Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cell type-specific roles of APOE4 in Alzheimer disease

Abstract

The ɛ4 allele of the apolipoprotein E gene (APOE), which translates to the APOE4 isoform, is the strongest genetic risk factor for late-onset Alzheimer disease (AD). Within the CNS, APOE is produced by a variety of cell types under different conditions, posing a challenge for studying its roles in AD pathogenesis. However, through powerful advances in research tools and the use of novel cell culture and animal models, researchers have recently begun to study the roles of APOE4 in AD in a cell type-specific manner and at a deeper and more mechanistic level than ever before. In particular, cutting-edge omics studies have enabled APOE4 to be studied at the single-cell level and have allowed the identification of critical APOE4 effects in AD-vulnerable cellular subtypes. Through these studies, it has become evident that APOE4 produced in various types of CNS cell — including astrocytes, neurons, microglia, oligodendrocytes and vascular cells — has diverse roles in AD pathogenesis. Here, we review these scientific advances and propose a cell type-specific APOE4 cascade model of AD. In this model, neuronal APOE4 emerges as a crucial pathological initiator and driver of AD pathogenesis, instigating glial responses and, ultimately, neurodegeneration. In addition, we provide perspectives on future directions for APOE4 research and related therapeutic developments in the context of AD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CNS APOE expression and links to Alzheimer disease.
Fig. 2: Expression of APOE4 in astrocytes and its roles in AD pathogenesis.
Fig. 3: Expression of APOE4 in neurons and its roles in AD pathogenesis.
Fig. 4: Expression of APOE4 in microglia and its roles in AD pathogenesis.
Fig. 5: Expression of APOE4 in oligodendrocytes and vascular cells and its roles in AD pathogenesis.
Fig. 6: Cell type-specific APOE4 cascade model of AD and related therapeutic strategies.

Similar content being viewed by others

References

  1. Huang, Y. & Mucke, L. Alzheimer mechanisms and therapeutic strategies. Cell 148, 1204–1222 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Long, J. M. & Holtzman, D. M. Alzheimer disease: an update on pathobiology and treatment strategies. Cell 179, 312–339 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 7, 280–292 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Albert, M. S. et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 7, 270–279 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Vermunt, L. et al. Duration of preclinical, prodromal, and dementia stages of Alzheimer’s disease in relation to age, sex, and APOE genotype. Alzheimers Dement. 15, 888–898 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gustavsson, A. et al. Global estimates on the number of persons across the Alzheimer’s disease continuum. Alzheimers Dement. 19, 658–670 (2023).

    Article  PubMed  Google Scholar 

  7. Sherrington, R. et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375, 754–760 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Goate, A. et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349, 704–706 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Corder, E. H. et al. Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat. Genet. 7, 180–184 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Corder, E. H. et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261, 921–923 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Mahley, R. W. & Rall, S. C. Apolipoprotein E: far more than a lipid transport protein. Annu. Rev. Genom. Hum. Genet. 1, 507–537 (2000).

    Article  CAS  Google Scholar 

  12. Weisgraber, K. H. Apolipoprotein E: structure-function relationships. Adv. Protein Chem. 45, 249–302 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Huang, Y. & Mahley, R. W. Apolipoprotein E: structure and function in lipid metabolism, neurobiology, and Alzheimer’s diseases. Neurobiol. Dis. 72, 3–12 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Farrer, L. A. et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA 278, 1349–1356 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Genin, E. et al. APOE and Alzheimer disease: a major gene with semi-dominant inheritance. Mol. Psychiatry 16, 903–907 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang, Y.-Y. et al. The proportion of APOE4 carriers among non-demented individuals: a pooled analysis of 389,000 community-dwellers. J. Alzheimers Dis. 81, 1331–1339 (2021).

    Article  PubMed  Google Scholar 

  17. Ward, A. et al. Prevalence of apolipoprotein E4 genotype and homozygotes (APOE e4/4) among patients diagnosed with Alzheimer’s disease: a systematic review and meta-analysis. Neuroepidemiology 38, 1–17 (2012).

    Article  PubMed  Google Scholar 

  18. Zhong, N. & Weisgraber, K. H. Understanding the association of apolipoprotein E4 with Alzheimer disease: clues from its structure. J. Biol. Chem. 284, 6027–6031 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu, C.-C., Kanekiyo, T., Xu, H. & Bu, G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat. Rev. Neurol. 9, 106–118 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Koutsodendris, N., Nelson, M. R., Rao, A. & Huang, Y. Apolipoprotein E and Alzheimer’s disease: findings, hypotheses, and potential mechanisms. Annu. Rev. Pathol. Mech. Dis. 17, 73–99 (2022).

    Article  CAS  Google Scholar 

  21. Martens, Y. A. et al. ApoE cascade hypothesis in the pathogenesis of Alzheimer’s disease and related dementias. Neuron 110, 1304–1317 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huang, Y. et al. Apolipoprotein E fragments present in Alzheimer’s disease brains induce neurofibrillary tangle-like intracellular inclusions in neurons. Proc. Natl Acad. Sci. USA 98, 8838–8843 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shi, Y. et al. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature 549, 523–527 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Koutsodendris, N. et al. Neuronal APOE4 removal protects against tau-mediated gliosis, neurodegeneration and myelin deficits. Nat. Aging 3, 275–296 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Serrano-Pozo, A., Das, S. & Hyman, B. T. APOE and Alzheimer’s disease: advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol. 20, 68–80 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Iannucci, J., Sen, A. & Grammas, P. Isoform-specific effects of apolipoprotein E on markers of inflammation and toxicity in brain glia and neuronal cells in vitro. Curr. Issues Mol. Biol. 43, 215–225 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Haney, M. S. et al. APOE4/4 is linked to damaging lipid droplets in Alzheimer’s microglia. Preprint at bioRxiv https://doi.org/10.1101/2023.07.21.549930 (2023).

  28. Nelson, M. R. et al. The APOE-R136S mutation protects against APOE4-driven tau pathology, neurodegeneration and neuroinflammation. Nat. Neurosci. 26, 2104–2121 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Marschallinger, J. et al. Lipid-droplet-accumulating microglia represent a dysfunctional and proinflammatory state in the aging brain. Nat. Neurosci. 23, 194–208 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Parhizkar, S. & Holtzman, D. M. APOE mediated neuroinflammation and neurodegeneration in Alzheimer’s disease. Semin. Immunol. 59, 101594 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Blanchard, J. W. et al. APOE4 impairs myelination via cholesterol dysregulation in oligodendrocytes. Nature 611, 769–779 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cheng, G. W.-Y. et al. Apolipoprotein E ε4 mediates myelin breakdown by targeting oligodendrocytes in sporadic Alzheimer disease. J. Neuropathol. Exp. Neurol. 81, 717–730 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shi, Y. et al. Overexpressing low-density lipoprotein receptor reduces tau-associated neurodegeneration in relation to apoE-linked mechanisms. Neuron 109, 2413–2426.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Barisano, G. et al. A ‘multi-omics’ analysis of blood-brain barrier and synaptic dysfunction in APOE4 mice. J. Exp. Med. 219, e20221137 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Montagne, A. et al. APOE4 leads to blood-brain barrier dysfunction predicting cognitive decline. Nature 581, 71–76 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Montagne, A. et al. APOE4 accelerates advanced-stage vascular and neurodegenerative disorder in old Alzheimer’s mice via cyclophilin A independently of amyloid-β. Nat. Aging 1, 506–520 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Raulin, A.-C. et al. ApoE in Alzheimer’s disease: pathophysiology and therapeutic strategies. Mol. Neurodegener. 17, 72 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yamazaki, Y., Zhao, N., Caulfield, T. R., Liu, C. C. & Bu, G. Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat. Rev. Neurol. 15, 501–518 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xu, Q. et al. Profile and regulation of apolipoprotein E (ApoE) expression in the CNS in mice with targeting of green fluorescent protein gene to the ApoE locus. J. Neurosci. 26, 4985–4994 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pitas, R. E., Boyles, J. K., Lee, S. H., Foss, D. & Mahley, R. W. Astrocytes synthesize apolipoprotein E and metabolize apolipoprotein E-containing lipoproteins. Biochim. Biophys. Acta 917, 148–161 (1987).

    Article  CAS  PubMed  Google Scholar 

  41. Boyles, J. K., Pitas, R. E., Wilson, E., Mahley, R. W. & Taylor, J. M. Apolipoprotein E associated with astrocytic glia of the central nervous system and with nonmyelinating glia of the peripheral nervous system. J. Clin. Invest. 76, 1501–1513 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Knoferle, J. et al. Apolipoprotein E4 produced in GABAergic interneurons causes learning and memory deficits in mice. J. Neurosci. 34, 14069–14078 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wang, C. et al. Selective removal of astrocytic APOE4 strongly protects against tau-mediated neurodegeneration and decreases synaptic phagocytosis by microglia. Neuron 109, 1657–1674.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xiong, M. et al. Astrocytic APOE4 removal confers cerebrovascular protection despite increased cerebral amyloid angiopathy. Mol. Neurodegener. 18, 17 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xia, Y. et al. C/EBPβ is a key transcription factor for APOE and preferentially mediates ApoE4 expression in Alzheimer’s disease. Mol. Psychiatry 26, 6002–6022 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Wynne, M. E. et al. APOE expression and secretion are modulated by mitochondrial dysfunction. eLife 12, e85779 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lanfranco, M. F., Sepulveda, J., Kopetsky, G. & Rebeck, G. W. Expression and secretion of apoE isoforms in astrocytes and microglia during inflammation. Glia 69, 1478–1493 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Harris, F. M. et al. Astroglial regulation of apolipoprotein E expression in neuronal cells: implications for Alzheimer’s disease. J. Biol. Chem. 279, 3862–3868 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Cashikar, A. G. et al. Regulation of astrocyte lipid metabolism and ApoE secretion by the microglial oxysterol, 25-hydroxycholesterol. J. Lipid Res. 64, 100350 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mhatre-Winters, I., Eid, A., Han, Y., Tieu, K. & Richardson, J. R. Sex and APOE genotype alter the basal and induced inflammatory states of primary astrocytes from humanized targeted replacement mice. ASN Neuro 15, 17590914221144549 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  51. de Leeuw, S. M. et al. APOE2, E3, and E4 differentially modulate cellular homeostasis, cholesterol metabolism, and inflammatory response in isogenic iPSC-derived astrocytes. Stem Cell Rep. 17, 110–126 (2022).

    Article  Google Scholar 

  52. Chung, W.-S. et al. Novel allele-dependent role for APOE in controlling the rate of synapse pruning by astrocytes. Proc. Natl Acad. Sci. USA 113, 10186–10191 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fernandez, C. G., Hamby, M. E., McReynolds, M. L. & Ray, W. J. The role of APOE4 in disrupting the homeostatic functions of astrocytes and microglia in aging and Alzheimer’s disease. Front. Aging Neurosci. 11, 14 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lin, Y.-T. et al. APOE4 causes widespread molecular and cellular alterations associated with Alzheimer’s disease phenotypes in human iPSC-derived brain cell types. Neuron 98, 1141–1154.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Staurenghi, E. et al. ApoE3 vs. ApoE4 astrocytes: a detailed analysis provides new insights into differences in cholesterol homeostasis. Antioxidants 11, 2168 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhao, J. et al. APOE ε4/ε4 diminishes neurotrophic function of human iPSC-derived astrocytes. Hum. Mol. Genet. 26, 2690–2700 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nishitsuji, K., Hosono, T., Nakamura, T., Bu, G. & Michikawa, M. Apolipoprotein E regulates the integrity of tight junctions in an isoform-dependent manner in an in vitro blood-brain barrier model. J. Biol. Chem. 286, 17536–17542 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bell, R. D. et al. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature 485, 512–516 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Arnaud, L. et al. APOE4 drives inflammation in human astrocytes via TAGLN3 repression and NF-κB activation. Cell Rep. 40, 111200 (2022).

    Article  CAS  PubMed  Google Scholar 

  60. Tcw, J. et al. Cholesterol and matrisome pathways dysregulated in astrocytes and microglia. Cell 185, 2213–2233.e25 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Windham, I. A. et al. APOE traffics to astrocyte lipid droplets and modulates triglyceride saturation and droplet size. Preprint at bioRxiv https://doi.org/10.1101/2023.04.28.538740 (2023).

  62. Chen, Z.-P. et al. Lipid-accumulated reactive astrocytes promote disease progression in epilepsy. Nat. Neurosci. 26, 542–554 (2023).

    Article  CAS  PubMed  Google Scholar 

  63. Fang, W. et al. APOE4 genotype exacerbates the depression-like behavior of mice during aging through ATP decline. Transl. Psychiatry 11, 507 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Farmer, B. C. et al. APOΕ4 lowers energy expenditure in females and impairs glucose oxidation by increasing flux through aerobic glycolysis. Mol. Neurodegener. 16, 62 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Williams, H. C. et al. APOE alters glucose flux through central carbon pathways in astrocytes. Neurobiol. Dis. 136, 104742 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lee, H. et al. ApoE4-dependent lysosomal cholesterol accumulation impairs mitochondrial homeostasis and oxidative phosphorylation in human astrocytes. Cell Rep. 42, 113183 (2023).

    Article  CAS  PubMed  Google Scholar 

  67. Li, X. et al. Astrocytic ApoE reprograms neuronal cholesterol metabolism and histone-acetylation-mediated memory. Neuron 109, 957–970.e8 (2021).

    Article  CAS  PubMed  Google Scholar 

  68. Huang, S., Zhang, Z., Cao, J., Yu, Y. & Pei, G. Chimeric cerebral organoids reveal the essentials of neuronal and astrocytic APOE4 for Alzheimer’s tau pathology. Signal Transduct. Target. Ther. 7, 176 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chen, Y., Durakoglugil, M. S., Xian, X. & Herz, J. ApoE4 reduces glutamate receptor function and synaptic plasticity by selectively impairing ApoE receptor recycling. Proc. Natl Acad. Sci. USA 107, 12011–12016 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jackson, R. J. et al. APOE4 derived from astrocytes leads to blood–brain barrier impairment. Brain 145, 3582–3593 (2021).

    Article  PubMed Central  Google Scholar 

  71. Simonovitch, S. et al. Impaired autophagy in APOE4 astrocytes. J. Alzheimers Dis. 51, 915–927 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Fagan, A. M. et al. Human and murine ApoE markedly alters A beta metabolism before and after plaque formation in a mouse model of Alzheimer’s disease. Neurobiol. Dis. 9, 305–318 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Holtzman, D. M. et al. Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer’s disease. Proc. Natl Acad. Sci. USA 97, 2892–2897 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mahan, T. E. et al. Selective reduction of astrocyte apoE3 and apoE4 strongly reduces Aβ accumulation and plaque-related pathology in a mouse model of amyloidosis. Mol. Neurodegener. 17, 13 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Brecht, W. J. et al. Neuron-specific apolipoprotein E4 proteolysis is associated with increased tau phosphorylation in brains of transgenic mice. J. Neurosci. 24, 2527–2534 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tesseur, I. et al. Expression of human apolipoprotein E4 in neurons causes hyperphosphorylation of protein tau in the brains of transgenic mice. Am. J. Pathol. 156, 951–964 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Saroja, S. R., Gorbachev, K., Tcw, J., Goate, A. M. & Pereira, A. C. Astrocyte-secreted glypican-4 drives APOE4-dependent tau hyperphosphorylation. Proc. Natl Acad. Sci. USA 119, e2108870119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Habib, N. et al. Disease-associated astrocytes in Alzheimer’s disease and aging. Nat. Neurosci. 23, 701–706 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mathys, H. et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 570, 332–337 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang, C., Sun, B., Zhou, Y., Grubb, A. & Gan, L. Cathepsin B degrades amyloid-β in mice expressing wild-type human amyloid precursor protein. J. Biol. Chem. 287, 39834–39841 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mucke, L. et al. Astroglial expression of human α1-antichymotrypsin enhances Alzheimer-like pathology in amyloid protein precursor transgenic mice. Am. J. Pathol. 157, 2003–2010 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dupont-Wallois, L. et al. ApoE synthesis in human neuroblastoma cells. Neurobiol. Dis. 4, 356–364 (1997).

    Article  CAS  PubMed  Google Scholar 

  83. Soulié, C. et al. Synthesis of apolipoprotein E (ApoE) mRNA by human neuronal-type SK N SH-SY 5Y cells and its regulation by nerve growth factor and ApoE. Neurosci. Lett. 265, 147–150 (1999).

    Article  PubMed  Google Scholar 

  84. DeKroon, R. M. & Armati, P. J. The endosomal trafficking of apolipoprotein E3 and E4 in cultured human brain neurons and astrocytes. Neurobiol. Dis. 8, 78–89 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Wang, C. et al. Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector. Nat. Med. 24, 647–657 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lee, H. et al. Cell-type-specific regulation of APOE and CLU levels in human neurons by the Alzheimer’s disease risk gene SORL1. Cell Rep. 42, 112994 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Einstein, G. et al. Intraneuronal ApoE in human visual cortical areas reflects the staging of Alzheimer disease pathology. J. Neuropathol. Exp. Neurol. 57, 1190–1201 (1998).

    Article  CAS  PubMed  Google Scholar 

  88. Xu, P.-T. et al. Specific regional transcription of apolipoprotein E in human brain neurons. Am. J. Pathol. 154, 601–611 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Xu, P.-T. et al. Regionally specific neuronal expression of human APOE gene in transgenic mice. Neurosci. Lett. 246, 65–68 (1998).

    Article  CAS  PubMed  Google Scholar 

  90. Zalocusky, K. A. et al. Neuronal ApoE upregulates MHC-I expression to drive selective neurodegeneration in Alzheimer’s disease. Nat. Neurosci. 24, 786–798 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Xu, Q. et al. Intron-3 retention/splicing controls neuronal expression of apolipoprotein E in the CNS. J. Neurosci. 28, 1452–1459 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mahley, R. W. & Huang, Y. Apolipoprotein E: from atherosclerosis to Alzheimer’s disease and beyond. Curr. Opin. Lipidol. 10, 207–217 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Weisgraber, K. H. & Mahley, R. W. Human apolipoprotein E: the Alzheimer’s disease connection. FASEB J. 10, 1485–1494 (1996).

    Article  CAS  PubMed  Google Scholar 

  94. Li, G. et al. GABAergic interneuron dysfunction impairs hippocampal neurogenesis in adult apolipoprotein E4 knockin mice. Cell Stem Cell 5, 634–645 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mahley, R. W. & Huang, Y. Apolipoprotein E sets the stage: response to injury triggers neuropathology. Neuron 76, 871–885 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chen, Z. et al. Human-lineage-specific genomic elements are associated with neurodegenerative disease and APOE transcript usage. Nat. Commun. 12, 2076 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Watts, J. A. et al. A common transcriptional mechanism involving R-loop and RNA abasic site regulates an enhancer RNA of APOE. Nucleic Acids Res. 50, 12497–12514 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wang, Z.-H. et al. Neuronal ApoE4 stimulates C/EBPβ activation, promoting Alzheimer’s disease pathology in a mouse model. Prog. Neurobiol. 209, 102212 (2022).

    Article  CAS  PubMed  Google Scholar 

  99. Buttini, M. et al. Expression of human apolipoprotein E3 or E4 in the brains of ApoE-/- mice: isoform-specific effects on neurodegeneration. J. Neurosci. 19, 4867–4880 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Raber, J. et al. Apolipoprotein E and cognitive performance. Nature 404, 352–354 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Raber, J. et al. Isoform-specific effects of human apolipoprotein E on brain function revealed in ApoE knockout mice: increased susceptibility of females. Proc. Natl Acad. Sci. USA 95, 10914–10919 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Cakir, Z. et al. Quantitative proteomic analysis reveals apoE4-dependent phosphorylation of the actin-regulating protein VASP. Mol. Cell. Proteom. 22, 100541 (2023).

    Article  CAS  Google Scholar 

  103. Jang, S.-S. et al. Neuronal apoE4 induces early hyperexcitability in select populations of hippocampal neurons by altering Nell2 expression. Preprint at bioRxiv https://doi.org/10.1101/2023.08.28.555153 (2023).

  104. Nuriel, T. et al. Neuronal hyperactivity due to loss of inhibitory tone in APOE4 mice lacking Alzheimer’s disease-like pathology. Nat. Commun. 8, 1464 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Gillespie, A. K. et al. Apolipoprotein E4 causes age-dependent disruption of slow gamma oscillations during hippocampal sharp-wave ripples. Neuron 90, 740–751 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Jones, E. A., Gillespie, A. K., Yoon, S. Y., Frank, L. M. & Huang, Y. Early hippocampal sharp-wave ripple deficits predict later learning and memory impairments in an Alzheimer’s disease mouse model. Cell Rep. 29, 2123–2133.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Andrews-Zwilling, Y. et al. Apolipoprotein E4 causes age- and tau-dependent impairment of GABAergic interneurons, leading to learning and memory deficits in mice. J. Neurosci. 30, 13707–13717 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Leung, L. et al. Apolipoprotein E4 causes age- and sex-dependent impairments of hilar GABAergic interneurons and learning and memory deficits in mice. PLoS ONE 7, e53569 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yin, J. et al. Effect of ApoE isoforms on mitochondria in Alzheimer disease. Neurology 94, e2404–e2411 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Mahley, R. W., Weisgraber, K. H. & Huang, Y. Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer’s disease. Proc. Natl Acad. Sci. USA 103, 5644–5651 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mahley, R. W. Apolipoprotein E4 targets mitochondria and the mitochondria-associated membrane complex in neuropathology, including Alzheimer’s disease. Curr. Opin. Neurobiol. 79, 102684 (2023).

    Article  CAS  PubMed  Google Scholar 

  112. Chen, H.-K. et al. Apolipoprotein E4 domain interaction mediates detrimental effects on mitochondria and is a potential therapeutic target for Alzheimer disease. J. Biol. Chem. 286, 5215–5221 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Orr, A. L. et al. Neuronal apolipoprotein E4 expression results in proteome-wide alterations and compromises bioenergetic capacity by disrupting mitochondrial function. J. Alzheimers Dis. 68, 991–1011 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Buttini, M. et al. Cellular source of apolipoprotein E4 determines neuronal susceptibility to excitotoxic injury in transgenic mice. Am. J. Pathol. 177, 563–569 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Cataldo, A. M. et al. Endocytic pathway abnormalities precede amyloid beta deposition in sporadic Alzheimer’s disease and Down syndrome: differential effects of APOE genotype and presenilin mutations. Am. J. Pathol. 157, 277–286 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ji, Z.-S. et al. Apolipoprotein E4 potentiates amyloid beta peptide-induced lysosomal leakage and apoptosis in neuronal cells. J. Biol. Chem. 277, 21821–21828 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Wadhwani, A. R., Affaneh, A., Van Gulden, S. & Kessler, J. A. Neuronal apolipoprotein E4 increases cell death and phosphorylated tau release in Alzheimer disease. Ann. Neurol. 85, 726–739 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yamauchi, Y. et al. Role of the N- and C-terminal domains in binding of apolipoprotein E isoforms to heparan sulfate and dermatan sulfate: a surface plasmon resonance study. Biochemistry 47, 6702–6710 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Rauch, J. N. et al. Tau internalization is regulated by 6-O sulfation on heparan sulfate proteoglycans (HSPGs). Sci. Rep. 8, 6382 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Stopschinski, B. E. et al. Specific glycosaminoglycan chain length and sulfation patterns are required for cell uptake of tau versus α-synuclein and β-amyloid aggregates. J. Biol. Chem. 293, 10826–10840 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Holmes, B. B. & Diamond, M. I. Prion-like properties of tau protein: the importance of extracellular tau as a therapeutic target. J. Biol. Chem. 289, 19855–19861 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Arboleda-Velasquez, J. F. et al. Resistance to autosomal dominant Alzheimer’s disease in an APOE3 Christchurch homozygote: a case report. Nat. Med. 25, 1680–1683 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Sepulveda-Falla, D. et al. Distinct tau neuropathology and cellular profiles of an APOE3 Christchurch homozygote protected against autosomal dominant Alzheimer’s dementia. Acta Neuropathol. 144, 589–601 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Shi, Y. et al. Microglia drive APOE-dependent neurodegeneration in a tauopathy mouse model. J. Exp. Med. 216, 2546–2561 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Rao, A. et al. Microglia depletion reduces human neuronal APOE4-driven pathologies in a chimeric Alzheimer’s disease model. Preprint at bioRxiv https://doi.org/10.1101/2023.11.10.566510 (2023).

  126. Harris, F. M. et al. Carboxyl-terminal-truncated apolipoprotein E4 causes Alzheimer’s disease-like neurodegeneration and behavioral deficits in transgenic mice. Proc. Natl Acad. Sci. USA 100, 10966–10971 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bien-Ly, N. et al. C-terminal-truncated apolipoprotein (apo) E4 inefficiently clears amyloid-beta (Abeta) and acts in concert with Abeta to elicit neuronal and behavioral deficits in mice. Proc. Natl Acad. Sci. USA 108, 4236–4241 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Rohn, T. T. Proteolytic cleavage of apolipoprotein E4 as the keystone for the heightened risk associated with Alzheimer’s disease. Int. J. Mol. Sci. 14, 14908–14922 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Koutsodendris, N. et al. APOE4-promoted gliosis and degeneration in tauopathy are ameliorated by pharmacological inhibition of HMGB1 release. Cell Rep. 42, 113252 (2023).

    Article  CAS  PubMed  Google Scholar 

  130. Tanaka, H. et al. YAP-dependent necrosis occurs in early stages of Alzheimer’s disease and regulates mouse model pathology. Nat. Commun. 11, 507 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Foo, H. et al. Interaction between APOE-ɛ4 and HMGB1 is associated with widespread cortical thinning in mild cognitive impairment. J. Neurol. Neurosurg. Psychiatry 89, 225–226 (2018).

    Article  PubMed  Google Scholar 

  132. Wan, Z. et al. TLR4-HMGB1 signaling pathway affects the inflammatory reaction of autoimmune myositis by regulating MHC-I. Int. Immunopharmacol. 41, 74–81 (2016).

    Article  CAS  PubMed  Google Scholar 

  133. Grundtman, C. et al. Effects of HMGB1 on in vitro responses of isolated muscle fibers and functional aspects in skeletal muscles of idiopathic inflammatory myopathies. FASEB J. 24, 570–578 (2010).

    Article  CAS  PubMed  Google Scholar 

  134. Brase, L. et al. Single-nucleus RNA-sequencing of autosomal dominant Alzheimer disease and risk variant carriers. Nat. Commun. 14, 2314 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Mathys, H. et al. Single-cell atlas reveals correlates of high cognitive function, dementia, and resilience to Alzheimer’s disease pathology. Cell 186, 4365–4385.e27 (2023).

    Article  CAS  PubMed  Google Scholar 

  136. Horvath, A. A. et al. Subclinical epileptiform activity accelerates the progression of Alzheimer’s disease: a long-term EEG study. Clin. Neurophysiol. 132, 1982–1989 (2021).

    Article  PubMed  Google Scholar 

  137. Vossel, K. A. et al. Incidence and impact of subclinical epileptiform activity in Alzheimer’s disease. Ann. Neurol. 80, 858–870 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Olah, M. et al. A transcriptomic atlas of aged human microglia. Nat. Commun. 9, 539 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Rangaraju, S. et al. Quantitative proteomics of acutely-isolated mouse microglia identifies novel immune Alzheimer’s disease-related proteins. Mol. Neurodegener. 13, 34 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290.e17 (2017).

    Article  CAS  PubMed  Google Scholar 

  141. Lee, S. et al. APOE modulates microglial immunometabolism in response to age, amyloid pathology, and inflammatory challenge. Cell Rep. 42, 112196 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Grubman, A. et al. A single-cell atlas of entorhinal cortex from individuals with Alzheimer’s disease reveals cell-type-specific gene expression regulation. Nat. Neurosci. 22, 2087–2097 (2019).

    Article  CAS  PubMed  Google Scholar 

  143. Krasemann, S. et al. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47, 566–581.e9 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Mancuso, R. et al. CSF1R inhibitor JNJ-40346527 attenuates microglial proliferation and neurodegeneration in P301S mice. Brain 142, 3243–3264 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Voloboueva, L. A., Emery, J. F., Sun, X. & Giffard, R. G. Inflammatory response of microglial BV-2 cells includes a glycolytic shift and is modulated by mitochondrial glucose-regulated protein 75/mortalin. FEBS Lett. 587, 756–762 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Huynh, T.-P. V. et al. Lack of hepatic apoE does not influence early Aβ deposition: observations from a new APOE knock-in model. Mol. Neurodegener. 14, 37 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Victor, M. B. et al. Lipid accumulation induced by APOE4 impairs microglial surveillance of neuronal-network activity. Cell Stem Cell 29, 1197–1212.e8 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Sienski, G. et al. APOE4 disrupts intracellular lipid homeostasis in human iPSC-derived glia. Sci. Transl. Med. 13, eaaz4564 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Liu, C.-C. et al. Cell-autonomous effects of APOE4 in restricting microglial response in brain homeostasis and Alzheimer’s disease. Nat. Immunol. 24, 1854–1866 (2023).

    Article  CAS  PubMed  Google Scholar 

  150. Wang, N. et al. Opposing effects of apoE2 and apoE4 on microglial activation and lipid metabolism in response to demyelination. Mol. Neurodegener. 17, 75 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Fote, G. M. et al. Isoform-dependent lysosomal degradation and internalization of apolipoprotein E requires autophagy proteins. J. Cell Sci. 135, jcs258687 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Machlovi, S. I. et al. APOE4 confers transcriptomic and functional alterations to primary mouse microglia. Neurobiol. Dis. 164, 105615 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Overmyer, M. et al. Reactive microglia in aging and dementia: an immunohistochemical study of postmortem human brain tissue. Acta Neuropathol. 97, 383–392 (1999).

    Article  CAS  PubMed  Google Scholar 

  154. Egensperger, R., Kösel, S., Eitzen, U. & Graeber, M. B. Microglial activation in Alzheimer disease: association with APOE genotype. Brain Pathol. 8, 439–447 (2006).

    Article  PubMed Central  Google Scholar 

  155. Vitek, M. P., Brown, C. M. & Colton, C. A. APOE genotype-specific differences in the innate immune response. Neurobiol. Aging 30, 1350–1360 (2009).

    Article  CAS  PubMed  Google Scholar 

  156. Muth, C., Hartmann, A., Sepulveda-Falla, D., Glatzel, M. & Krasemann, S. Phagocytosis of apoptotic cells is specifically upregulated in ApoE4 expressing microglia in vitro. Front. Cell. Neurosci. 13, 181 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Yang, Y. et al. APOE3, but not APOE4, bone marrow transplantation mitigates behavioral and pathological changes in a mouse model of Alzheimer disease. Am. J. Pathol. 183, 905–917 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Yin, Z. et al. APOE4 impairs the microglial response in Alzheimer’s disease by inducing TGFβ-mediated checkpoints. Nat. Immunol. 11, 1839–1853 (2023).

    Article  Google Scholar 

  159. Najm, R. et al. In vivo chimeric Alzheimer’s disease modeling of apolipoprotein E4 toxicity in human neurons. Cell Rep. 32, 107962 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Lau, S.-F. et al. The VCAM1–ApoE pathway directs microglial chemotaxis and alleviates Alzheimer’s disease pathology. Nat. Aging 10, 1219–1236 (2023).

    Article  Google Scholar 

  161. Gratuze, M. et al. TREM2-independent microgliosis promotes tau-mediated neurodegeneration in the presence of ApoE4. Neuron 111, 202–219.e7 (2023).

    Article  CAS  PubMed  Google Scholar 

  162. Asai, H. et al. Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat. Neurosci. 18, 1584–1593 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Clayton, K. et al. Plaque associated microglia hyper-secrete extracellular vesicles and accelerate tau propagation in a humanized APP mouse model. Mol. Neurodegener. 16, 18 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Hopp, S. C. et al. The role of microglia in processing and spreading of bioactive tau seeds in Alzheimer’s disease. J. Neuroinflamm. 15, 269 (2018).

    Article  Google Scholar 

  165. Ferrari-Souza, J. P. et al. APOE ε4 associates with microglial activation independently of Aβ plaques and tau tangles. Sci. Adv. 9, eade1474 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Chen, X. et al. Microglia-mediated T cell infiltration drives neurodegeneration in tauopathy. Nature 615, 668–677 (2023).

    Article  CAS  PubMed  Google Scholar 

  167. Serrano-Pozo, A. et al. Effect of APOE alleles on the glial transcriptome in normal aging and Alzheimer’s disease. Nat. Aging 1, 919–931 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Frigerio, C. S. et al. The major risk factors for Alzheimer’s disease: age, sex, and genes modulate the microglia response to Aβ plaques. Cell Rep. 27, 1293–1306.e6 (2019).

    Article  PubMed Central  Google Scholar 

  169. Gerrits, E. et al. Distinct amyloid-β and tau-associated microglia profiles in Alzheimer’s disease. Acta Neuropathol. 141, 681–696 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Serrano-Pozo, A., Gómez-Isla, T., Growdon, J. H., Frosch, M. P. & Hyman, B. T. A phenotypic change but not proliferation underlies glial responses in Alzheimer disease. Am. J. Pathol. 182, 2332–2344 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Perlmutter, L. S., Scott, S. A., Barrón, E. & Chui, H. C. MHC class II-positive microglia in human brain: association with Alzheimer lesions. J. Neurosci. Res. 33, 549–558 (1992).

    Article  CAS  PubMed  Google Scholar 

  172. Chen, M., Xie, M., Peng, C. & Long, S. The absorption of apolipoprotein E by damaged neurons facilitates neuronal repair. Cell Biol. Int. 43, 623–633 (2019).

    Article  CAS  PubMed  Google Scholar 

  173. Mok, K. K.-S. et al. Apolipoprotein E ε4 disrupts oligodendrocyte differentiation by interfering with astrocyte-derived lipid transport. J. Neurochem. 165, 55–75 (2023).

    Article  CAS  PubMed  Google Scholar 

  174. Safina, D. et al. Low-density lipoprotein receptor-related protein 1 is a novel modulator of radial glia stem cell proliferation, survival, and differentiation. Glia 64, 1363–1380 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Kenigsbuch, M. et al. A shared disease-associated oligodendrocyte signature among multiple CNS pathologies. Nat. Neurosci. 25, 876–886 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Casey, C. S. et al. Apolipoprotein E inhibits cerebrovascular pericyte mobility through a RhoA protein-mediated pathway. J. Biol. Chem. 290, 14208–14217 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Wilhelmus, M. M. M. et al. Apolipoprotein E genotype regulates amyloid-β cytotoxicity. J. Neurosci. 25, 3621–3627 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Blanchard, J. W. et al. Reconstruction of the human blood–brain barrier in vitro reveals a pathogenic mechanism of APOE4 in pericytes. Nat. Med. 26, 952–963 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Majack, R. A. et al. Expression of apolipoprotein E by cultured vascular smooth muscle cells is controlled by growth state. J. Cell Biol. 107, 1207–1213 (1988).

    Article  CAS  PubMed  Google Scholar 

  180. Rieker, C. et al. Apolipoprotein E4 expression causes gain of toxic function in isogenic human induced pluripotent stem cell-derived endothelial cells. Arterioscler. Thromb. Vasc. Biol. 39, e195–e207 (2019).

    Article  CAS  PubMed  Google Scholar 

  181. Bruinsma, I. B. et al. Apolipoprotein E protects cultured pericytes and astrocytes from D-Aβ1–40-mediated cell death. Brain Res. 1315, 169–180 (2010).

    Article  CAS  PubMed  Google Scholar 

  182. Yang, A. C. et al. A human brain vascular atlas reveals diverse mediators of Alzheimer’s risk. Nature 603, 885–892 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Yamazaki, Y. et al. ApoE in brain pericytes regulates endothelial function in an isoform-dependent manner by modulating basement membrane components. Arterioscler. Thromb. Vasc. Biol. 40, 128–144 (2020).

    Article  CAS  PubMed  Google Scholar 

  184. Halliday, M. R. et al. Accelerated pericyte degeneration and blood–brain barrier breakdown in apolipoprotein E4 carriers with Alzheimer’s disease. J. Cereb. Blood Flow Metab. 36, 216–227 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Yamazaki, Y. et al. Vascular apoE4 impairs behavior by modulating glio-vascular function. Neuron 109, 438–447.e6 (2021).

    Article  CAS  PubMed  Google Scholar 

  186. Sun, N. et al. Single-nucleus multiregion transcriptomic analysis of brain vasculature in Alzheimer’s disease. Nat. Neurosci. 26, 970–982 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Honig, L. S. et al. ARIA in patients treated with lecanemab (BAN2401) in a phase 2 study in early Alzheimer’s disease. Alzheimers Dement. 9, e12377 (2023).

    Article  Google Scholar 

  188. Salloway, S. et al. Amyloid-related imaging abnormalities in 2 phase 3 studies evaluating aducanumab in patients with early Alzheimer disease. JAMA Neurol. 79, 13–21 (2022).

    Article  PubMed  Google Scholar 

  189. Pankiewicz, J. E. et al. APOE genotype differentially modulates effects of anti-Aβ, passive immunization in APP transgenic mice. Mol. Neurodegener. 12, 12 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Bien-Ly, N., Gillespie, A. K., Walker, D., Yoon, S. Y. & Huang, Y. Reducing human apolipoprotein E levels attenuates age-dependent Aβ accumulation in mutant human amyloid precursor protein transgenic mice. J. Neurosci. 32, 4803–4811 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Kim, J. et al. Haploinsufficiency of human APOE reduces amyloid deposition in a mouse model of amyloid-β amyloidosis. J. Neurosci. 31, 18007–18012 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Chemparathy, A. et al. APOE loss-of-function variants: compatible with longevity and associated with resistance to Alzheimer’s disease pathology. Preprint at medRxiv https://doi.org/10.1101/2023.07.20.23292771 (2023).

  193. Mak, A. C. Y. et al. Effects of the absence of apolipoprotein E on lipoproteins, neurocognitive function, and retinal function. JAMA Neurol. 71, 1228–1236 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Rajabli, F. et al. Ancestral origin of ApoE ε4 Alzheimer disease risk in Puerto Rican and African American populations. PLoS Genet. 14, e1007791 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Griswold, A. J. et al. Increased APOE ε4 expression is associated with the difference in Alzheimer’s disease risk from diverse ancestral backgrounds. Alzheimers Dement. 17, 1179–1188 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Huynh, T.-P. V. et al. Age-dependent effects of apoE reduction using antisense oligonucleotides in a model of β-amyloidosis. Neuron 96, 1013–1023.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Kim, J. et al. Anti-apoE immunotherapy inhibits amyloid accumulation in a transgenic mouse model of Aβ amyloidosis. J. Exp. Med. 209, 2149–2156 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Litvinchuk, A. et al. Apolipoprotein E4 reduction with antisense oligonucleotides decreases neurodegeneration in a tauopathy model. Ann. Neurol. 89, 952–966 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Bulcha, J. T., Wang, Y., Ma, H., Tai, P. W. L. & Gao, G. Viral vector platforms within the gene therapy landscape. Signal Transduct. Target. Ther. 6, 53 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Zhao, Z., Anselmo, A. C. & Mitragotri, S. Viral vector‐based gene therapies in the clinic. Bioeng. Transl. Med. 7, e10258 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Brodbeck, J. et al. Structure-dependent impairment of intracellular apolipoprotein E4 trafficking and its detrimental effects are rescued by small-molecule structure correctors. J. Biol. Chem. 286, 17217–17226 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Chen, H.-K. et al. Small molecule structure correctors abolish detrimental effects of apolipoprotein E4 in cultured neurons. J. Biol. Chem. 287, 5253–5266 (2012).

    Article  CAS  PubMed  Google Scholar 

  203. Tong, L. M. et al. Inhibitory interneuron progenitor transplantation restores normal learning and memory in ApoE4 knock-in mice without or with Aβ accumulation. J. Neurosci. 34, 9506–9515 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Lefterov, I. et al. APOE2 orchestrated differences in transcriptomic and lipidomic profiles of postmortem AD brain. Alzheimers Res. Ther. 11, 113 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Li, Z., Shue, F., Zhao, N., Shinohara, M. & Bu, G. APOE2: protective mechanism and therapeutic implications for Alzheimer’s disease. Mol. Neurodegener. 15, 63 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Reiman, E. M. et al. Exceptionally low likelihood of Alzheimer’s dementia in APOE2 homozygotes from a 5,000-person neuropathological study. Nat. Commun. 11, 667 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Zhao, L. et al. Intracerebral adeno-associated virus gene delivery of apolipoprotein E2 markedly reduces brain amyloid pathology in Alzheimer’s disease mouse models. Neurobiol. Aging 44, 159–172 (2016).

    Article  CAS  PubMed  Google Scholar 

  208. Marino, C. et al. APOE Christchurch-mimetic therapeutic antibody reduces APOE-mediated toxicity and tau phosphorylation. Alzheimers Dement. https://doi.org/10.1002/alz.13436 (2023).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants R01AG071697, RF1AG076647, R01AG065540 and P01AG073082 from the National Institutes of Health to Y.H. The authors would like to thank R. W. Mahley, L. Mucke and A. Yang for their critical review of the manuscript. They also thank J. Carroll for assistance with figure preparation, S. Ordway for editorial assistance, and Huang laboratory members for providing feedback on the Review.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Yadong Huang.

Ethics declarations

Competing interests

Y.H. is a co-founder and scientific advisory board member of GABAeron, Inc. Other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks Tsuneya Ikezu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

APOE fragments

Neurotoxic fragments of the APOE protein that are generated as a result of APOE expression in neurons, with more fragments being generated from APOE4, owing to its unique conformation, than from APOE3 via neuron-specific proteolysis.

Cytokines

Classes of small secreted proteins that serve to signal and activate immune functions, including triggering of glial responses in the CNS.

Dementia

A general term for loss of memory and loss of language, problem-solving and other thinking abilities that are severe enough to interfere with daily life. Diseases grouped under the general term dementia are caused by abnormal brain changes, with Alzheimer disease being the most common cause.

Disease-associated gene signatures

Specific patterns or sets of genes that are consistently found to be altered or expressed differently in a disease context compared with physiological contexts. These gene signatures are often identified through various transcriptomic analyses, such as microarray or RNA sequencing experiments.

Exosome

A small, membrane-bound vesicle that is released by cells into the extracellular environment. These vesicles have a crucial role in intercellular communication by facilitating the transfer of various molecules between cells.

Gene editing

A type of genetic engineering by which specific changes can be made to DNA, including inserting, deleting or altering DNA sequences.

Gliosis

The proliferation or hypertrophy of microglia and/or astrocytes in response to stressors, insults, injury or diseases.

Human induced pluripotent stem cells

(hiPSCs). A type of pluripotent stem cell derived from adult somatic cells that have been genetically reprogrammed to an embryonic stem cell-like state through the forced expression of genes and factors important for maintaining the defining properties of embryonic stem cells.

Lysosomes

Membrane-bound organelles that are part of the endo-lysosomal system within cells and have a crucial role in cellular digestion and waste removal. Lysosomes contain various enzymes that are capable of breaking down different types of macromolecules, including proteins, lipids, nucleic acids and carbohydrates.

Mild cognitive impairment

(MCI). An early stage of memory loss or other cognitive ability loss (such as language or visual–spatial perception) in individuals who maintain the ability to independently perform most activities of daily living. For neurodegenerative diseases, such as Alzheimer disease, MCI can be an early stage of the disease continuum.

Pericytes

Contractile cells located at intervals along the walls of capillaries, playing a part in blood vessel formation, maintenance of the blood–brain barrier, regulation of immune cell entry to the central nervous system and control of brain blood flow.

Single-nucleus RNA sequencing

(snRNA-seq). A molecular biology technique used to analyse the gene expression profiles of individual cell nuclei within a complex tissue or organ. Traditional RNA sequencing methods usually require intact cells, but snRNA-seq allows researchers to study gene expression in individual nuclei, providing insights into cellular diversity and heterogeneity within tissues.

Tauopathy

One of a group of clinically, biochemically and morphologically heterogeneous neurodegenerative diseases, including Alzheimer disease, characterized by the abnormal hyperphosphorylation of microtubule-associated protein, tau, that leads to the formation of neurofibrillary tangles in the brain.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blumenfeld, J., Yip, O., Kim, M.J. et al. Cell type-specific roles of APOE4 in Alzheimer disease. Nat. Rev. Neurosci. 25, 91–110 (2024). https://doi.org/10.1038/s41583-023-00776-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-023-00776-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing