Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genetics of male infertility

Abstract

Male infertility is a multifactorial pathological condition affecting approximately 7% of the male population. The genetic landscape of male infertility is highly complex as semen and testis histological phenotypes are extremely heterogeneous, and at least 2,000 genes are involved in spermatogenesis. The highest frequency of known genetic factors contributing to male infertility (25%) is in azoospermia, but the number of identified genetic anomalies in other semen and aetiological categories is constantly growing. Genetic screening is relevant for its diagnostic value, clinical decision making, and appropriate genetic counselling. Anomalies in sex chromosomes have major roles in severe spermatogenic impairment. Autosome-linked gene mutations are mainly involved in central hypogonadism, monomorphic teratozoospermia or asthenozoospermia, congenital obstructive azoospermia, and familial cases of quantitative spermatogenic disturbances. Results from whole-genome association studies suggest a marginal role for common variants as causative factors; however, some of these variants can be important for pharmacogenetic purposes. Results of studies on copy number variations (CNVs) demonstrate a considerably higher CNV load in infertile patients than in normozoospermic men, whereas whole-exome analysis has proved to be a highly successful diagnostic tool in familial cases of male infertility. Despite such efforts, the aetiology of infertility remains unknown in about 40% of patients, and the discovery of novel genetic factors in idiopathic infertility is a major challenge for the field of androgenetics. Large, international, and consortium-based whole-exome and whole-genome studies are the most promising approach for the discovery of the missing genetic aetiology of idiopathic male infertility.

Key points

  • Male infertility is a complex multifactorial pathological condition in which genetic factors have roles. Men with azoospermia are at the highest risk of being carriers of genetic anomalies (25%), whereas this risk progressively decreases with increasing sperm output.

  • Karyotype analysis, screening for azoospermia factor (AZF) microdeletions, and screening for mutations in candidate genes are part of the diagnostic work-up of male infertility.

  • Genetic testing has three objectives: diagnosis, prognosis before testicular sperm extraction (TESE), and personalizing therapy.

  • AZF deletion testing must be performed before TESE, as complete deletions of the AZFa and AZFb regions cause azoospermia with virtually zero chance of sperm recovery using testis biopsy.

  • Genetic anomalies involved in male infertility can also affect general health; thus, long-term follow-up monitoring of patients should be conducted. Furthermore, a possible link exists between infertility and the higher morbidity and lower life expectancy that is observed in infertile men than in the general population.

  • The aetiology of primary testicular failure is unknown in about 40% of men (idiopathic infertility), and genetic factors that have not yet been identified are likely to contribute to a large proportion of these instances. Whole-exome or whole-genome analyses are promising tools for the discovery of the missing genetic aetiology.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The different types of quantitative disturbances of spermatogenesis and the frequency of genetic factors in each category.
Fig. 2: Sex chromosome anomalies in infertile men that are detectable using karyotype analysis.
Fig. 3: Y chromosome-linked copy number variations with clinical relevance.
Fig. 4: The axoneme ultrastructure and its defects found in patients with multiple morphological abnormalities of the sperm flagella and primary ciliary dyskinesia.
Fig. 5: High-throughput genomic platforms used in the field of male infertility outlining the major findings of each technique.

References

  1. 1.

    Tournaye, H., Krausz, C. & Oates, R. D. Novel concepts in the aetiology of male reproductive impairment. Lancet Diabetes Endocrinol. 5, 544–553 (2017).

    PubMed  Article  Google Scholar 

  2. 2.

    Krausz, C. Male infertility: pathogenesis and clinical diagnosis. Best Pract. Res. Clin. Endocrinol. Metab. 25, 271–285 (2011).

    PubMed  Article  Google Scholar 

  3. 3.

    Jungwirth, A. et al. European Association of Urology guidelines on male infertility: the 2012 update. Eur. Urol. 62, 324–332 (2012).

    PubMed  Article  Google Scholar 

  4. 4.

    Vincent, M.-C. et al. Cytogenetic investigations of infertile men with low sperm counts: a 25-year experience. J. Androl. 23, 15–18 (2002).

    Article  Google Scholar 

  5. 5.

    Sun, F. et al. Abnormal progression through meiosis in men with nonobstructive azoospermia. Fertil. Steril. 87, 565–571 (2007).

    PubMed  Article  Google Scholar 

  6. 6.

    Harewood, L. & Fraser, P. The impact of chromosomal rearrangements on regulation of gene expression. Hum. Mol. Genet. 23, R76–R82 (2014).

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Punab, M. et al. Causes of male infertility: a 9-year prospective monocentre study on 1737 patients with reduced total sperm counts. Hum. Reprod. 32, 18–31 (2017).

    PubMed  CAS  Google Scholar 

  8. 8.

    Calogero, A. E. et al. Klinefelter syndrome: cardiovascular abnormalities and metabolic disorders. J. Endocrinol. Invest. 40, 705–712 (2017).

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Belling, K. et al. Klinefelter syndrome comorbidities linked to increased X chromosome gene dosage and altered protein interactome activity. Hum. Mol. Genet. 26, 1219–1229 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  10. 10.

    Zitzmann, M. et al. Gene expression patterns in relation to the clinical phenotype in Klinefelter syndrome. J. Clin. Endocrinol. Metab. 100, E518–E523 (2015).

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Sharma, A. et al. DNA methylation signature in peripheral blood reveals distinct characteristics of human X chromosome numerical aberrations. Clin. Epigenet. 7, 76 (2015).

    Article  CAS  Google Scholar 

  12. 12.

    Aksglaede, L. & Juul, A. Testicular function and fertility in men with Klinefelter syndrome: a review. Eur. J. Endocrinol. 168, R67–R76 (2013).

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Rohayem, J. et al. Age and markers of Leydig cell function, but not of Sertoli cell function predict the success of sperm retrieval in adolescents and adults with Klinefelter's syndrome. Andrology 3, 868–875 (2015).

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Rohayem, J., Nieschlag, E., Zitzmann, M. & Kliesch, S. Testicular function during puberty and young adulthood in patients with Klinefelter's syndrome with and without spermatozoa in seminal fluid. Andrology 4, 1178–1186 (2016).

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Corona, G. et al. Sperm recovery and ICSI outcomes in Klinefelter syndrome: a systematic review and meta-analysis. Hum. Reprod. Update 23, 265–275 (2017).

    PubMed  Article  Google Scholar 

  16. 16.

    Shi, Q. & Martin, R. H. Aneuploidy in human spermatozoa: FISH analysis in men with constitutional chromosomal abnormalities, and in infertile men. Reproduction 121, 655–666 (2001).

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Staessen, C. et al. PGD in 47,XXY Klinefelter's syndrome patients. Hum. Reprod. Update 9, 319–330 (2003).

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Lanfranco, F., Kamischke, A., Zitzmann, M. & Nieschlag, E. Klinefelter's syndrome. Lancet 364, 273–283 (2004).

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Fullerton, G., Hamilton, M. & Maheshwari, A. Should non-mosaic Klinefelter syndrome men be labelled as infertile in 2009? Hum. Reprod. 25, 588–597 (2010).

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Greco, E. et al. Birth of 16 healthy children after ICSI in cases of nonmosaic Klinefelter syndrome. Hum. Reprod. 28, 1155–1160 (2013).

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Vorona, E., Zitzmann, M., Gromoll, J., Schuring, A. N. & Nieschlag, E. Clinical, endocrinological, and epigenetic features of the 46,XX male syndrome, compared with 47,XXY Klinefelter patients. J. Clin. Endocrinol. Metab. 92, 3458–3465 (2007).

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Zenteno-Ruiz, J. C., Kofman-Alfaro, S. & Mendez, J. P. 46,XX sex reversal. Arch. Med. Res. 32, 559–566 (2001).

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Bashamboo, A. & McElreavey, K. Mechanism of sex determination in humans: insights from disorders of sex development. Sex. Dev. 10, 313–325 (2016).

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Wu, Q.-Y. et al. Clinical, molecular and cytogenetic analysis of 46, XX testicular disorder of sex development with SRY-positive. BMC Urol. 14, 70 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Skaletsky, H. et al. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 423, 825–837 (2003).

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Lange, J. et al. Isodicentric Y chromosomes and sex disorders as byproducts of homologous recombination that maintains palindromes. Cell 138, 855–869 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  27. 27.

    Kim, J.-W. et al. Molecular and clinical characteristics of 26 cases with structural Y chromosome aberrations. Cytogenet. Genome Res. 136, 270–277 (2012).

    PubMed  Article  Google Scholar 

  28. 28.

    Krausz, C., Hoefsloot, L., Simoni, M. & Tuttelmann, F. EAA/EMQN best practice guidelines for molecular diagnosis of Y-chromosomal microdeletions: state-of-the-art 2013. Andrology 2, 5–19 (2014).

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Tiepolo, L. & Zuffardi, O. Localization of factors controlling spermatogenesis in the nonfluorescent portion of the human Y chromosome long arm. Hum. Genet. 34, 119–124 (1976).

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Vogt, P. H. et al. Human Y chromosome azoospermia factors (AZF) mapped to different subregions in Yq11. Hum. Mol. Genet. 5, 933–943 (1996).

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Krausz, C. & Casamonti, E. Spermatogenic failure and the Y chromosome. Hum. Genet. 136, 637–655 (2017).

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Lo Giacco, D. et al. Clinical relevance of Y-linked CNV screening in male infertility: new insights based on the 8-year experience of a diagnostic genetic laboratory. Eur. J. Hum. Genet. 22, 754–761 (2014).

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Patsalis, P. C. et al. Effects of transmission of Y chromosome AZFc deletions. Lancet 360, 1222–1224 (2002).

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Stouffs, K., Lissens, W., Tournaye, H., Van Steirteghem, A. & Liebaers, I. The choice and outcome of the fertility treatment of 38 couples in whom the male partner has a Yq microdeletion. Hum. Reprod. 20, 1887–1896 (2005).

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Mateu, E. et al. Aneuploidies in embryos and spermatozoa from patients with Y chromosome microdeletions. Fertil. Steril. 94, 2874–2877 (2010).

    PubMed  Article  Google Scholar 

  36. 36.

    Jorgez, C. J. et al. Aberrations in pseudoautosomal regions (PARs) found in infertile men with Y-chromosome microdeletions. J. Clin. Endocrinol. Metab. 96, E674–E679 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  37. 37.

    Chianese, C. et al. Y-Chromosome microdeletions are not associated with SHOX haploinsufficiency. Hum. Reprod. 28, 3155–3160 (2013).

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Castro, A. et al. Pseudoautosomal abnormalities in terminal AZFb+c deletions are associated with isochromosomes Yp and may lead to abnormal growth and neuropsychiatric function. Hum. Reprod. 32, 465–475 (2017).

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Repping, S. et al. Polymorphism for a 1.6-Mb deletion of the human Y chromosome persists through balance between recurrent mutation and haploid selection. Nat. Genet. 35, 247–251 (2003).

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Rozen, S. G. et al. AZFc deletions and spermatogenic failure: a population-based survey of 20,000 Y chromosomes. Am. J. Hum. Genet. 91, 890–896 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  41. 41.

    Tuttelmann, F., Rajpert-De Meyts, E., Nieschlag, E. & Simoni, M. Gene polymorphisms and male infertility—a meta-analysis and literature review. Reprod. Biomed. Online 15, 643–658 (2007).

    PubMed  Article  Google Scholar 

  42. 42.

    Visser, L. et al. Y chromosome gr/gr deletions are a risk factor for low semen quality. Hum. Reprod. 24, 2667–2673 (2009).

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Navarro-Costa, P., Goncalves, J. & Plancha, C. E. The AZFc region of the Y chromosome: at the crossroads between genetic diversity and male infertility. Hum. Reprod. Update 16, 525–542 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  44. 44.

    Stouffs, K., Lissens, W., Tournaye, H. & Haentjens, P. What about gr/gr deletions and male infertility? Systematic review and meta-analysis. Hum. Reprod. Update 17, 197–209 (2011).

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Bansal, S. K. et al. Gr/gr deletions on Y-chromosome correlate with male infertility: an original study, meta-analyses, and trial sequential analyses. Sci. Rep. 6, 19798 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  46. 46.

    Sin, H.-S. et al. Features of constitutive gr/gr deletion in a Japanese population. Hum. Reprod. 25, 2396–2403 (2010).

    PubMed  Article  Google Scholar 

  47. 47.

    Yang, Y. et al. Differential effect of specific gr/gr deletion subtypes on spermatogenesis in the Chinese Han population. Int. J. Androl. 33, 745–754 (2010).

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Nathanson, K. L. et al. The Y deletion gr/gr and susceptibility to testicular germ cell tumor. Am. J. Hum. Genet. 77, 1034–1043 (2005).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  49. 49.

    Zhang, F. et al. Partial deletions are associated with an increased risk of complete deletion in AZFc: a new insight into the role of partial AZFc deletions in male infertility. J. Med. Genet. 44, 437–444 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  50. 50.

    Lu, C. et al. The b2/b3 subdeletion shows higher risk of spermatogenic failure and higher frequency of complete AZFc deletion than the gr/gr subdeletion in a Chinese population. Hum. Mol. Genet. 18, 1122–1130 (2009).

    PubMed  Article  CAS  Google Scholar 

  51. 51.

    Gottlieb, B., Beitel, L. K., Nadarajah, A., Paliouras, M. & Trifiro, M. The androgen receptor gene mutations database: 2012 update. Hum. Mutat. 33, 887–894 (2012).

    PubMed  Article  CAS  Google Scholar 

  52. 52.

    Hughes, I. A., Werner, R., Bunch, T. & Hiort, O. Androgen insensitivity syndrome. Semin. Reprod. Med. 30, 432–442 (2012).

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Casals, T. et al. Heterogeneity for mutations in the CFTR gene and clinical correlations in patients with congenital absence of the vas deferens. Hum. Reprod. 15, 1476–1483 (2000).

    PubMed  Article  CAS  Google Scholar 

  54. 54.

    Patrizio, P., Asch, R. H., Handelin, B. & Silber, S. J. Aetiology of congenital absence of vas deferens: genetic study of three generations. Hum. Reprod. 8, 215–220 (1993).

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Weiske, W. H., Salzler, N., Schroeder-Printzen, I. & Weidner, W. Clinical findings in congenital absence of the vasa deferentia. Andrologia 32, 13–18 (2000).

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Estivill, X., Bancells, C. & Ramos, C. Geographic distribution and regional origin of 272 cystic fibrosis mutations in European populations. The Biomed CF Mutation Analysis Consortium. Hum. Mutat. 10, 135–154 (1997).

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Chu, C. S., Trapnell, B. C., Curristin, S., Cutting, G. R. & Crystal, R. G. Genetic basis of variable exon 9 skipping in cystic fibrosis transmembrane conductance regulator mRNA. Nat. Genet. 3, 151–156 (1993).

    PubMed  Article  CAS  Google Scholar 

  58. 58.

    Patrizio, P. & Leonard, D. G. Mutations of the cystic fibrosis gene and congenital absence of the vas deferens. Results Probl. Cell Differ. 28, 175–186 (2000).

    PubMed  Article  CAS  Google Scholar 

  59. 59.

    de Souza, D. A. S., Faucz, F. R., Pereira-Ferrari, L., Sotomaior, V. S. & Raskin, S. Congenital bilateral absence of the vas deferens as an atypical form of cystic fibrosis: reproductive implications and genetic counseling. Andrology 6, 127–135 (2017).

    PubMed  Article  CAS  Google Scholar 

  60. 60.

    Patat, O. et al. Truncating mutations in the adhesion G protein-coupled receptor G2 gene ADGRG2 cause an X-linked congenital bilateral absence of vas deferens. Am. J. Hum. Genet. 99, 437–442 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  61. 61.

    Yang, B. et al. Pathogenic role of ADGRG2 in CBAVD patients replicated in Chinese population. Andrology 5, 954–957 (2017).

    PubMed  Article  CAS  Google Scholar 

  62. 62.

    Obermann, H. et al. HE6, a two-subunit heptahelical receptor associated with apical membranes of efferent and epididymal duct epithelia. Mol. Reprod. Dev. 64, 13–26 (2003).

    PubMed  Article  CAS  Google Scholar 

  63. 63.

    Davies, B. et al. Targeted deletion of the epididymal receptor HE6 results in fluid dysregulation and male infertility. Mol. Cell. Biol. 24, 8642–8648 (2004).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  64. 64.

    Boehm, U. et al. Expert consensus document: European Consensus Statement on congenital hypogonadotropic hypogonadism—pathogenesis, diagnosis and treatment. Nat. Rev. Endocrinol. 11, 547–564 (2015).

    PubMed  Article  Google Scholar 

  65. 65.

    Pitteloud, N. et al. Digenic mutations account for variable phenotypes in idiopathic hypogonadotropic hypogonadism. J. Clin. Invest. 117, 457–463 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  66. 66.

    Pitteloud, N., Durrani, S., Raivio, T. & Sykiotis, G. P. Complex genetics in idiopathic hypogonadotropic hypogonadism. Front. Horm. Res. 39, 142–153 (2010).

    PubMed  Article  CAS  Google Scholar 

  67. 67.

    Quinton, R. et al. Kallmann's syndrome: is it always for life? Clin. Endocrinol. 50, 481–485 (1999).

    Article  CAS  Google Scholar 

  68. 68.

    Raivio, T. et al. Reversal of idiopathic hypogonadotropic hypogonadism. N. Engl. J. Med. 357, 863–873 (2007).

    PubMed  Article  CAS  Google Scholar 

  69. 69.

    Ribeiro, R. S., Vieira, T. C. & Abucham, J. Reversible Kallmann syndrome: report of the first case with a KAL1 mutation and literature review. Eur. J. Endocrinol. 156, 285–290 (2007).

    PubMed  Article  CAS  Google Scholar 

  70. 70.

    Dwyer, A. A., Raivio, T. & Pitteloud, N. Management of endocrine disease: reversible hypogonadotropic hypogonadism. Eur. J. Endocrinol. 174, R267–274 (2016).

    PubMed  Article  CAS  Google Scholar 

  71. 71.

    Nistal, M., Paniagua, R. & Herruzo, A. Multi-tailed spermatozoa in a case with asthenospermia and teratospermia. Virchows Arch. B Cell Pathol. 26, 111–118 (1977).

    PubMed  CAS  Google Scholar 

  72. 72.

    Dieterich, K. et al. Homozygous mutation of AURKC yields large-headed polyploid spermatozoa and causes male infertility. Nat. Genet. 39, 661–665 (2007).

    PubMed  Article  CAS  Google Scholar 

  73. 73.

    Ray, P. F. et al. Genetic abnormalities leading to qualitative defects of sperm morphology or function. Clin. Genet. 91, 217–232 (2017).

    PubMed  Article  CAS  Google Scholar 

  74. 74.

    Ben Khelifa, M. et al. Identification of a new recurrent aurora kinase C mutation in both European and African men with macrozoospermia. Hum. Reprod. 27, 3337–3346 (2012).

    PubMed  Article  CAS  Google Scholar 

  75. 75.

    Molinari, E. et al. Sperm macrocephaly syndrome in a patient without AURKC mutations and with a history of recurrent miscarriage. Reprod. Biomed. Online 26, 148–156 (2013).

    PubMed  Article  Google Scholar 

  76. 76.

    Coutton, C., Escoffier, J., Martinez, G., Arnoult, C. & Ray, P. F. Teratozoospermia: spotlight on the main genetic actors in the human. Hum. Reprod. Update 21, 455–485 (2015).

    PubMed  Article  CAS  Google Scholar 

  77. 77.

    Harbuz, R. et al. A recurrent deletion of DPY19L2 causes infertility in man by blocking sperm head elongation and acrosome formation. Am. J. Hum. Genet. 88, 351–361 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  78. 78.

    Chianese, C. et al. Comprehensive investigation in patients affected by sperm macrocephaly and globozoospermia. Andrology 3, 203–212 (2015).

    PubMed  Article  CAS  Google Scholar 

  79. 79.

    Davila Garza, S. A. & Patrizio, P. Reproductive outcomes in patients with male infertility because of Klinefelter's syndrome, Kartagener's syndrome, round-head sperm, dysplasia fibrous sheath, and ‘stump’ tail sperm: an updated literature review. Curr. Opin. Obstet. Gynecol. 25, 229–246 (2013).

    PubMed  Article  CAS  Google Scholar 

  80. 80.

    Kuentz, P. et al. Assisted oocyte activation overcomes fertilization failure in globozoospermic patients regardless of the DPY19L2 status. Hum. Reprod. 28, 1054–1061 (2013).

    PubMed  Article  CAS  Google Scholar 

  81. 81.

    Perrin, A. et al. Molecular cytogenetic and genetic aspects of globozoospermia: a review. Andrologia 45, 1–9 (2013).

    PubMed  Article  CAS  Google Scholar 

  82. 82.

    Dam, A. H. D. M. et al. Globozoospermia revisited. Hum. Reprod. Update 13, 63–75 (2007).

    PubMed  Article  CAS  Google Scholar 

  83. 83.

    Ben Khelifa, M. et al. Mutations in DNAH1, which encodes an inner arm heavy chain dynein, lead to male infertility from multiple morphological abnormalities of the sperm flagella. Am. J. Hum. Genet. 94, 95–104 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  84. 84.

    Amiri-Yekta, A. et al. Whole-exome sequencing of familial cases of multiple morphological abnormalities of the sperm flagella (MMAF) reveals new DNAH1 mutations. Hum. Reprod. 31, 2872–2880 (2016).

    PubMed  Article  CAS  Google Scholar 

  85. 85.

    Wang, X. et al. Homozygous DNAH1 frameshift mutation causes multiple morphological anomalies of the sperm flagella in Chinese. Clin. Genet. 91, 313–321 (2017).

    PubMed  Article  CAS  Google Scholar 

  86. 86.

    Baccetti, B. et al. Gene deletions in an infertile man with sperm fibrous sheath dysplasia. Hum. Reprod. 20, 2790–2794 (2005).

    PubMed  Article  CAS  Google Scholar 

  87. 87.

    Knowles, M. R., Zariwala, M. & Leigh, M. Primary ciliary dyskinesia. Clin. Chest Med. 37, 449–461 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  88. 88.

    Goutaki, M. et al. The international primary ciliary dyskinesia cohort (iPCD Cohort): methods and first results. Eur. Respir. J. 49, 1601181 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  89. 89.

    Harris, A. Diagnosis and management of children with primary ciliary dyskinesia. Nurs. Child. Young People 29, 38–47 (2017).

    PubMed  Article  Google Scholar 

  90. 90.

    Chemes, H. E. et al. Lack of a head in human spermatozoa from sterile patients: a syndrome associated with impaired fertilization. Fertil. Steril. 47, 310–316 (1987).

    PubMed  Article  CAS  Google Scholar 

  91. 91.

    Imtiaz, F., Allam, R., Ramzan, K. & Al-Sayed, M. Variation in DNAH1 may contribute to primary ciliary dyskinesia. BMC Med. Genet. 16, 14 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  92. 92.

    Lewis-Jones, I., Aziz, N., Seshadri, S., Douglas, A. & Howard, P. Sperm chromosomal abnormalities are linked to sperm morphologic deformities. Fertil. Steril. 79, 212–215 (2003).

    PubMed  Article  Google Scholar 

  93. 93.

    Rives, N. M. D. Chromosome abnormalities in sperm from infertile men with normal somatic karyotypes: asthenozoospermia. Cytogenet. Genome Res. 111, 358–362 (2005).

    PubMed  Article  CAS  Google Scholar 

  94. 94.

    Collodel, G. & Moretti, E. Sperm morphology and aneuploidies: defects of supposed genetic origin. Andrologia 38, 208–215 (2006).

    PubMed  Article  CAS  Google Scholar 

  95. 95.

    Ghedir, H. et al. Meiotic segregation and sperm DNA fragmentation in Tunisian men with dysplasia of the fibrous sheath (DFS) associated with head abnormalities. J. Assist. Reprod. Genet. 31, 1167–1174 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  96. 96.

    Wambergue, C. et al. Patients with multiple morphological abnormalities of the sperm flagella due to DNAH1 mutations have a good prognosis following intracytoplasmic sperm injection. Hum. Reprod. 31, 1164–1172 (2016).

    PubMed  Article  CAS  Google Scholar 

  97. 97.

    Sha, Y.-W., Ding, L. & Li, P. Management of primary ciliary dyskinesia/Kartagener's syndrome in infertile male patients and current progress in defining the underlying genetic mechanism. Asian J. Androl. 16, 101–106 (2014).

    PubMed  Article  Google Scholar 

  98. 98.

    Krausz, C., Escamilla, A. R. & Chianese, C. Genetics of male infertility: from research to clinic. Reproduction 150, R159–R174 (2015).

    PubMed  Article  CAS  Google Scholar 

  99. 99.

    Mitchell, M. J. et al. Single gene defects leading to sperm quantitative anomalies. Clin. Genet. 91, 208–216 (2017).

    PubMed  Article  CAS  Google Scholar 

  100. 100.

    International HapMap Consortium. The International HapMap Project. Nature 426, 789–796 (2003).

    Article  CAS  Google Scholar 

  101. 101.

    Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    PubMed  Article  CAS  Google Scholar 

  102. 102.

    Aston, K. I. & Carrell, D. T. Genome-wide study of single-nucleotide polymorphisms associated with azoospermia and severe oligozoospermia. J. Androl. 30, 711–725 (2009).

    PubMed  Article  CAS  Google Scholar 

  103. 103.

    Ha, N.-T., Freytag, S. & Bickeboeller, H. Coverage and efficiency in current SNP chips. Eur. J. Hum. Genet. 22, 1124–1130 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  104. 104.

    Dam, A. H. D. M. et al. Homozygous mutation in SPATA16 is associated with male infertility in human globozoospermia. Am. J. Hum. Genet. 81, 813–820 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  105. 105.

    Hu, Z. et al. A genome-wide association study in Chinese men identifies three risk loci for non-obstructive azoospermia. Nat. Genet. 44, 183–186 (2011).

    PubMed  Article  CAS  Google Scholar 

  106. 106.

    Zhao, H. et al. A genome-wide association study reveals that variants within the HLA region are associated with risk for nonobstructive azoospermia. Am. J. Hum. Genet. 90, 900–906 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  107. 107.

    Aston, K. I., Krausz, C., Laface, I., Ruiz-Castane, E. & Carrell, D. T. Evaluation of 172 candidate polymorphisms for association with oligozoospermia or azoospermia in a large cohort of men of European descent. Hum. Reprod. 25, 1383–1397 (2010).

    PubMed  Article  CAS  Google Scholar 

  108. 108.

    Kosova, G., Scott, N. M., Niederberger, C., Prins, G. S. & Ober, C. Genome-wide association study identifies candidate genes for male fertility traits in humans. Am. J. Hum. Genet. 90, 950–961 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  109. 109.

    Ni, B. et al. Low-frequency germline variants across 6p22.2-6p21.33 are associated with non-obstructive azoospermia in Han Chinese men. Hum. Mol. Genet. 24, 5628–5636 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  110. 110.

    Feuk, L., Carson, A. R. & Scherer, S. W. Structural variation in the human genome. Nat. Rev. Genet. 7, 85–97 (2006).

    PubMed  Article  CAS  Google Scholar 

  111. 111.

    Riggs, E. R., Ledbetter, D. H. & Martin, C. L. Genomic variation: lessons learned from whole-genome CNV analysis. Curr. Genet. Med. Rep. 2, 146–150 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  112. 112.

    Brook-Carter, P. T. et al. Deletion of the TSC2 and PKD1 genes associated with severe infantile polycystic kidney disease—a contiguous gene syndrome. Nat. Genet. 8, 328–332 (1994).

    PubMed  Article  CAS  Google Scholar 

  113. 113.

    Fantes, J. A. et al. Submicroscopic deletions at the WAGR locus, revealed by nonradioactive in situ hybridization. Am. J. Hum. Genet. 51, 1286–1294 (1992).

    PubMed  PubMed Central  CAS  Google Scholar 

  114. 114.

    Tuttelmann, F. et al. Copy number variants in patients with severe oligozoospermia and Sertoli-cell-only syndrome. PLOS One 6, e19426 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  115. 115.

    Krausz, C. et al. High resolution X chromosome-specific array-CGH detects new CNVs in infertile males. PLOS ONE 7, 1–13 (2012).

    Google Scholar 

  116. 116.

    Stouffs, K. et al. Array comparative genomic hybridization in male infertility. Hum. Reprod. 27, 921–929 (2012).

    PubMed  Article  CAS  Google Scholar 

  117. 117.

    Lopes, A. M. et al. Human spermatogenic failure purges deleterious mutation load from the autosomes and both sex chromosomes, including the gene DMRT1. PLOS Genet. 9, e1003349 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  118. 118.

    Yatsenko, A. N. et al. X-Linked TEX11 mutations, meiotic arrest, and azoospermia in infertile men. N. Engl. J. Med. 372, 2097–2107 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  119. 119.

    Lo Giacco, D. et al. Recurrent X chromosome-linked deletions: discovery of new genetic factors in male infertility. J. Med. Genet. 51, 340–344 (2014).

    PubMed  Article  CAS  Google Scholar 

  120. 120.

    Shen, Y. et al. Evidence for the involvement of the proximal copy of the MAGEA9 gene in Xq28-linked CNV67 specific to spermatogenic failure. Biol. Reprod. 96, 610–616 (2017).

    PubMed  Article  Google Scholar 

  121. 121.

    Yang, F. et al. TEX11 is mutated in infertile men with azoospermia and regulates genome-wide recombination rates in mouse. EMBO Mol. Med. 7, 1198–1210 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  122. 122.

    Salonia, A. et al. Are infertile men less healthy than fertile men? Results of a prospective case-control survey. Eur. Urol. 56, 1025–1031 (2009).

    PubMed  Article  Google Scholar 

  123. 123.

    Jensen, T. K., Jacobsen, R., Christensen, K., Nielsen, N. C. & Bostofte, E. Good semen quality and life expectancy: a cohort study of 43,277 men. Am. J. Epidemiol. 170, 559–565 (2009).

    PubMed  Article  Google Scholar 

  124. 124.

    Eisenberg, M. L., Li, S., Brooks, J. D., Cullen, M. R. & Baker, L. C. Increased risk of cancer in infertile men: analysis of U. S. claims data. J. Urol. 193, 1596–1601 (2015).

    PubMed  Article  Google Scholar 

  125. 125.

    Quaynor, S. D. et al. Targeted next generation sequencing approach identifies eighteen new candidate genes in normosmic hypogonadotropic hypogonadism and Kallmann syndrome. Mol. Cell. Endocrinol. 437, 86–96 (2016).

    PubMed  Article  CAS  Google Scholar 

  126. 126.

    Li, Z. et al. Excess of rare variants in genes that are key epigenetic regulators of spermatogenesis in the patients with non-obstructive azoospermia. Sci. Rep. 5, 8785 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  127. 127.

    Ayhan, Ö. et al. Truncating mutations in TAF4B and ZMYND15 causing recessive azoospermia. J. Med. Genet. 51, 239–244 (2014).

    PubMed  Article  CAS  Google Scholar 

  128. 128.

    Okutman, O. et al. Exome sequencing reveals a nonsense mutation in TEX15 causing spermatogenic failure in a Turkish family. Hum. Mol. Genet. 24, 5581–5588 (2015).

    PubMed  Article  CAS  Google Scholar 

  129. 129.

    Ramasamy, R. et al. Whole-exome sequencing identifies novel homozygous mutation in NPAS2 in family with nonobstructive azoospermia. Fertil. Steril. 104, 286–291 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  130. 130.

    Maor-Sagie, E. et al. Deleterious mutation in SYCE1 is associated with non-obstructive azoospermia. J. Assist. Reprod. Genet. 32, 887–891 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  131. 131.

    Tenenbaum-Rakover, Y. et al. Minichromosome maintenance complex component 8 (MCM8) gene mutations result in primary gonadal failure. J. Med. Genet. 52, 391–399 (2015).

    PubMed  Article  CAS  Google Scholar 

  132. 132.

    Gershoni, M. et al. A familial study of azoospermic men identifies three novel causative mutations in three new human azoospermia genes. Genet. Med. 19, 998–1006 (2017).

    PubMed  Article  CAS  Google Scholar 

  133. 133.

    Arafat, M. et al. Mutation in TDRD9 causes non-obstructive azoospermia in infertile men. J. Med. Genet. 54, 633–639 (2017).

    PubMed  Article  Google Scholar 

  134. 134.

    Kherraf, Z.-E. et al. SPINK2 deficiency causes infertility by inducing sperm defects in heterozygotes and azoospermia in homozygotes. EMBO Mol. Med. 9, 1132–1149 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  135. 135.

    Okutman, O. et al. A no-stop mutation in MAGEB4 is a possible cause of rare X-linked azoospermia and oligozoospermia in a consanguineous Turkish family. J. Assist. Reprod. Genet. 34, 683–694 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  136. 136.

    Kotan, L. D. et al. Idiopathic hypogonadotropic hypogonadism caused by inactivating mutations in SRA1. J. Clin. Res. Pediatr. Endocrinol. 8, 125–134 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  137. 137.

    Alqwaifly, M. & Bohlega, S. Ataxia and hypogonadotropic hypogonadism with intrafamilial variability caused by RNF216 mutation. Neurol. Int. 8, 6444 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  138. 138.

    Richards, M. R. et al. Phenotypic spectrum of POLR3B mutations: isolated hypogonadotropic hypogonadism without neurological or dental anomalies. J. Med. Genet. 54, 19–25 (2017).

    PubMed  Article  CAS  Google Scholar 

  139. 139.

    Turan, I. et al. CCDC141 Mutations in Idiopathic Hypogonadotropic Hypogonadism. J. Clin. Endocrinol. Metab. 102, 1816–1825 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  140. 140.

    Franca, M. M. et al. A novel homozygous missense FSHR variant associated with hypergonadotropic hypogonadism in two siblings from a Brazilian family. Sex Dev. 11, 137–142 (2017).

    PubMed  Article  CAS  Google Scholar 

  141. 141.

    Olbrich, H. et al. Recessive HYDIN mutations cause primary ciliary dyskinesia without randomization of left-right body asymmetry. Am. J. Hum. Genet. 91, 672–684 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  142. 142.

    Moore, D. J. et al. Mutations in ZMYND10, a gene essential for proper axonemal assembly of inner and outer dynein arms in humans and flies, cause primary ciliary dyskinesia. Am. J. Hum. Genet. 93, 346–356 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  143. 143.

    Zariwala, M. A. et al. ZMYND10 is mutated in primary ciliary dyskinesia and interacts with LRRC6. Am. J. Hum. Genet. 93, 336–345 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  144. 144.

    Onoufriadis, A. et al. Combined exome and whole-genome sequencing identifies mutations in ARMC4 as a cause of primary ciliary dyskinesia with defects in the outer dynein arm. J. Med. Genet. 51, 61–67 (2014).

    PubMed  Article  CAS  Google Scholar 

  145. 145.

    Casey, J. P. et al. A case report of primary ciliary dyskinesia, laterality defects and developmental delay caused by the co-existence of a single gene and chromosome disorder. BMC Med. Genet. 16, 45 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  146. 146.

    Pereira, R. et al. Mutation analysis in patients with total sperm immotility. J. Assist. Reprod. Genet. 32, 893–902 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  147. 147.

    Sui, W. et al. CCDC40 mutation as a cause of primary ciliary dyskinesia: a case report and review of literature. Clin. Respir. J. 10, 614–621 (2016).

    PubMed  Article  Google Scholar 

  148. 148.

    Zhu, F. et al. Biallelic SUN5 mutations cause autosomal-recessive acephalic spermatozoa syndrome. Am. J. Hum. Genet. 99, 942–949 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  149. 149.

    El Khouri, E. et al. Mutations in DNAJB13, encoding an HSP40 family member, cause primary ciliary dyskinesia and male infertility. Am. J. Hum. Genet. 99, 489–500 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  150. 150.

    Li, L. et al. Whole-exome sequencing identified a homozygous BRDT mutation in a patient with acephalic spermatozoa. Oncotarget 8, 19914–19922 (2017).

    PubMed  PubMed Central  Google Scholar 

  151. 151.

    Tang, S. et al. Biallelic mutations in CFAP43 and CFAP44 cause male infertility with multiple morphological abnormalities of the sperm flagella. Am. J. Hum. Genet. 100, 854–864 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  152. 152.

    Xu, X. et al. A familial study of twins with severe asthenozoospermia identified a homozygous SPAG17 mutation by whole-exome sequencing. Clin. Genet. 93, 345–349 (2017).

    PubMed  Article  CAS  Google Scholar 

  153. 153.

    Sha, Y.-W. et al. TSGA10 is a novel candidate gene associated with acephalic spermatozoa. Clin. Genet. https://doi.org/10.1111/cge.13140 (2017).

  154. 154.

    Sha, Y.-W. et al. A homozygous CEP135 mutation is associated with multiple morphological abnormalities of the sperm flagella (MMAF). Gene 633, 48–53 (2017).

    PubMed  Article  CAS  Google Scholar 

  155. 155.

    Sha, Y. et al. DNAH1 gene mutations and their potential association with dysplasia of the sperm fibrous sheath and infertility in the Han Chinese population. Fertil. Steril. 107, 1312–1318.e2 (2017).

    PubMed  Article  CAS  Google Scholar 

  156. 156.

    Mueller, J. L. et al. The mouse X chromosome is enriched for multicopy testis genes showing postmeiotic expression. Nat. Genet. 40, 794–799 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  157. 157.

    Tyler-Smith, C. & Krausz, C. The will-o’-the-wisp of genetics—hunting for the azoospermia factor gene. N. Engl. J. Med. 360, 925–927 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  158. 158.

    Stouffs, K., Vloeberghs, V., Gheldof, A., Tournaye, H. & Seneca, S. Are AZFb deletions always incompatible with sperm production? Andrology 5, 691–694 (2017).

    PubMed  Article  CAS  Google Scholar 

  159. 159.

    Koffler, D. & Fogel, M. Immunofluorescent localization of LH and FSH in the human adenohypophysis. Proc. Soc. Exp. Biol. Med. 115, 1080–1082 (1964).

    PubMed  Article  CAS  Google Scholar 

  160. 160.

    Ramaswamy, S. & Weinbauer, G. F. Endocrine control of spermatogenesis: role of FSH and LH/ testosterone. Spermatogenesis 4, e996025 (2014).

    PubMed  Article  Google Scholar 

  161. 161.

    Laan, M., Grigorova, M. & Huhtaniemi, I. T. Pharmacogenetics of follicle-stimulating hormone action. Curr. Opin. Endocrinol. Diabetes. Obes. 19, 220–227 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  162. 162.

    Grigorova, M. et al. Increased prevalance of the -211 T allele of follicle stimulating hormone (FSH) beta subunit promoter polymorphism and lower serum FSH in infertile men. J. Clin. Endocrinol. Metab. 95, 100–108 (2010).

    PubMed  Article  CAS  Google Scholar 

  163. 163.

    Perez Mayorga, M. et al. Ovarian response to follicle-stimulating hormone (FSH) stimulation depends on the FSH receptor genotype. J. Clin. Endocrinol. Metab. 85, 3365–3369 (2000).

    PubMed  CAS  Google Scholar 

  164. 164.

    Greb, R. R. et al. A common single nucleotide polymorphism in exon 10 of the human follicle stimulating hormone receptor is a major determinant of length and hormonal dynamics of the menstrual cycle. J. Clin. Endocrinol. Metab. 90, 4866–4872 (2005).

    PubMed  Article  CAS  Google Scholar 

  165. 165.

    Simoni, M. & Casarini, L. Mechanisms in endocrinology: genetics of FSH action: a 2014-and-beyond view. Eur. J. Endocrinol. 170, R91–R107 (2014).

    PubMed  Article  CAS  Google Scholar 

  166. 166.

    Wu, W. et al. Follicle stimulating hormone receptor G-29A, 919A>G, 2039A>G polymorphism and the risk of male infertility: a meta-analysis. Gene 505, 388–392 (2012).

    PubMed  Article  CAS  Google Scholar 

  167. 167.

    Lend, A. K. et al. Follicle-stimulating hormone receptor gene haplotypes and male infertility in estonian population and meta-analysis. Syst. Biol. Reprod. Med. 56, 84–90 (2010).

    PubMed  Article  CAS  Google Scholar 

  168. 168.

    Grigorova, M. et al. Reproductive physiology in young men is cumulatively affected by FSH-action modulating genetic variants: FSHR -29G/A and c.2039A/G, FSHB -211G/T. PLOS ONE 9, e94244 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  169. 169.

    Tuttelmann, F. et al. Combined effects of the variants FSHB -211G>T and FSHR 2039A>G on male reproductive parameters. J. Clin. Endocrinol. Metab. 97, 3639–3647 (2012).

    PubMed  Article  CAS  Google Scholar 

  170. 170.

    Santi, D., Granata, A. R. M. & Simoni, M. FSH treatment of male idiopathic infertility improves pregnancy rate: a meta-analysis. Endocr. Connect. 4, R46–R58 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  171. 171.

    Selice, R. et al. The response to FSH treatment in oligozoospermic men depends on FSH receptor gene polymorphisms. Int. J. Androl. 34, 306–312 (2011).

    PubMed  Article  CAS  Google Scholar 

  172. 172.

    Ferlin, A. et al. Toward a pharmacogenetic approach to male infertility: polymorphism of follicle-stimulating hormone beta-subunit promoter. Fertil. Steril. 96, 1344–1349.e2 (2011).

    PubMed  Article  CAS  Google Scholar 

  173. 173.

    Simoni, M. et al. Treatment with human, recombinant FSH improves sperm DNA fragmentation in idiopathic infertile men depending on the FSH receptor polymorphism p. N680S: a pharmacogenetic study. Hum. Reprod. 31, 1960–1969 (2016).

    PubMed  Article  Google Scholar 

  174. 174.

    Casamonti, E. et al. Short-term FSH treatment and sperm maturation: a prospective study in idiopathic infertile men. Andrology 5, 414–422 (2017).

    PubMed  Article  CAS  Google Scholar 

  175. 175.

    Muratori, M. et al. DNA fragmentation in brighter sperm predicts male fertility independently from age and semen parameters. Fertil. Steril. 104, 582–590.e4 (2015).

    PubMed  Article  CAS  Google Scholar 

  176. 176.

    Karampetsou, E., Morrogh, D. & Chitty, L. Microarray technology for the diagnosis of fetal chromosomal aberrations: which platform should we use? J. Clin. Med. 3, 663–678 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  177. 177.

    Bamshad, M. J. et al. Exome sequencing as a tool for Mendelian disease gene discovery. Nat. Rev. Genet. 12, 745–755 (2011).

    PubMed  Article  CAS  Google Scholar 

  178. 178.

    Giachini, C. et al. Partial AZFc deletions and duplications: clinical correlates in the Italian population. Hum. Genet. 124, 399–410 (2008).

    PubMed  Article  CAS  Google Scholar 

  179. 179.

    National Center for Biotechnology Information. Genome decoration page. NCBI https://www.ncbi.nlm.nih.gov/genome/tools/gdp (2018).

Download references

Acknowledgements

This work was funded by the Spanish Ministry of Health-Instituto Carlos III to C.K. (grant number: FIS/FEDER PI14/01250) and by the European Commission - Reproductive Biology Early Research Training (REPROTRAIN, Project Number: 289880) to C.K and A.R-E. The authors thank E. Martí, President of the Fundació Puigvert, for her constant support. They also thank O. Shaeer (University of Cairo) for his constructive comments on the manuscript.

Author information

Affiliations

Authors

Contributions

Both authors researched data for the article, made substantial contributions to discussion of content, wrote the manuscript, and reviewed and edited the article before submission.

Corresponding author

Correspondence to Csilla Krausz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

The Androgen Receptor Gene Mutations Database: http://androgendb.mcgill.ca

Cystic Fibrosis Mutation Database: www.genet.sickkids.on.ca

Genetics Home Reference 46,XX testicular disorder of sex development: https://ghr.nlm.nih.gov/condition/46xx-testicular-disorder-of-sex-development#statistics

Helixio: http://www.helixio.com/contenu/support/technologies

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krausz, C., Riera-Escamilla, A. Genetics of male infertility. Nat Rev Urol 15, 369–384 (2018). https://doi.org/10.1038/s41585-018-0003-3

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing