous bolus interleukin-2 in patients with melanoma or renal cell carcinoma. Clin. Cancer Res. 12, 4619–4627 (2006).

    Article  PubMed  CAS  Google Scholar 

  260. Covre, A. et al. Epigenetics meets immune checkpoints. Semin. Oncol. 42, 506–513 (2015).

    Article  PubMed  CAS  Google Scholar 

  261. Issa, J. J. et al. Safety and tolerability of guadecitabine (SGI-110) in patients with myelodysplastic syndrome and acute myeloid leukaemia: a multicentre, randomised, dose-escalation phase 1 study. Lancet Oncol. 16, 1099–1110 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  262. Kantarjian, H. M. et al. Guadecitabine (SGI-110) in treatment-naive patients with acute myeloid leukaemia: phase 2 results from a multicentre, randomised, phase 1/2 trial. Lancet Oncol. 18, 1317–1326 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  263. Pili, R. et al. Combination of the histone deacetylase inhibitor vorinostat with bevacizumab in patients with clear-cell renal cell carcinoma: a multicentre, single-arm phase I/II clinical trial. Br. J. Cancer 116, 874–883 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  264. Zibelman, M. et al. Phase I study of the mTOR inhibitor ridaforolimus and the HDAC inhibitor vorinostat in advanced renal cell carcinoma and other solid tumors. Invest. New Drugs 33, 1040–1047 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  265. Dasari, A. et al. A phase I study of sorafenib and vorinostat in patients with advanced solid tumors with expanded cohorts in renal cell carcinoma and non-small cell lung cancer. Invest. New Drugs 31, 115–125 (2013).

    Article  PubMed  CAS  Google Scholar 

  266. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01005797 (2017).

  267. Roulois, D. et al. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell 162, 961–973 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  268. Chiappinelli, K. B. et al. Inhibiting dna methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 162, 974–986 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  269. Chiappinelli, K. B., Zahnow, C. A., Ahuja, N. & Baylin, S. B. Combining epigenetic and immunotherapy to combat cancer. Cancer Res. 76, 1683–1689 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  270. Reu, F. J. et al. Overcoming resistance to interferon-induced apoptosis of renal carcinoma and melanoma cells by DNA demethylation. J. Clin. Oncol. 24, 3771–3779 (2006).

    Article  PubMed  CAS  Google Scholar 

  271. Garzon, R., Marcucci, G. & Croce, C. M. Targeting microRNAs in cancer: rationale, strategies and challenges. Nat. Rev. Drug Discov. 9, 775–789 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  272. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01829971 (2016).

  273. Altman, D. G., McShane, L. M., Sauerbrei, W. & Taube, S. E. Reporting recommendations for tumor marker prognostic studies (REMARK): explanation and elaboration. BMC Med. 10, 51 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  274. Bossuyt, P. M. et al. STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. Clin. Chem. 61, 1446–1452 (2015).

    Article  PubMed  CAS  Google Scholar 

  275. Moons, K. G. et al. Transparent reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration. Ann. Intern. Med. 162, W1–W73 (2015).

    Article  PubMed  Google Scholar 

  276. Herman, J. G. et al. Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc. Natl Acad. Sci. USA 91, 9700–9704 (1994).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  277. Brauch, H. et al. VHL alterations in human clear cell renal cell carcinoma: association with advanced tumor stage and a novel hot spot mutation. Cancer Res. 60, 1942–1948 (2000).

    PubMed  CAS  Google Scholar 

  278. Oh, R. R. et al. Expression of HGF/SF and Met protein is associated with genetic alterations of VHL gene in primary renal cell carcinomas. Apmis 110, 229–238 (2002).

    Article  PubMed  CAS  Google Scholar 

  279. Kim, J. H. et al. Somatic VHL alteration and its impact on prognosis in patients with clear cell renal cell carcinoma. Oncol. Rep. 13, 859–864 (2005).

    PubMed  CAS  Google Scholar 

  280. Smits, K. M. et al. Genetic and epigenetic alterations in the von hippel-lindau gene: the influence on renal cancer prognosis. Clin. Cancer Res. 14, 782–787 (2008).

    Article  PubMed  CAS  Google Scholar 

  281. Patard, J. J. et al. Absence of VHL gene alteration and high VEGF expression are associated with tumour aggressiveness and poor survival of renal-cell carcinoma. Br. J. Cancer 101, 1417–1424 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  282. Young, A. C. et al. Analysis of VHL gene alterations and their relationship to clinical parameters in sporadic conventional renal cell carcinoma. Clin. Cancer Res. 15, 7582–7592 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  283. Moore, L. E. et al. Von Hippel-Lindau (VHL) inactivation in sporadic clear cell renal cancer: associations with germline VHL polymorphisms and etiologic risk factors. PLoS Genet. 7, e1002312 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  284. Gossage, L. et al. Clinical and pathological impact of VHL, PBRM1, BAP1, SETD2, KDM6A, and JARID1c in clear cell renal cell carcinoma. Genes Chromosomes Cancer 53, 38–51 (2014).

    Article  PubMed  CAS  Google Scholar 

  285. Lessi, F. et al. VHL and HIF-1alpha: gene variations and prognosis in early-stage clear cell renal cell carcinoma. Med. Oncol. 31, 840 (2014).

    Article  PubMed  CAS  Google Scholar 

  286. Khaliq, S. et al. Unique molecular alteration patterns in von Hippel-Lindau (VHL) gene in a cohort of sporadic renal cell carcinoma patients from Pakistan. Mutat. Res. https://doi.org/10.1016/j.mrfmmm.2014.03.008 (2014).

  287. Motzer, R. J. et al. Investigation of novel circulating proteins, germ line single-nucleotide polymorphisms, and molecular tumor markers as potential efficacy biomarkers of first-line sunitinib therapy for advanced renal cell carcinoma. Cancer Chemother. Pharmacol. 74, 739–750 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  288. Kagara, I. et al. CpG hypermethylation of the UCHL1 gene promoter is associated with pathogenesis and poor prognosis in renal cell carcinoma. J. Urol. 180, 343–351 (2008).

    Article  PubMed  CAS  Google Scholar 

  289. Morris, M. R. et al. Functional epigenomics approach to identify methylated candidate tumour suppressor genes in renal cell carcinoma. Br. J. Cancer 98, 496–501 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  290. Liu, Q. et al. Epigenetic inactivation of the candidate tumor suppressor gene ASC/TMS1 in human renal cell carcinoma and its role as a potential therapeutic target. Oncotarget 6, 22706–22723 (2015).

    PubMed  PubMed Central  Google Scholar 

  291. Zhang, Q. et al. Aberrant promoter methylation of DLEC1, a critical 3p22 tumor suppressor for renal cell carcinoma, is associated with more advanced tumor stage. J. Urol. 184, 731–737 (2010).

    Article  PubMed  CAS  Google Scholar 

  292. Ibanz de Caceres, I. & Cairns, P. Methylated DNA sequences for early cancer detection, molecular classification and chemotherapy response prediction. Clin. Transl Oncol. 9, 429–437 (2007).

    Article  CAS  Google Scholar 

  293. Morris, M. R. et al. Tumor suppressor activity and epigenetic inactivation of hepatocyte growth factor activator inhibitor type 2/SPINT2 in papillary and clear cell renal cell carcinoma. Cancer Res. 65, 4598–4606 (2005).

    Article  PubMed  CAS  Google Scholar 

  294. Yamada, D. et al. Promoter hypermethylation of the potential tumor suppressor DAL-1/4.1B gene in renal clear cell carcinoma. Int. J. Cancer 118, 916–923 (2006).

    Article  PubMed  CAS  Google Scholar 

  295. Paiva, F. et al. Functional and epigenetic characterization of the KRT19 gene in renal cell neoplasms. DNA Cell Biol. 30, 85–90 (2011).

    Article  PubMed  CAS  Google Scholar 

  296. Li, H. et al. Epigenetic alterations of Kruppel-like factor 4 and its tumor suppressor function in renal cell carcinoma. Carcinogenesis 34, 2262–2270 (2013).

    Article  PubMed  CAS  Google Scholar 

  297. Song, E. et al. Attenuation of kruppel-like factor 4 facilitates carcinogenesis by inducing g1/s phase arrest in clear cell renal cell carcinoma. PLoS ONE 8, e67758 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  298. Li, Y. et al. miR30a5p in the tumorigenesis of renal cell carcinoma: a tumor suppressive microRNA. Mol. Med. Rep. 13, 4085–4094 (2016).

    Article  PubMed  CAS  Google Scholar 

  299. Zheng, B. et al. MiRNA-30a-mediated autophagy inhibition sensitizes renal cell carcinoma cells to sorafenib. Biochem. Biophys. Res. Commun. 459, 234–239 (2015).

    Article  PubMed  CAS  Google Scholar 

  300. Jin, L. et al. Identification of miR30b as an oncogene in renal cell carcinoma. Mol. Med. Rep. 15, 1837–1846 (2017).

    Article  PubMed  CAS  Google Scholar 

  301. Yang, H. et al. Expression of microRNA-30c via lentivirus vector inhibits the proliferation and enhances the sensitivity of highly aggressive ccRCC Caki-1 cells to anticancer agents. Onco Targets Ther. 10, 579–590 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  302. Yu, H. et al. Proliferation inhibition and the underlying molecular mechanisms of microRNA-30d in renal carcinoma cells. Oncol. Lett. 7, 799–804 (2014).

    Article  PubMed  Google Scholar 

  303. Wu, C. et al. MiR-30d induces apoptosis and is regulated by the Akt/FOXO pathway in renal cell carcinoma. Cell Signal 25, 1212–1221 (2013).

    Article  PubMed  CAS  Google Scholar 

  304. Yu, G. et al. miRNA-34a suppresses cell proliferation and metastasis by targeting CD44 in human renal carcinoma cells. J. Urol. 192, 1229–1237 (2014).

    Article  PubMed  CAS  Google Scholar 

  305. Zhang, C. et al. Tumor suppressor microRNA-34a inhibits cell proliferation by targeting notch1 in renal cell carcinoma. Oncol. Lett. 7, 1689–1694 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  306. Weng, W. et al. YY1-C/EBPalpha-miR34a regulatory circuitry is involved in renal cell carcinoma progression. Oncol. Rep. 31, 1921–1927 (2014).

    Article  PubMed  CAS  Google Scholar 

  307. Yamamura, S. et al. MicroRNA-34a suppresses malignant transformation by targeting c-Myc transcriptional complexes in human renal cell carcinoma. Carcinogenesis 33, 294–300 (2012).

    Article  PubMed  CAS  Google Scholar 

  308. Lodygin, D. et al. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle 7, 2591–2600 (2008).

    Article  PubMed  CAS  Google Scholar 

  309. Vogt, M. et al. Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas. Virchows Arch. 458, 313–322 (2011).

    Article  PubMed  Google Scholar 

  310. Cao, Y. et al. Downregulation of lncRNA CASC2 by microRNA-21 increases the proliferation and migration of renal cell carcinoma cells. Mol. Med. Rep. 14, 1019–1025 (2016).

    Article  PubMed  CAS  Google Scholar 

  311. Kowalczyk, A. E. et al. SATB1 is down-regulated in clear cell renal cell carcinoma and correlates with miR-21-5p overexpression and poor prognosis. Cancer Genomics Proteomics 13, 209–217 (2016).

    PubMed  CAS  Google Scholar 

  312. Cao, J. et al. MicroRNA-21 stimulates epithelial-to-mesenchymal transition and tumorigenesis in clear cell renal cells. Mol. Med. Rep. 13, 75–82 (2016).

    Article  PubMed  CAS  Google Scholar 

  313. Liang, T. et al. MicroRNA-21 regulates the proliferation, differentiation, and apoptosis of human renal cell carcinoma cells by the mTOR-STAT3 signaling pathway. Oncol. Res. 24, 371–380 (2016).

    Article  PubMed  CAS  Google Scholar 

  314. Petrozza, V. et al. Oncogenic microRNAs characterization in clear cell renal cell carcinoma. Int. J. Mol. Sci. 16, 29219–29225 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  315. Doberstein, K. et al. miR-21-3p is a positive regulator of L1CAM in several human carcinomas. Cancer Lett. 354, 455–466 (2014).

    Article  PubMed  CAS  Google Scholar 

  316. Bera, A. et al. microRNA-21-induced dissociation of PDCD4 from rictor contributes to Akt-IKKbeta-mTORC1 axis to regulate renal cancer cell invasion. Exp. Cell Res. 328, 99–117 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  317. Li, X. et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor PDCD4 and promotes cell transformation, proliferation, and metastasis in renal cell carcinoma. Cell Physiol. Biochem. 33, 1631–1642 (2014).

    Article  PubMed  CAS  Google Scholar 

  318. Lv, L. et al. MicroRNA-21 is overexpressed in renal cell carcinoma. Int. J. Biol. Markers 28, 201–207 (2013).

    Article  PubMed  CAS  Google Scholar 

  319. Zhang, H., Guo, Y., Shang, C., Song, Y. & Wu, B. miR-21 downregulated TCF21 to inhibit KISS1 in renal cancer. Urology 80, 1298–1302.e1291 (2012).

    Article  PubMed  Google Scholar 

  320. Osanto, S. et al. Genome-wide microRNA expression analysis of clear cell renal cell carcinoma by next generation deep sequencing. PLoS ONE 7, e38298 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  321. Zhang, A., Liu, Y., Shen, Y., Xu, Y. & Li, X. miR-21 modulates cell apoptosis by targeting multiple genes in renal cell carcinoma. Urology 78, 474.e413–479 (2011).

    Google Scholar 

  322. Liu, T. Y., Zhang, H., Du, S. M., Li, J. & Wen, X. H. Expression of microRNA-210 in tissue and serum of renal carcinoma patients and its effect on renal carcinoma cell proliferation, apoptosis, and invasion. Genet. Mol. Res. 15, 15017746 (2016).

    PubMed  CAS  Google Scholar 

  323. Xiao, H. et al. MiR-1 downregulation correlates with poor survival in clear cell renal cell carcinoma where it interferes with cell cycle regulation and metastasis. Oncotarget 6, 13201–13215 (2015).

    PubMed  PubMed Central  Google Scholar 

  324. Kawakami, K. et al. The functional significance of miR-1 and miR-133a in renal cell carcinoma. Eur. J. Cancer 48, 827–836 (2012).

    Article  PubMed  CAS  Google Scholar 

  325. Li, Y. et al. Oncogenic cAMP responsive element binding protein 1 is overexpressed upon loss of tumor suppressive miR-10b-5p and miR-363-3p in renal cancer. Oncol. Rep. 35, 1967–1978 (2016).

    Article  PubMed  CAS  Google Scholar 

  326. Xiao, W., Gao, Z., Duan, Y., Yuan, W. & Ke, Y. Downregulation of miR-19a exhibits inhibitory effects on metastatic renal cell carcinoma by targeting PIK3CA and inactivating notch signaling in vitro. Oncol. Rep. 34, 739–746 (2015).

    Article  PubMed  CAS  Google Scholar 

  327. Zhang, S. et al. MicroRNA-22 functions as a tumor suppressor by targeting SIRT1 in renal cell carcinoma. Oncol. Rep. 35, 559–567 (2016).

    Article  PubMed  CAS  Google Scholar 

  328. Ishihara, T. et al. Expression of the tumor suppressive miRNA-23b/27b cluster is a good prognostic marker in clear cell renal cell carcinoma. J. Urol. 192, 1822–1830 (2014).

    Article  PubMed  CAS  Google Scholar 

  329. Li, Y. et al. MicroRNA-27a functions as a tumor suppressor in renal cell carcinoma by targeting epidermal growth factor receptor. Oncol. Lett. 11, 4217–4223 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  330. Nakata, W. et al. Expression of miR-27a-3p is an independent predictive factor for recurrence in clear cell renal cell carcinoma. Oncotarget 6, 21645–21654 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  331. Peng, H. et al. miR-27a promotes cell proliferation and metastasis in renal cell carcinoma. Int. J. Clin. Exp. Pathol. 8, 2259–2266 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  332. Gottardo, F. et al. Micro-RNA profiling in kidney and bladder cancers. Urol. Oncol. 25, 387–392 (2007).

    Article  PubMed  CAS  Google Scholar 

  333. Wang, C. et al. miR-28-5p acts as a tumor suppressor in renal cell carcinoma for multiple antitumor effects by targeting RAP1B. Oncotarget 7, 73888–73902 (2016).

    PubMed  PubMed Central  Google Scholar 

  334. Hell, M. P. et al. miR-28-5p promotes chromosomal instability in VHL-associated cancers by inhibiting Mad2 translation. Cancer Res. 74, 2432–2443 (2014).

    Article  PubMed  CAS  Google Scholar 

  335. Xu, X., Liu, C. & Bao, J. Hypoxia-induced hsa-miR-101 promotes glycolysis by targeting TIGAR mRNA in clear cell renal cell carcinoma. Mol. Med. Rep. 15, 1373–1378 (2017).

    Article  PubMed  CAS  Google Scholar 

  336. Goto, Y. et al. The microRNA signature of patients with sunitinib failure: regulation of UHRF1 pathways by microRNA-101 in renal cell carcinoma. Oncotarget 7, 59070–59086 (2016).

    PubMed  PubMed Central  Google Scholar 

  337. Sakurai, T. et al. The enhancer of zeste homolog 2 (EZH2), a potential therapeutic target, is regulated by miR-101 in renal cancer cells. Biochem. Biophys. Res. Commun. 422, 607–614 (2012).

    Article  PubMed  CAS  Google Scholar 

  338. Ma, Y. et al. miR-106a* inhibits the proliferation of renal carcinoma cells by targeting IRS-2. Tumour Biol. 36, 8389–8398 (2015).

    Article  PubMed  CAS  Google Scholar 

  339. Mastropasqua, F. et al. TRIM8 restores p53 tumour suppressor function by blunting N-MYC activity in chemo-resistant tumours. Mol. Cancer 16, 67 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  340. Li, Y. et al. MicroRNA-106b functions as an oncogene in renal cell carcinoma by affecting cell proliferation, migration and apoptosis. Mol. Med. Rep. 13, 1420–1426 (2016).

    Article  PubMed  CAS  Google Scholar 

  341. Xiang, W. et al. miR-106b-5p targets tumor suppressor gene SETD2 to inactive its function in clear cell renal cell carcinoma. Oncotarget 6, 4066–4079 (2015).

    PubMed  PubMed Central  Google Scholar 

  342. Wang, Z. et al. MiR-122 promotes renal cancer cell proliferation by targeting sprouty2. Tumour Biol. 39, 1010428317691184 (2017).

    PubMed  Google Scholar 

  343. Zhang, G. M. et al. MicroRNA-126 inhibits tumor cell invasion and metastasis by downregulating ROCK1 in renal cell carcinoma. Mol. Med. Rep. 13, 5029–2036 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  344. Zhou, W., Bi, X., Gao, G. & Sun, L. miRNA-133b and miRNA-135a induce apoptosis via the JAK2/STAT3 signaling pathway in human renal carcinoma cells. Biomed. Pharmacother. 84, 722–729 (2016).

    Article  PubMed  CAS  Google Scholar 

  345. Wu, D. et al. microRNA-133b downregulation and inhibition of cell proliferation, migration and invasion by targeting matrix metallopeptidase-9 in renal cell carcinoma. Mol. Med. Rep. 9, 2491–2498 (2014).

    Article  PubMed  CAS  Google Scholar 

  346. Yamada, Y. et al. Tumor-suppressive microRNA-135a inhibits cancer cell proliferation by targeting the c-MYC oncogene in renal cell carcinoma. Cancer Sci. 104, 304–312 (2013).

    Article  PubMed  CAS  Google Scholar 

  347. Liang, J. et al. MiR-138 induces renal carcinoma cell senescence by targeting EZH2 and is downregulated in human clear cell renal cell carcinoma. Oncol. Res. 21, 83–91 (2013).

    Article  PubMed  CAS  Google Scholar 

  348. Yamasaki, T. et al. Tumor suppressive microRNA138 contributes to cell migration and invasion through its targeting of vimentin in renal cell carcinoma. Int. J. Oncol. 41, 805–817 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  349. Song, T. et al. MiR-138 suppresses expression of hypoxia-inducible factor 1alpha (HIF-1alpha) in clear cell renal cell carcinoma 786-O cells. Asian Pac. J. Cancer Prev. 12, 1307–1311 (2011).

    PubMed  Google Scholar 

  350. Li, Y. et al. Oncogenic microRNA-142-3p is associated with cellular migration, proliferation and apoptosis in renal cell carcinoma. Oncol. Lett. 11, 1235–1241 (2016).

    Article  PubMed  CAS  Google Scholar 

  351. Lou, N. et al. miR-144-3p as a novel plasma diagnostic biomarker for clear cell renal cell carcinoma. Urol. Oncol. 35, 36.e37–36.e14 (2017).

    Article  CAS  Google Scholar 

  352. Liu, F., Chen, N., Xiao, R., Wang, W. & Pan, Z. miR-144-3p serves as a tumor suppressor for renal cell carcinoma and inhibits its invasion and metastasis by targeting MAP3K8. Biochem. Biophys. Res. Commun. 480, 87–93 (2016).

    Article  PubMed  CAS  Google Scholar 

  353. Xiang, C., Cui, S. P. & Ke, Y. MiR-144 inhibits cell proliferation of renal cell carcinoma by targeting MTOR. J. Huazhong Univ. Sci. Technolog Med. Sci. 36, 186–192 (2016).

    Article  PubMed  CAS  Google Scholar 

  354. Papadopoulos, E. I., Petraki, C., Gregorakis, A., Fragoulis, E. G. & Scorilas, A. Clinical evaluation of microRNA-145 expression in renal cell carcinoma: a promising molecular marker for discriminating and staging the clear cell histological subtype. Biol. Chem. 397, 529–539 (2016).

    Article  PubMed  CAS  Google Scholar 

  355. Wu, D. et al. microRNA145 inhibits cell proliferation, migration and invasion by targeting matrix metallopeptidase-11 in renal cell carcinoma. Mol. Med. Rep. 10, 393–398 (2014).

    Article  PubMed  CAS  Google Scholar 

  356. Lu, R. et al. miR-145 functions as tumor suppressor and targets two oncogenes, ANGPT2 and NEDD9, in renal cell carcinoma. J. Cancer Res. Clin. Oncol. 140, 387–397 (2014).

    Article  PubMed  CAS  Google Scholar 

  357. Doberstein, K. et al. MicroRNA-145 targets the metalloprotease ADAM17 and is suppressed in renal cell carcinoma patients. Neoplasia 15, 218–230 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  358. Jin, L. et al. Tumor suppressor miR-149-5p is associated with cellular migration, proliferation and apoptosis in renal cell carcinoma. Mol. Med. Rep. 13, 5386–5392 (2016).

    Article  PubMed  CAS  Google Scholar 

  359. Wang, X., Li, H., Cui, L., Feng, J. & Fan, Q. MicroRNA-182 suppresses clear cell renal cell carcinoma migration and invasion by targeting IGF1R. Neoplasma 63, 717–725 (2016).

    Article  PubMed  CAS  Google Scholar 

  360. Xu, X. et al. Downregulation of microRNA-182-5p contributes to renal cell carcinoma proliferation via activating the AKT/FOXO3a signaling pathway. Mol. Cancer 13, 109 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  361. Zhang, Q. et al. High serum miR-183 level is associated with poor responsiveness of renal cancer to natural killer cells. Tumour Biol. 36, 9245–9249 (2015).

    Article  PubMed  CAS  Google Scholar 

  362. Qiu, M. et al. MicroRNA-183 plays as oncogenes by increasing cell proliferation, migration and invasion via targeting protein phosphatase 2A in renal cancer cells. Biochem. Biophys. Res. Commun. 452, 163–169 (2014).

    Article  PubMed  CAS  Google Scholar 

  363. Ma, X. et al. MicroRNA-185 inhibits cell proliferation and induces cell apoptosis by targeting VEGFA directly in von Hippel-Lindau-inactivated clear cell renal cell carcinoma. Urol. Oncol. 33, 169.e161–111 (2015).

    Article  CAS  Google Scholar 

  364. Jin, L. et al. Identification of miR1953p as an oncogene in RCC. Mol. Med. Rep. 15, 1916–1924 (2017).

    Article  PubMed  CAS  Google Scholar 

  365. Sun, P. et al. MicroRNA-195 targets VEGFR2 and has a tumor suppressive role in ACHN cells via PI3K/Akt and Raf/MEK/ERK signaling pathways. Int. J. Oncol. 49, 1155–1163 (2016).

    Article  PubMed  CAS  Google Scholar 

  366. Huang, J. et al. miR-199a-3p inhibits hepatocyte growth factor/c-Met signaling in renal cancer carcinoma. Tumour Biol. 35, 5833–5843 (2014).

    Article  PubMed  CAS  Google Scholar 

  367. Tsukigi, M. et al. Re-expression of miR-199a suppresses renal cancer cell proliferation and survival by targeting GSK-3beta. Cancer Lett. 315, 189–197 (2012).

    Article  PubMed  CAS  Google Scholar 

  368. Xiong, F. et al. MiR-204 inhibits the proliferation and invasion of renal cell carcinoma by inhibiting RAB22 A expression. Oncol. Rep. 35, 3000–3008 (2016).

    Article  PubMed  CAS  Google Scholar 

  369. Wu, D. et al. Upregulation of microRNA-204 inhibits cell proliferation, migration and invasion in human renal cell carcinoma cells by downregulating SOX4. Mol. Med. Rep. 12, 7059–7064 (2015).

    Article  PubMed  CAS  Google Scholar 

  370. Mikhaylova, O. et al. VHL-regulated MiR-204 suppresses tumor growth through inhibition of LC3B-mediated autophagy in renal clear cell carcinoma. Cancer Cell 21, 532–546 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  371. Imam, J. S. et al. Genomic loss of tumor suppressor miRNA-204 promotes cancer cell migration and invasion by activating AKT/mTOR/Rac1 signaling and actin reorganization. PLoS ONE 7, e52397 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  372. Wei, C., Wang, S., Ye, Z. Q. & Chen, Z. Q. miR-206 inhibits renal cell cancer growth by targeting GAK. J. Huazhong Univ. Sci. Technolog Med. Sci. 36, 852–858 (2016).

    Article  PubMed  CAS  Google Scholar 

  373. Xiao, H. et al. miR-206 functions as a novel cell cycle regulator and tumor suppressor in clear-cell renal cell carcinoma. Cancer Lett. 374, 107–116 (2016).

    Article  PubMed  CAS  Google Scholar 

  374. Khella, H. W. et al. miR-192, miR-194 and miR-215: a convergent microRNA network suppressing tumor progression in renal cell carcinoma. Carcinogenesis 34, 2231–2239 (2013).

    Article  PubMed  CAS  Google Scholar 

  375. Yamasaki, T. et al. MicroRNA-218 inhibits cell migration and invasion in renal cell carcinoma through targeting caveolin-2 involved in focal adhesion pathway. J. Urol. 190, 1059–1068 (2013).

    Article  PubMed  CAS  Google Scholar 

  376. Zhang, S. et al. Effect of microRNA-218 on the viability, apoptosis and invasion of renal cell carcinoma cells under hypoxia by targeted downregulation of CXCR7 expression. Biomed. Pharmacother. 80, 213–219 (2016).

    Article  PubMed  CAS  Google Scholar 

  377. Wang, J., Ying, Y., Bo, S., Li, G. & Yuan, F. Differentially expressed microRNA-218 modulates the viability of renal cell carcinoma by regulating BCL9. Mol. Med. Rep. 14, 1829–1834 (2016).

    Article  PubMed  CAS  Google Scholar 

  378. Lu, G. J. et al. miRNA-221 promotes proliferation, migration and invasion by targeting TIMP2 in renal cell carcinoma. Int. J. Clin. Exp. Pathol. 8, 5224–5229 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  379. Zhu, S., Huang, Y. & Su, X. Mir-451 correlates with prognosis of renal cell carcinoma patients and inhibits cellular proliferation of renal cell carcinoma. Med. Sci. Monit. 22, 183–190 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  380. Tang, Y., Wan, W., Wang, L., Ji, S. & Zhang, J. microRNA-451 inhibited cell proliferation, migration and invasion through regulation of MIF in renal cell carcinoma. Int. J. Clin. Exp. Pathol. 8, 15611–15621 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  381. Su, Z. et al. MicroRNA-451a is associated with cell proliferation, migration and apoptosis in renal cell carcinoma. Mol. Med. Rep. 11, 2248–2254 (2015).

    Article  PubMed  CAS  Google Scholar 

  382. Kim, E. A. et al. Inhibition of c-FLIPL expression by miRNA-708 increases the sensitivity of renal cancer cells to anti-cancer drugs. Oncotarget 7, 31832–31846 (2016).

    PubMed  PubMed Central  Google Scholar 

  383. Saini, S. et al. MicroRNA-708 induces apoptosis and suppresses tumorigenicity in renal cancer cells. Cancer Res. 71, 6208–6219 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  384. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00561912 (2011).

  385. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00217542 (2013).

  386. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00934440 (2017).

  387. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03165721 (2018).

  388. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00324740 (2015).

  389. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02619253 (2018).

  390. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01582009 (2017).

  391. Stadler, W. M. et al. Safety and efficacy results of the advanced renal cell carcinoma sorafenib expanded access program in North America. Cancer 116, 1272–1280 (2010).

    Article  PubMed  CAS  Google Scholar 

  392. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01638533 (2018).

  393. Pili, R. et al. Phase I study of the histone deacetylase inhibitor entinostat in combination with 13-cis retinoic acid in patients with solid tumours. Br. J. Cancer 106, 77–84 (2012).

    Article  PubMed  CAS  Google Scholar 

  394. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01038778 (2018).

  395. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03024437 (2018).

  396. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02795819 (2018).

  397. Steele, N. L. et al. A phase 1 pharmacokinetic and pharmacodynamic study of the histone deacetylase inhibitor belinostat in patients with advanced solid tumors. Clin. Cancer Res. 14, 804–810 (2008).

    Article  PubMed  CAS  Google Scholar 

  398. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02601950 (2018).

  399. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01987362 (2018).

  400. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02419417 (2018).

Download references

Author information

Authors and Affiliations

Authors

Contributions

S.C.J. researched data for the article. S.C.J., K.M.S., M.J.A., V.C.T.-H., and M.v.E. made substantial contributions to discussion of the article content. S.C.J. and K.M.S. wrote the manuscript. K.M.S., M.J.A., V.M., A.K., V.C.T.-H., and M.v.E. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Manon van Engeland.

Ethics declarations

Competing interests

M.v.E. receives research funding from MDxHealth. S.C.J., K.M.S., M.J.A., V.M., A.K. and V.C.T.-H. declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joosten, S.C., Smits, K.M., Aarts, M.J. et al. Epigenetics in renal cell cancer: mechanisms and clinical applications. Nat Rev Urol 15, 430–451 (2018). https://doi.org/10.1038/s41585-018-0023-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-018-0023-z

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer