Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Goal-directed learning in adolescence: neurocognitive development and contextual influences

Abstract

Adolescence is a time during which we transition to independence, explore new activities and begin pursuit of major life goals. Goal-directed learning, in which we learn to perform actions that enable us to obtain desired outcomes, is central to many of these processes. Currently, our understanding of goal-directed learning in adolescence is itself in a state of transition, with the scientific community grappling with inconsistent results. When we examine metrics of goal-directed learning through the second decade of life, we find that many studies agree there are steady gains in performance in the teenage years, but others report that adolescent goal-directed learning is already adult-like, and some find adolescents can outperform adults. To explain the current variability in results, sophisticated experimental designs are being applied to test learning in different contexts. There is also increasing recognition that individuals of different ages and in different states will draw on different neurocognitive systems to support goal-directed learning. Through adoption of more nuanced approaches, we can be better prepared to recognize and harness adolescent strengths and to decipher the purpose (or goals) of adolescence itself.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Goal-directed learning and its roles during adolescence.
Fig. 2: Reinforcement learning.
Fig. 3: Inconsistencies in goal-directed learning performance over adolescence.
Fig. 4: Adolescent prowess in goal-directed learning tasks featuring uncertainty and volatility.

Similar content being viewed by others

References

  1. Dahl, R. E., Allen, N. B., Wilbrecht, L. & Suleiman, A. B. Importance of investing in adolescence from a developmental science perspective. Nature 554, 441–450 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Lin, W. C. & Wilbrecht, L. Making sense of strengths and weaknesses observed in adolescent laboratory rodents. Curr. Opin. Psychol. 45, 101297 (2022). A survey of behavioural results from adolescent rodents that considers how natural behaviours such as dispersal may be reflected in laboratory assays of affective and cognitive behaviour.

    Article  PubMed  Google Scholar 

  3. Kaplan, H. S. & Robson, A. J. The emergence of humans: the coevolution of intelligence and longevity with intergenerational transfers. Proc. Natl Acad. Sci. USA 99, 10221–10226 (2002).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gurven, M. D., Davison, R. J. & Kraft, T. S. The optimal timing of teaching and learning across the life course. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190500 (2020). This paper uses modelling to examine relationships among long lifespan, protracted development, complex skill learning and information transfer through teaching.

    Article  Google Scholar 

  5. Lew-Levy, S. et al. Socioecology shapes child and adolescent time allocation in twelve hunter-gatherer and mixed-subsistence forager societies. Sci. Rep. 12, 8054 (2022). A study of human adolescents across a diverse array of modern hunter-gatherer cultures that illuminates the skills typically learned in adolescence across a broader span of time in the history of human evolution. This information can help contextualize changes in human learning and brain function observed during development.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nussenbaum, K. & Hartley, C. A. Reinforcement learning across development: what insights can we draw from a decade of research? Dev. Cogn. Neurosci. 40, 100733 (2019). An overview of reinforcement learning with a focus on adolescence. This paper was pioneering in noting, and suggesting possible reasons for, discrepancies emerging in the field of reinforcement learning applied to adolescence.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wilson, R. C. & Collins, A. G. Ten simple rules for the computational modeling of behavioral data. eLife 8, e49547 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bolenz, F., Reiter, A. M. F. & Eppinger, B. Developmental changes in learning: computational mechanisms and social influences. Front. Psychol. 8, 2048 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Eckstein, M. K. et al. The interpretation of computational model parameters depends on the context. eLife 11, e75474 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Master, S. L. et al. Disentangling the systems contributing to changes in learning during adolescence. Dev. Cogn. Neurosci. 41, 100732 (2020). A study of adolescent development of learning using a task and computational model that isolates working memory from reinforcement learning.

    Article  PubMed  Google Scholar 

  11. Xia, L. et al. Modeling changes in probabilistic reinforcement learning during adolescence. PLoS Comput. Biol. 17, e1008524 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. van den Bos, W. et al. Better than expected or as bad as you thought? The neurocognitive development of probabilistic feedback processing. Front. Hum. Neurosci. 3, 52 (2009).

    PubMed  PubMed Central  Google Scholar 

  13. Hauser, T. U., Iannaccone, R., Walitza, S., Brandeis, D. & Brem, S. Cognitive flexibility in adolescence: neural and behavioral mechanisms of reward prediction error processing in adaptive decision making during development. NeuroImage 104, 347–354 (2015).

    Article  PubMed  Google Scholar 

  14. Davidow, J. Y., Foerde, K., Galván, A. & Shohamy, D. An upside to reward sensitivity: the hippocampus supports enhanced reinforcement learning in adolescence. Neuron 92, 93–99 (2016). An early report showing differences between adolescents and adults in behavior, reinforcement learning model estimates, and brain activation.

    Article  CAS  PubMed  Google Scholar 

  15. Cohen, J. R. et al. A unique adolescent response to reward prediction errors. Nat. Neurosci. 13, 669–671 (2010). An early report of age-related differences in reward prediction errors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. de Wit, S. & Dickinson, A. Associative theories of goal-directed behaviour: a case for animal–human translational models. Psychol. Res. 73, 463–476 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Balleine, B. W. & Dickinson, A. Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology 37, 407–419 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Yin, H. H. & Knowlton, B. J. The role of the basal ganglia in habit formation. Nat. Rev. Neurosci. 7, 464–476 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Dolan, R. J. & Dayan, P. Goals and habits in the brain. Neuron 80, 312–325 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Smith, K. S. & Graybiel, A. M. Habit formation. Dialogues Clin. Neurosci. 18, 33–43 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Balleine, B. W., Peak, J., Matamales, M., Bertran-Gonzalez, J. & Hart, G. The dorsomedial striatum: an optimal cellular environment for encoding and updating goal-directed learning. Curr. Opin. Behav. Sci. 41, 38–44 (2021). A review of the neural circuits and cells that support goal-directed learning with a focus on the dorsal striatum as a hub.

    Article  Google Scholar 

  22. Lee, A. M., Tai, L.-H., Zador, A. & Wilbrecht, L. Between the primate and ‘reptilian’ brain: rodent models demonstrate the role of corticostriatal circuits in decision making. Neuroscience 296, 66–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Cox, J. & Witten, I. B. Striatal circuits for reward learning and decision-making. Nat. Rev. Neurosci. 20, 482–494 (2019). A recent overview of the anatomy and functions of subareas of the striatum.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Raufelder, D. et al. Does feedback-related brain response during reinforcement learning predict socio-motivational (in-)dependence in adolescence? Front. Psychol. 7, 655 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hauser, T. U., Will, G.-J., Dubois, M. & Dolan, R. J. Annual research review: developmental computational psychiatry. J. Child. Psychol. Psychiatry 60, 412–426 (2019).

    Article  PubMed  Google Scholar 

  26. Molinaro, G. & Collins, A. G. E. Intrinsic rewards explain context-sensitive valuation in reinforcement learning. PLoS Biol. 21, e3002201 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Christakou, A. et al. Neural and psychological maturation of decision-making in adolescence and young adulthood. J. Cogn. Neurosci. 25, 1807–1823 (2013).

    Article  PubMed  Google Scholar 

  28. van den Bos, W., Cohen, M. X., Kahnt, T. & Crone, E. A. Striatum–medial prefrontal cortex connectivity predicts developmental changes in reinforcement learning. Cereb. Cortex 22, 1247–1255 (2012). An early paper revealing adolescent age-related differences in negative learning rate parameters from a reinforcement learning model. Surprisingly, the behavioural performance between age groups was comparable, suggesting that different latent mechanisms may support similar behavioural outcomes in different age groups.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Eckstein, M. K., Master, S. L., Dahl, R. E., Wilbrecht, L. & Collins, A. G. E. Reinforcement learning and Bayesian inference provide complementary models for the unique advantage of adolescents in stochastic reversal. Dev. Cogn. Neurosci. 55, 101106 (2022). This experimental paper reveals prowess in adolescent learners in a volatile and probabilistic two-arm bandit task. It also adds Bayesian models alongside reinforcement learning models to evaluate how youth learn and make decisions.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Decker, J. H., Lourenco, F. S., Doll, B. B. & Hartley, C. A. Experiential reward learning outweighs instruction prior to adulthood. Cogn. Affect. Behav. Neurosci. 15, 310–320 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Schaaf, J. V., Weidinger, L., Molleman, L. & van den Bos, W. Test–retest reliability of reinforcement learning parameters. Behav. Res. https://doi.org/10.3758/s13428-023-02203-4 (2023).

    Article  Google Scholar 

  32. Starkweather, C. K., Gershman, S. J. & Uchida, N. The medial prefrontal cortex shapes dopamine reward prediction errors under state uncertainty. Neuron 98, 616–629.e6 (2018). This experimental paper demonstrates that introducing uncertainty in a task can alter the firing patterns observed in dopamine neurons in a behaving mouse.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Soltani, A. & Izquierdo, A. Adaptive learning under expected and unexpected uncertainty. Nat. Rev. Neurosci. 20, 635–644 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Monosov, I. E. How outcome uncertainty mediates attention, learning, and decision-making. Trends Neurosci. 43, 795–809 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Braams, B. R., Duijvenvoorde, A. C. K., van Peper, J. S. & Crone, E. A. Longitudinal changes in adolescent risk-taking: a comprehensive study of neural responses to rewards, pubertal development, and risk-taking behavior. J. Neurosci. 35, 7226–7238 (2015). A study of adolescent striatal activity and behavioural development informed by metrics of gonadal hormones.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Laube, C., Suleiman, A. B., Johnson, M., Dahl, R. E. & van den Bos, W. Dissociable effects of age and testosterone on adolescent impatience. Psychoneuroendocrinology 80, 162–169 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Goddings, A.-L., Beltz, A., Peper, J. S., Crone, E. A. & Braams, B. R. Understanding the role of puberty in structural and functional development of the adolescent brain. J. Res. Adolescence 29, 32–53 (2019).

    Article  Google Scholar 

  38. Larsen, B. et al. Maturation of the human striatal dopamine system revealed by PET and quantitative MRI. Nat. Commun. 11, 846 (2020). A study that establishes an emerging metric of dopamine system maturation in human MRI studies and reveals that the striatum continues to develop during adolescence.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Laube, C., Lorenz, R. & van den Bos, W. Pubertal testosterone correlates with adolescent impatience and dorsal striatal activity. Dev. Cogn. Neurosci. 42, 100749 (2020).

    Article  PubMed  Google Scholar 

  40. Lloyd, A., McKay, R., Sebastian, C. L. & Balsters, J. H. Are adolescents more optimal decision-makers in novel environments? Examining the benefits of heightened exploration in a patch foraging paradigm. Dev. Sci. 24, e13075 (2021). A study of adolescent and adult human participants that reveals adolescent prowess in foraging across environments with different rates of reward return.

    Article  PubMed  Google Scholar 

  41. Caras, M. L. & Sanes, D. H. Neural variability limits adolescent skill learning. J. Neurosci. 39, 2889–2902 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. DePasque, S. & Galván, A. Frontostriatal development and probabilistic reinforcement learning during adolescence. Neurobiol. Learn. Mem. 143, 1–7 (2017).

    Article  PubMed  Google Scholar 

  43. Schulz, K. M. & Sisk, C. L. Pubertal hormones, the adolescent brain, and the maturation of social behaviors: lessons from the Syrian hamster. Mol. Cell. Endocrinol. 254–255, 120–126 (2006).

    Article  PubMed  Google Scholar 

  44. Goldenberg, D., Telzer, E. H., Lieberman, M. D., Fuligni, A. & Galván, A. Neural mechanisms of impulse control in sexually risky adolescents. Dev. Cogn. Neurosci. 6, 23–29 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sapolsky, R. M. & Eichenbaum, H. Thalamocortical mechanisms in odor-guided behavior. Brain Behav. Evol. 17, 276–290 (1980).

    Article  CAS  PubMed  Google Scholar 

  46. Maras, P. M. & Petrulis, A. The posteromedial cortical amygdala regulates copulatory behavior, but not sexual odor preference, in the male Syrian hamster (Mesocricetus auratus). Neuroscience 156, 425–435 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. De Lorme, K. C., Bell, M. R. & Sisk, C. L. The teenage brain: social reorientation and the adolescent brain — the role of gonadal hormones in the male Syrian hamster. Curr. Dir. Psychol. Sci. 22, 128–133 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  48. De Lorme, K. C. & Sisk, C. L. Pubertal testosterone programs context-appropriate agonistic behavior and associated neural activation patterns in male Syrian hamsters. Physiol. Behav. 112–113, 1–7 (2013).

    Article  PubMed  Google Scholar 

  49. Nelson, E. E., Leibenluft, E., McClure, E. B. & Pine, D. S. The social re-orientation of adolescence: a neuroscience perspective on the process and its relation to psychopathology. Psychol. Med. 35, 163–174 (2005).

    Article  PubMed  Google Scholar 

  50. Nelson, E. E., Jarcho, J. M. & Guyer, A. E. Social re-orientation and brain development: an expanded and updated view. Dev. Cogn. Neurosci. 17, 118–127 (2016).

    Article  PubMed  Google Scholar 

  51. Goddings, A.-L., Heyes, S. B., Bird, G., Viner, R. M. & Blakemore, S.-J. The relationship between puberty and social emotion processing. Dev. Sci. 15, 801–811 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kilford, E. J., Garrett, E. & Blakemore, S.-J. The development of social cognition in adolescence: an integrated perspective. Neurosci. Biobehav. Rev. 70, 106–120 (2016).

    Article  PubMed  Google Scholar 

  53. Chafkin, J. E. et al. Gonadal and adrenal hormones interact with pubertal maturation to predict depressive symptoms in a group of high-school females. Dev. Psychopathol. 34, 1064–1078 (2022).

    Article  PubMed  Google Scholar 

  54. Pfeifer, J. H. & Allen, N. B. Puberty initiates cascading relationships between neurodevelopmental, social, and internalizing processes across adolescence. Biol. Psychiatry 89, 99–108 (2021).

    Article  PubMed  Google Scholar 

  55. Perri, R. L. Is there a proactive and a reactive mechanism of inhibition? Towards an executive account of the attentional inhibitory control model. Behav. Brain Res. 377, 112243 (2020).

    Article  PubMed  Google Scholar 

  56. Diamond, A. Executive functions. Annu. Rev. Psychol. 64, 135–168 (2013).

    Article  PubMed  Google Scholar 

  57. Steinbeis, N. A rational account of cognitive control development in childhood. Annu. Rev. Dev. Psychol. https://doi.org/10.1146/annurev-devpsych-120221-040058 (2023).

    Article  Google Scholar 

  58. Smid, C. R., Kool, W., Hauser, T. U. & Steinbeis, N. Computational and behavioral markers of model-based decision making in childhood. Dev. Sci. https://doi.org/10.1111/desc.13295 (2022).

  59. Chevalier, N., Meaney, J. A., Traut, H. J. & Munakata, Y. Adaptiveness in proactive control engagement in children and adults. Dev. Cogn. Neurosci. 46, 100870 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Chatham, C. H., Frank, M. J. & Munakata, Y. Pupillometric and behavioral markers of a developmental shift in the temporal dynamics of cognitive control. Proc. Natl Acad. Sci. USA 106, 5529–5533 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. Diamond, A. in Principles of Frontal Lobe Function (eds Stuss, D. T. & Knight, R. T.) 466–503 (Oxford Univ. Press, 2002).

  62. Munakata, Y. et al. A unified framework for inhibitory control. Trends Cogn. Sci. 15, 453–459 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chevalier, N., Chatham, C. H. & Munakata, Y. The practice of going helps children to stop: the importance of context monitoring in inhibitory control. J. Exp. Psychol. Gen. 143, 959–965 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Werchan, D. M. & Amso, D. All contexts are not created equal: social stimuli win the competition for organizing reinforcement learning in 9-month-old infants. Dev. Sci. 24, e13088 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Insel, C., Kastman, E. K., Glenn, C. R. & Somerville, L. H. Development of corticostriatal connectivity constrains goal-directed behavior during adolescence. Nat. Commun. 8, 1605 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  66. Davidow, J. Y., Insel, C. & Somerville, L. H. Adolescent development of value-guided goal pursuit. Trends Cogn. Sci. 22, 725–736 (2018).

    Article  PubMed  Google Scholar 

  67. Magis-Weinberg, L., Custers, R. & Dumontheil, I. Rewards enhance proactive and reactive control in adolescence and adulthood. Soc. Cogn. Affect. Neurosci. 14, 1219–1232 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Bowers, M. E., Morales, S., Buzzell, G. A. & Fox, N. A. The influence of monetary reward on proactive and reactive control in adolescent males. Dev. Cogn. Neurosci. 48, 100934 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Bradfield, L., Hart, G. & Balleine, B. The role of the anterior, mediodorsal, and parafascicular thalamus in instrumental conditioning. Front. Syst. Neurosci. 7, 51 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Moher, J., Anderson, B. A. & Song, J.-H. Dissociable effects of salience on attention and goal-directed action. Curr. Biol. 25, 2040–2046 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Walin, H., O’Grady, S. & Xu, F. In Proc. 38th Annual Conference of the Cognitive Science Society (eds Papafragou, A., Grodner, D., Mirman, D. & Trueswell, J. C.) 872–876 (Cognitive Science Society, 2016).

  72. Fandakova, Y. & Gruber, M. J. States of curiosity and interest enhance memory differently in adolescents and in children. Dev. Sci. 24, e13005 (2021).

    Article  PubMed  Google Scholar 

  73. Gruber, M. J. & Fandakova, Y. Curiosity in childhood and adolescence — what can we learn from the brain. Curr. Opin. Behav. Sci. 39, 178–184 (2021). A review that discusses how curiosity is elicited and enhances memory through childhood and adolescence.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Marvin, C. B. & Shohamy, D. Curiosity and reward: valence predicts choice and information prediction errors enhance learning. J. Exp. Psychol. Gen. 145, 266–272 (2016).

    Article  PubMed  Google Scholar 

  75. Murayama, K., FitzGibbon, L. & Sakaki, M. Process account of curiosity and interest: a reward-learning perspective. Educ. Psychol. Rev. 31, 875–895 (2019).

    Article  Google Scholar 

  76. Marvin, C. B., Tedeschi, E. & Shohamy, D. Curiosity as the impulse to know: common behavioral and neural mechanisms underlying curiosity and impulsivity. Curr. Opin. Behav. Sci. 35, 92–98 (2020).

    Article  Google Scholar 

  77. Karan, M. et al. Giving to others and neural processing during adolescence. Dev. Cogn. Neurosci. 56, 101128 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Collins, A. G. E. & Frank, M. J. How much of reinforcement learning is working memory, not reinforcement learning? A behavioral, computational, and neurogenetic analysis. Eur. J. Neurosci. 35, 1024–1035 (2012). A paper describing a sophisticated task and computational modelling approach that teases apart measures of working memory as it contributes to learning and more gradual, less capacity limited reinforcement learning (RLWM).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Potter, T. C. S., Bryce, N. V. & Hartley, C. A. Cognitive components underpinning the development of model-based learning. Dev. Cogn. Neurosci. 25, 272–280 (2017).

    Article  PubMed  Google Scholar 

  80. Tulving, E. Episodic and semantic memory: where should we go from here? Behav. Brain Sci. 9, 573–577 (1986).

    Article  Google Scholar 

  81. Rissman, J. & Wagner, A. D. Distributed representations in memory: insights from functional brain imaging. Annu. Rev. Psychol. 63, 101–128 (2012).

    Article  PubMed  Google Scholar 

  82. Fynes-Clinton, S., Marstaller, L. & Burianová, H. Differentiation of functional networks during long-term memory retrieval in children and adolescents. NeuroImage 191, 93–103 (2019).

    Article  PubMed  Google Scholar 

  83. Finn, A. S. et al. Developmental dissociation between the maturation of procedural memory and declarative memory. J. Exp. Child. Psychol. 142, 212–220 (2016).

    Article  PubMed  Google Scholar 

  84. Shadlen, M. N. & Shohamy, D. Decision making and sequential sampling from memory. Neuron 90, 927–939 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gershman, S. J. & Daw, N. D. Reinforcement learning and episodic memory in humans and animals: an integrative framework. Annu. Rev. Psychol. 68, 101–128 (2017).

    Article  PubMed  Google Scholar 

  86. Pennartz, C. M. A., Ito, R., Verschure, P. F. M. J., Battaglia, F. P. & Robbins, T. W. The hippocampal–striatal axis in learning, prediction and goal-directed behavior. Trends Neurosci. 34, 548–559 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Aly, M. & Turk-Browne, N. B. Flexible weighting of diverse inputs makes hippocampal function malleable. Neurosci. Lett. 680, 13–22 (2018).

    Article  CAS  PubMed  Google Scholar 

  88. Ofen, N., Tang, L., Yu, Q. & Johnson, E. L. Memory and the developing brain: from description to explanation with innovation in methods. Dev. Cogn. Neurosci. 36, 100613 (2019).

    Article  PubMed  Google Scholar 

  89. Donato, F. et al. The ontogeny of hippocampus-dependent memories. J. Neurosci. 41, 920–926 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Schneider, W. & Ornstein, P. A. Determinants of memory development in childhood and adolescence. Int. J. Psychol. 54, 307–315 (2019).

    Article  PubMed  Google Scholar 

  91. Shing, Y. L. et al. Episodic memory across the lifespan: the contributions of associative and strategic components. Neurosci. Biobehav. Rev. 34, 1080–1091 (2010).

    Article  PubMed  Google Scholar 

  92. Murty, V. P., Calabro, F. & Luna, B. The role of experience in adolescent cognitive development: integration of executive, memory, and mesolimbic systems. Neurosci. Biobehav. Rev. 70, 46–58 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  93. van Duijvenvoorde, A. C. K., Westhoff, B., Vos, F., de Wierenga, L. M. & Crone, E. A. A three-wave longitudinal study of subcortical–cortical resting-state connectivity in adolescence: testing age- and puberty-related changes. Hum. Brain Mapp. 40, 3769–3783 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Calabro, F. J., Murty, V. P., Jalbrzikowski, M., Tervo-Clemmens, B. & Luna, B. Development of hippocampal–prefrontal cortex interactions through adolescence. Cereb. Cortex 30, 1548–1558 (2020).

    Article  PubMed  Google Scholar 

  95. Ofen, N. et al. Development of the declarative memory system in the human brain. Nat. Neurosci. 10, 1198–1205 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Ghetti, S., DeMaster, D. M., Yonelinas, A. P. & Bunge, S. A. Developmental differences in medial temporal lobe function during memory encoding. J. Neurosci. 30, 9548–9556 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lee, J. K. et al. Changes in anterior and posterior hippocampus differentially predict item–space, item–time, and item–item memory improvement. Dev. Cogn. Neurosci. 41, 100741 (2020).

    Article  PubMed  Google Scholar 

  98. Ghetti, S. & Fandakova, Y. Neural development of memory and metamemory in childhood and adolescence: toward an integrative model of the development of episodic recollection. Annu. Rev. Dev. Psychol. 2, 365–388 (2020).

    Article  Google Scholar 

  99. Nussenbaum, K. & Hartley, C. A. Developmental change in prefrontal cortex recruitment supports the emergence of value-guided memory. eLife 10, e69796 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Daugherty, A. M., Bender, A. R., Raz, N. & Ofen, N. Age differences in hippocampal subfield volumes from childhood to late adulthood. Hippocampus 26, 220–228 (2016).

    Article  PubMed  Google Scholar 

  101. Lah, S. et al. Selective, age-related autobiographical memory deficits in children with severe traumatic brain injury. J. Neuropsychol. 13, 253–271 (2019).

    Article  PubMed  Google Scholar 

  102. Elward, R. L. & Vargha-Khadem, F. Semantic memory in developmental amnesia. Neurosci. Lett. 680, 23–30 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Josselyn, S. A. & Frankland, P. W. Infantile amnesia: a neurogenic hypothesis. Learn. Mem. 19, 423–433 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Cooper, J. M., Vargha-Khadem, F., Gadian, D. G. & Maguire, E. A. The effect of hippocampal damage in children on recalling the past and imagining new experiences. Neuropsychologia 49, 1843–1850 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Janssen, S. M. J., Rubin, D. C. & St. Jacques, P. L. The temporal distribution of autobiographical memory: changes in reliving and vividness over the life span do not explain the reminiscence bump. Mem. Cogn. 39, 1–11 (2011). This empirical paper identifies a peak in autobiographical memory at age 10 that declines thereafter.

    Article  Google Scholar 

  106. Koppel, J. & Berntsen, D. The reminiscence bump in autobiographical memory and for public events: a comparison across different cueing methods. Memory 24, 44–62 (2016).

    Article  PubMed  Google Scholar 

  107. Dalley, J. W. & Robbins, T. W. Fractionating impulsivity: neuropsychiatric implications. Nat. Rev. Neurosci. 18, 158–171 (2017).

    Article  CAS  PubMed  Google Scholar 

  108. Honegger, K. & de Bivort, B. Stochasticity, individuality and behavior. Curr. Biol. 28, R8–R12 (2018).

    Article  CAS  PubMed  Google Scholar 

  109. Addicott, M. A., Pearson, J. M., Sweitzer, M. M., Barack, D. L. & Platt, M. L. A primer on foraging and the explore/exploit trade-off for psychiatry research. Neuropsychopharmacology 42, 1931–1939 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lai, L. & Gershman, S. J. in Psychology of Learning and Motivation (ed. Federmeier, K. D.) Vol. 74, 195–232 (Academic Press, 2021).

  111. Somerville, L. H. et al. Charting the expansion of strategic exploratory behavior during adolescence. J. Exp. Psychol. Gen. 146, 155–164 (2017). A study which isolates and identifies differences in strategic versus stochastic exploration in adolescents using creative innovation in task design and computational modelling.

    Article  PubMed  Google Scholar 

  112. Harden, K. P. & Tucker-Drob, E. M. Individual differences in the development of sensation seeking and impulsivity during adolescence: further evidence for a dual systems model. Dev. Psychol. 47, 739–746 (2011).

    Article  PubMed  Google Scholar 

  113. Quinn, P. D. & Harden, K. P. Differential changes in impulsivity and sensation seeking and the escalation of substance use from adolescence to early adulthood. Dev. Psychopathol. 25, 223–239 (2013).

    Article  PubMed  Google Scholar 

  114. Steinberg, L. et al. Age differences in sensation seeking and impulsivity as indexed by behavior and self-report: evidence for a dual systems model. Dev. Psychol. 44, 1764–1778 (2008).

    Article  PubMed  Google Scholar 

  115. Steinberg, L. et al. Age differences in future orientation and delay discounting. Child. Dev. 80, 28–44 (2009).

    Article  PubMed  Google Scholar 

  116. van den Bos, W., Rodriguez, C. A., Schweitzer, J. B. & McClure, S. M. Adolescent impatience decreases with increased frontostriatal connectivity. Proc. Natl Acad. Sci. USA 112, E3765–E3774 (2015).

    PubMed  PubMed Central  Google Scholar 

  117. Gardner, M. & Steinberg, L. Peer influence on risk taking, risk preference, and risky decision making in adolescence and adulthood: an experimental study. Dev. Psychol. 41, 625–635 (2005).

    Article  PubMed  Google Scholar 

  118. Blankenstein, N. E. & van Duijvenvoorde, A. C. K. Neural tracking of subjective value under risk and ambiguity in adolescence. Cogn. Affect. Behav. Neurosci. 19, 1364–1378 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Braams, B. R., Davidow, J. Y. & Somerville, L. H. Information about others’ choices selectively alters risk tolerance and medial prefrontal cortex activation across adolescence and young adulthood. Dev. Cogn. Neurosci. 52, 101039 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  120. van Duijvenvoorde, A. C. K., van Hoorn, J. & Blankenstein, N. E. Risks and rewards in adolescent decision-making. Curr. Opin. Psychol. 48, 101457 (2022).

    Article  PubMed  Google Scholar 

  121. Tervo-Clemmens, B. et al. Adolescent risk-taking across population subgroups of the United States. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/wpxrk (2022).

  122. Powers, K. E. et al. Effects of peer observation on risky decision-making in adolescence: a meta-analytic review. Psychol. Bull. 148, 783–812 (2022).

    Article  Google Scholar 

  123. Teslovich, T. et al. Adolescents let sufficient evidence accumulate before making a decision when large incentives are at stake. Dev. Sci. 17, 59–70 (2014).

    Article  PubMed  Google Scholar 

  124. Niebaum, J. C. et al. Adolescents sample more information prior to decisions than adults when effort costs increase. Dev. Psychol. 58, 1974–1985 (2022).

    Article  PubMed  Google Scholar 

  125. Averbeck, B. B. & Costa, V. D. Motivational neural circuits underlying reinforcement learning. Nat. Neurosci. 20, 505–512 (2017).

    Article  CAS  PubMed  Google Scholar 

  126. Tye, K. M. Neural circuit motifs in valence processing. Neuron 100, 436–452 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Collins, A. G. E. & Cockburn, J. Beyond dichotomies in reinforcement learning. Nat. Rev. Neurosci. 21, 576–586 (2020). A review that broadens the concept of model-free learning and points out how the model-free/model-based dichotomy may be oversimplified.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Decker, J. H., Otto, A. R., Daw, N. D. & Hartley, C. A. From creatures of habit to goal-directed learners: tracking the developmental emergence of model-based reinforcement learning. Psychol. Sci. 27, 848–858 (2016). A study that reveals that model-based learning develops later than model-free learning in youth.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Palminteri, S., Kilford, E. J., Coricelli, G. & Blakemore, S.-J. The computational development of reinforcement learning during adolescence. PLoS Comput. Biol. 12, e1004953 (2016).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  130. Davidson, M. C., Amso, D., Anderson, L. C. & Diamond, A. Development of cognitive control and executive functions from 4 to 13 years: evidence from manipulations of memory, inhibition, and task switching. Neuropsychologia 44, 2037–2078 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Huizinga, M., Dolan, C. V. & van der Molen, M. W. Age-related change in executive function: developmental trends and a latent variable analysis. Neuropsychologia 44, 2017–2036 (2006).

    Article  PubMed  Google Scholar 

  132. De Luca, C. R. & Leventer, R. J. in Executive Functions and the Frontal Lobes: A Lifespan Perspective (eds Anderson, V., Jacobs, R. & Anderson, P. J.) 23–56 (Taylor & Francis, 2008).

  133. Best, J. R. & Miller, P. H. A developmental perspective on executive function. Child. Dev. 81, 1641–1660 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Satterthwaite, T. D. et al. Functional maturation of the executive system during adolescence. J. Neurosci. 33, 16249–16261 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Insel, C., Davidow, J. Y. & Somerville, L. H. in The Cognitive Neurosciences (eds Poeppel, D., Mangun, G. R. & Gazzaniga, M.) Ch. 85 (MIT Press, 2020).

  136. Tervo-Clemmens, B. et al. A canonical trajectory of executive function maturation from adolescence to adulthood. Nat. Commun. 14, 6922 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  137. Satterthwaite, T. D. et al. Being right is its own reward: load and performance related ventral striatum activation to correct responses during a working memory task in youth. NeuroImage 61, 723–729 (2012).

    Article  PubMed  Google Scholar 

  138. Montez, D. F., Calabro, F. J. & Luna, B. The expression of established cognitive brain states stabilizes with working memory development. eLife 6, e25606 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Hubbard, N. A. et al. Reward-sensitive basal ganglia stabilize the maintenance of goal-relevant neural patterns in adolescents. J. Cogn. Neurosci. 32, 1508–1524 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Rosenberg, M. D. et al. Behavioral and neural signatures of working memory in childhood. J. Neurosci. 40, 5090–5104 (2020). A study finding consistency between working memory assessed both behaviourally and with fMRI, that also considered emotional, reward and control tasks in over 11,500 9-10 year old children.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Vendetti, M. S. & Bunge, S. A. Evolutionary and developmental changes in the lateral frontoparietal network: a little goes a long way for higher-level cognition. Neuron 84, 906–917 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Chelune, G. J. & Baer, R. A. Developmental norms for the Wisconsin Card Sorting test. J. Clin. Exp. Neuropsychol. 8, 219–228 (1986).

    Article  CAS  PubMed  Google Scholar 

  143. Anderson, V. A., Anderson, P., Northam, E., Jacobs, R. & Catroppa, C. Development of executive functions through late childhood and adolescence in an Australian sample. Dev. Neuropsychol. 20, 385–406 (2001).

    Article  CAS  PubMed  Google Scholar 

  144. De Luca, C. R. et al. Normative data from the CANTAB. I: development of executive function over the lifespan. J. Clin. Exp. Neuropsychol. 25, 242–254 (2003).

    Article  PubMed  Google Scholar 

  145. Defoe, I. N., Dubas, J. S., Figner, B. & van Aken, M. A. G. A meta-analysis on age differences in risky decision making: adolescents versus children and adults. Psychol. Bull. 141, 48–84 (2015).

    Article  PubMed  Google Scholar 

  146. Redgrave, P., Prescott, T. J. & Gurney, K. The basal ganglia: a vertebrate solution to the selection problem? Neuroscience 89, 1009–1023 (1999).

    Article  CAS  PubMed  Google Scholar 

  147. Daw, N. D. & Dayan, P. The algorithmic anatomy of model-based evaluation. Philos. Trans. R. Soc. B Biol. Sci. 369, 20130478 (2014).

    Article  Google Scholar 

  148. Collins, A. G. E. & Shenhav, A. Advances in modeling learning and decision-making in neuroscience. Neuropsychopharmacology 47, 104–118 (2022).

    Article  PubMed  Google Scholar 

  149. Scott, D. N. & Frank, M. J. Adaptive control of synaptic plasticity integrates micro- and macroscopic network function. Neuropsychopharmacology 48, 121–144 (2023).

    Article  PubMed  Google Scholar 

  150. Eckstein, M. K., Wilbrecht, L. & Collins, A. G. What do reinforcement learning models measure? Interpreting model parameters in cognition and neuroscience. Curr. Opin. Behav. Sci. 41, 128–137 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Hitchcock, P. F., Fried, E. I. & Frank, M. J. Computational psychiatry needs time and context. Annu. Rev. Psychol. 73, 243–270 (2022).

    Article  PubMed  Google Scholar 

  152. Gopnik, A. Scientific thinking in young children: theoretical advances, empirical research, and policy implications. Science 337, 1623–1627 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  153. Gott, C. & Lah, S. Episodic future thinking in children compared to adolescents. Child. Neuropsychol. 20, 625–640 (2014).

    Article  PubMed  Google Scholar 

  154. Bromberg, U., Lobatcheva, M. & Peters, J. Episodic future thinking reduces temporal discounting in healthy adolescents. PLoS ONE 12, e0188079 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Göllner, L. M., Ballhausen, N., Kliegel, M. & Forstmeier, S. Delay of gratification, delay discounting and their associations with age, episodic future thinking, and future time perspective. Front. Psychol. 8, 2304 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Burns, P., Atance, C., O’Connor, A. P. & McCormack, T. The effects of cueing episodic future thinking on delay discounting in children, adolescents, and adults. Cognition 218, 104934 (2022).

    Article  PubMed  Google Scholar 

  157. Albert, D. & Steinberg, L. Age differences in strategic planning as indexed by the Tower of London. Child. Dev. 82, 1501–1517 (2011).

    Article  PubMed  Google Scholar 

  158. Frankenhuis, W. E. & Walasek, N. Modeling the evolution of sensitive periods. Dev. Cogn. Neurosci. 41, 100715 (2020). Overview of knowledge gained through theoretical modelling of developmental sensitive periods that includes discussion of adolescent development.

    Article  PubMed  Google Scholar 

  159. Takesian, A. E. & Hensch, T. K. in Progress in Brain Research (eds Merzenich, M. M., Nahum, M. & Van Vleet, T. M.) Vol. 207, 3–34 (Elsevier, 2013).

  160. Doupe, A. J. & Kuhl, P. K. Birdsong and human speech: common themes and mechanisms. Annu. Rev. Neurosci. 22, 567–631 (1999).

    Article  CAS  PubMed  Google Scholar 

  161. Wingfield, J. C. & Soma, K. K. Spring and autumn territoriality in song sparrows: same behavior, different mechanisms? Integr. Comp. Biol. 42, 11–20 (2002).

    Article  PubMed  Google Scholar 

  162. Moore, I. T., Wingfield, J. C. & Brenowitz, E. A. Plasticity of the avian song control system in response to localized environmental cues in an equatorial songbird. J. Neurosci. 24, 10182–10185 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Piekarski, D. J. et al. Does puberty mark a transition in sensitive periods for plasticity in the associative neocortex? Brain Res. 1654, 123–144 (2017). An article that discusses the possibility that adolescence is a sensitive period for the frontal cortices, potentially regulated by pubertal hormones, and suggests mechanisms and cell types that may contribute to this regulation.

    Article  CAS  PubMed  Google Scholar 

  164. Larsen, B. & Luna, B. Adolescence as a neurobiological critical period for the development of higher-order cognition. Neurosci. Biobehav. Rev. 94, 179–195 (2018). An article that discusses the possibility that adolescence is a sensitive period for higher cognition in humans and that attempts to bridge studies of mechanism in rodents with humans, culminating in a discussion of pathological experience, pathologies in neurobiology and developmental changes in neurotransmission.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Fuhrmann, D., Knoll, L. J. & Blakemore, S.-J. Adolescence as a sensitive period of brain development. Trends Cogn. Sci. 19, 558–566 (2015). An article that discusses the possibility that adolescence is a sensitive period for brain development with implications for mental health and drug use.

    Article  PubMed  Google Scholar 

  166. Perica, M. I. et al. Development of frontal GABA and glutamate supports excitation/inhibition balance from adolescence into adulthood. Prog. Neurobiol. 219, 102370 (2022).

    Article  CAS  PubMed  Google Scholar 

  167. Nardou, R. et al. Oxytocin-dependent reopening of a social reward learning critical period with MDMA. Nature 569, 116–120 (2019). A study that maps in detail a sensitive period for social place preference behaviour in late adolescence in mice.

    Article  ADS  CAS  PubMed  Google Scholar 

  168. Clark, A. B. Juvenile solitary confinement as a form of child abuse. J. Am. Acad. Psychiatry Law Online 45, 350–357 (2017).

    Google Scholar 

  169. Orben, A., Tomova, L. & Blakemore, S.-J. The effects of social deprivation on adolescent development and mental health. Lancet Child. Adolesc. Health 4, 634–640 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Li, D. C., Hinton, E. A. & Gourley, S. L. Persistent behavioral and neurobiological consequences of social isolation during adolescence. Semin. Cell Dev. Biol. 118, 73–82 (2021). A review of evidence that adolescent social experience has acute and lasting impact on brain maturation, plus cognitive and affective behaviours in rodents.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Morishita, H. A prefrontal social circuit vulnerable to juvenile social isolation. Neuropsychopharmacology 46, 229–230 (2021).

    Article  PubMed  Google Scholar 

  172. Minihan, S. et al. Social determinants of mental health during a year of the COVID-19 pandemic. Dev. Psychopathol. 35, 1701–1713 (2023).

    Article  PubMed  Google Scholar 

  173. Nettle, D. & Bateson, M. Adaptive developmental plasticity: what is it, how can we recognize it and when can it evolve? Proc. R. Soc. B Biol. Sci. 282, 20151005 (2015). A primer on adaptive developmental plasticity, an area of enquiry in integrated biology relevant to experience-dependent plasticity in neuroscience.

    Article  Google Scholar 

  174. Lin, W. C., Delevich, K. & Wilbrecht, L. A role for adaptive developmental plasticity in learning and decision making. Curr. Opin. Behav. Sci. 36, 48–54 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Eales, L. A. Song learning in zebra finches: some effects of song model availability on what is learnt and when. Anim. Behav. 33, 1293–1300 (1985).

    Article  Google Scholar 

  176. Wilbrecht, L., Williams, H., Gangadhar, N. & Nottebohm, F. High levels of new neuron addition persist when the sensitive period for song learning is experimentally prolonged. J. Neurosci. 26, 9135–9141 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Roberts, T. F., Tschida, K. A., Klein, M. E. & Mooney, R. Rapid spine stabilization and synaptic enhancement at the onset of behavioural learning. Nature 463, 948–952 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  178. Crone, E. A. & Dahl, R. E. Understanding adolescence as a period of social-affective engagement and goal flexibility. Nat. Rev. Neurosci. 13, 636–650 (2012).

    Article  CAS  PubMed  Google Scholar 

  179. Burrow, A. L., O’Dell, A. C. & Hill, P. L. Profiles of a developmental asset: youth purpose as a context for hope and well-being. J. Youth Adolescence 39, 1265–1273 (2010). A study of the relationship among purpose, agency and well-being in 318 youths.

    Article  Google Scholar 

  180. Bronk, K. C. The role of purpose in life in healthy identity formation: a grounded model. N. Dir. Youth Dev. 2011, 31–44 (2011).

    Article  Google Scholar 

  181. Hill, P. L. & Burrow, A. L. Viewing purpose through an Eriksonian lens. Identity 12, 74–91 (2012).

    Article  Google Scholar 

  182. Kievit, R. A. et al. Developmental cognitive neuroscience using latent change score models: a tutorial and applications. Dev. Cogn. Neurosci. 33, 99–117 (2018).

    Article  PubMed  Google Scholar 

  183. Laube, C., van den Bos, W. & Fandakova, Y. The relationship between pubertal hormones and brain plasticity: implications for cognitive training in adolescence. Dev. Cogn. Neurosci. 42, 100753 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Hewlett, B. L. & Hewlett, B. S. Hunter-gatherer adolescence. in Adolescent Identity: Evolutionary, Cultural and Developmental Perspectives (ed. Hewlett, B. L.) Ch. 4 (Taylor & Francis Group, 2012).

  185. Sutton, R. S. & Barto, A. G. Toward a modern theory of adaptive networks: expectation and prediction. Psychol. Rev. 88, 135–170 (1981).

    Article  CAS  PubMed  Google Scholar 

  186. Barto, A. G. & Sutton, R. S. Simulation of anticipatory responses in classical conditioning by a neuron-like adaptive element. Behav. Brain Res. 4, 221–235 (1982).

    Article  CAS  PubMed  Google Scholar 

  187. Montague, P. R., Dayan, P. & Sejnowski, T. J. A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J. Neurosci. 16, 1936–1947 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).

    Article  CAS  PubMed  Google Scholar 

  189. van der Schaaf, M. E., Warmerdam, E., Crone, E. A. & Cools, R. Distinct linear and non-linear trajectories of reward and punishment reversal learning during development: relevance for dopamine’s role in adolescent decision making. Dev. Cogn. Neurosci. 1, 578–590 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Hunnicutt, B. J. et al. A comprehensive excitatory input map of the striatum reveals novel functional organization. eLife 5, e19103 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Fisher, S. D., Ferguson, L. A., Bertran-Gonzalez, J. & Balleine, B. W. Amygdala-cortical control of striatal plasticity drives the acquisition of goal-directed action. Curr. Biol. 30, 4541–4546.e5 (2020). A study that demonstrates a role for cortico-striatal long-term potentiation in goal-directed learning and reveals a modulatory role for the amygdala in these changes.

    Article  CAS  PubMed  Google Scholar 

  192. Haber, S. N. & Behrens, T. E. J. The neural network underlying incentive-based learning: implications for interpreting circuit disruptions in psychiatric disorders. Neuron 83, 1019–1039 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Peters, A. J., Fabre, J. M. J., Steinmetz, N. A., Harris, K. D. & Carandini, M. Striatal activity topographically reflects cortical activity. Nature 591, 420–425 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  194. Steinberg, E. E. et al. A causal link between prediction errors, dopamine neurons and learning. Nat. Neurosci. 16, 966–973 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Yagishita, S. et al. A critical time window for dopamine actions on the structural plasticity of dendritic spines. Science 345, 1616–1620 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  196. Chai, X. J., Ofen, N., Gabrieli, J. D. E. & Whitfield-Gabrieli, S. Selective development of anticorrelated networks in the intrinsic functional organization of the human brain. J. Cogn. Neurosci. 26, 501–513 (2014).

    Article  PubMed  Google Scholar 

  197. Larsen, B. & Luna, B. In vivo evidence of neurophysiological maturation of the human adolescent striatum. Dev. Cogn. Neurosci. 12, 74–85 (2015).

    Article  PubMed  Google Scholar 

  198. Silvers, J. A. et al. vlPFC–vmPFC–amygdala interactions underlie age-related differences in cognitive regulation of emotion. Cereb. Cortex 27, 3502–3514 (2017).

    PubMed  Google Scholar 

  199. Langen, C. D. et al. Differential patterns of age-related cortical and subcortical functional connectivity in 6-to-10 year old children: a connectome-wide association study. Brain Behav. 8, e01031 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Rubia, K. Functional brain imaging across development. Eur. Child. Adolesc. Psychiatry 22, 719–731 (2013).

    Article  PubMed  Google Scholar 

  201. Galván, A., Delevich, K. & Wilbrecht, L. in The Cognitive Neurosciences (eds Poeppel, D., Mangun, G. R. & Gazzaniga, M. S.) 641–650 (MIT Press, 2020).

Download references

Acknowledgements

The authors thank A.G.E. Collins, R. Dahl, M. Eckstein, A. Galván, D. Shohamy, W. van den Bos, K. Delevich, A. J. Qü, W.-C. Lin and the members of our laboratories for discussion and feedback. This work was supported in part by NSF 1640885 SL-CN: Science of Learning in Adolescence: Integrating Developmental Studies in Animals and Humans (to L.W.) and NIH R01MH134514 (to L.W.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Linda Wilbrecht or Juliet Y. Davidow.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks Beatriz Luna, who co-reviewed with Finnegan Calabro; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Contingencies

The relationship among stimuli, actions and rewards. When there is a probabilistic schedule of reinforcement, rewards are given only for a fraction of correct actions (80% is a common fraction used); whereas in a deterministic contingency, this relationship is 100%. Contingency can also refer to the relationship between and stimulus and the correct action or outcome (see ‘reversal learning’ subsequently).

Exploration

In the context of reinforcement learning, the selection of an option that is not the highest value option (in the estimation of the learner). The use of an exploratory strategy may enable a learner to identify changes in the environment or to discover new, potentially higher value options.

Learning rate

A parameter that scales the amount of prediction error that is used to update the value of an option on any given trial. In effect, this describes how sensitive a learner is to feedback and over how many trials feedback information is integrated.

Model-based learning

A form of learning in which the learner formulates and uses a representation of the structure of the environment. This enables the learner to take into account latent information beyond that recently and directly experienced and can enable integration of multiple sources or stages of feedback.

Model-free learning

A form of learning in which the learner is dependent on information experienced through direct feedback. According to most definitions, this form of learning lacks higher level structure or abstraction.

Reinforcement learning

A form of learning in which an association of an action with a cue is learned to obtain an outcome. Favourable action associations are strengthened by positive outcomes. Negative outcomes reduce the tendency to repeat an action.

Reversal learning

A test of flexibility in learning that typically involves a change in task contingency so that a previously rewarded action is no longer rewarded and a previously non-rewarded action is now rewarded.

Salience

The capacity of a stimulus or reward to stand out relative to background or owing to its importance or novelty to the perceiver or learner. If a stimulus or reward has low salience, it may not be noticed, or may be noticed but not desired.

Sensory noise

Brain activity that is not driven by external stimuli and that may be extraneous. A high level of noise generated by random activity of neurons may obscure incoming information but may also serve to generate stochasticity that could have adaptive value.

Set shifting

A test of flexibility in learning that typically involves a shift in attention from one set of stimuli to another.

Uncertainty

Ambiguity caused by lack of information, conflicting information or changing circumstances. Uncertainty may be further subdivided into reducible and irreducible uncertainty. Uncertainty is commonly incorporated into a goal-directed task by changing the probability of reward or adding variability to the time of delivery of reward.

Volatility

A change in the environment that leads to change in the relationships among stimuli, actions and outcomes. Reversal learning and set shifting are two ways in which response to volatility can be studied in a laboratory task.

Working memory

A form of memory in which a small amount of information is retained over a short time interval to inform an ongoing process such as a choice or action selection. Memory held in this short-term store is quicky forgotten once its utility has been realized.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilbrecht, L., Davidow, J.Y. Goal-directed learning in adolescence: neurocognitive development and contextual influences. Nat. Rev. Neurosci. 25, 176–194 (2024). https://doi.org/10.1038/s41583-023-00783-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-023-00783-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing