Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Detection, processing and reinforcement of social cues: regulation by the oxytocin system

Abstract

Many social behaviours are evolutionarily conserved and are essential for the healthy development of an individual. The neuropeptide oxytocin (OXT) is crucial for the fine-tuned regulation of social interactions in mammals. The advent and application of state-of-the-art methodological approaches that allow the activity of neuronal circuits involving OXT to be monitored and functionally manipulated in laboratory mammals have deepened our understanding of the roles of OXT in these behaviours. In this Review, we discuss how OXT promotes the sensory detection and evaluation of social cues, the subsequent approach and display of social behaviour, and the rewarding consequences of social interactions in selected reproductive and non-reproductive social behaviours. Social stressors — such as social isolation, exposure to social defeat or social trauma, and partner loss — are often paralleled by maladaptations of the OXT system, and restoring OXT system functioning can reinstate socio-emotional allostasis. Thus, the OXT system acts as a dynamic mediator of appropriate behavioural adaptations to environmental challenges by enhancing and reinforcing social salience and buffering social stress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Oxytocin projections that regulate social behaviours.
Fig. 2: Oxytocin circuitry involved in the detection and processing of social cues.

Similar content being viewed by others

References

  1. Dunbar, R. I. & Shultz, S. Evolution in the social brain. Science 317, 1344–1347 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. DeCasien, A. R. & Higham, J. P. Primate mosaic brain evolution reflects selection on sensory and cognitive specialization. Nat. Ecol. Evol. 3, 1483–1493 (2019).

    Article  PubMed  Google Scholar 

  3. Wei, D., Talwar, V. & Lin, D. Neural circuits of social behaviors: innate yet flexible. Neuron 109, 1600–1620 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Grinevich, V., Knobloch-Bollmann, H. S., Eliava, M., Busnelli, M. & Chini, B. Assembling the puzzle: pathways of oxytocin signaling in the brain. Biol. Psychiatry 79, 155–164 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Jurek, B. & Neumann, I. D. The oxytocin receptor: from intracellular signaling to behavior. Physiol. Rev. 98, 1805–1908 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Theofanopoulou, C., Gedman, G., Cahill, J. A., Boeckx, C. & Jarvis, E. D. Universal nomenclature for oxytocin-vasotocin ligand and receptor families. Nature 592, 747–755 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Donaldson, Z. R. & Young, L. J. Oxytocin, vasopressin, and the neurogenetics of sociality. Science 322, 900–904 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Neumann, I. D. & Landgraf, R. Balance of brain oxytocin and vasopressin: implications for anxiety, depression, and social behaviors. Trends Neurosci. 35, 649–659 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Son, S. et al. Whole-brain wiring diagram of oxytocin system in adult mice. J. Neurosci. 42, 5021–5033 (2022). This study provides a whole-brain comprehensive analysis of OXTergic projections and OXTR expression in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Althammer, F. & Grinevich, V. Diversity of oxytocin neurons: beyond magno- and parvocellular cell types? J. Neuroendocrinol. 30, e12549 (2017).

    Article  Google Scholar 

  11. Duque-Wilckens, N. et al. Extrahypothalamic oxytocin neurons drive stress-induced social vigilance and avoidance. Proc. Natl Acad. Sci. USA 117, 26406–26413 (2020). This study demonstrates the presence of extrahypothalamic OXT neurons within the BNST and their role in regulating stress-induced vigilance in California mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Landgraf, R. & Neumann, I. D. Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication. Front. Neuroendocrinol. 25, 150–176 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Carcea, I. et al. Oxytocin neurons enable social transmission of maternal behaviour. Nature 596, 553–557 (2021). The authors provide compelling evidence for a role of visual information coded by inputs from ipsilateral superior colliculus to PVN-OXT neurons in mediating the social transmission of maternal behaviour in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Resendez, S. L. et al. Social stimuli induce activation of oxytocin neurons within the paraventricular nucleus of the hypothalamus to promote social behavior in male mice. J. Neurosci. 40, 2282–2295 (2020). This study shows that PVN–OXT neurons are essential for enhancing the salience of social cues in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Oliveira, V. E. M. et al. Oxytocin and vasopressin within the ventral and dorsal lateral septum modulate aggression in female rats. Nat. Commun. 12, 2900 (2021). This study uses a novel model of female aggression and gives evidence for a pro-aggressive role of OXT, mediated by OXTR signaling within the LS in rats.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Neumann, I., Douglas, A. J., Pittman, Q. J., Russell, J. A. & Landgraf, R. Oxytocin released within the supraoptic nucleus of the rat brain by positive feedback action is involved in parturition-related events. J. Neuroendocrinol. 8, 227–233 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Zoicas, I., Slattery, D. A. & Neumann, I. D. Brain oxytocin in social fear conditioning and its extinction: involvement of the lateral septum. Neuropsychopharmacology 39, 3027–3035 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wahis, J. et al. Astrocytes mediate the effect of oxytocin in the central amygdala on neuronal activity and affective states in rodents. Nat. Neurosci. 24, 529–541 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Jurek, B. et al. Oxytocin regulates stress-induced Crf gene transcription through CREB-regulated transcription coactivator 3. J. Neurosci. 35, 12248–12260 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. van den Burg, E. H., Stindl, J., Grund, T., Neumann, I. D. & Strauss, O. Oxytocin stimulates extracellular Ca2+ influx through TRPV2 channels in hypothalamic neurons to exert its anxiolytic effects. Neuropsychopharmacology 40, 2938–2947 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gravati, M. et al. Dual modulation of inward rectifier potassium currents in olfactory neuronal cells by promiscuous G protein coupling of the oxytocin receptor. J. Neurochem. 114, 1424–1435 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Liu, J. J., Eyring, K. W., Konig, G. M., Kostenis, E. & Tsien, R. W. Oxytocin-modulated ion channel ensemble controls depolarization, integration and burst firing in CA2 pyramidal neurons. J. Neurosci. 42, 7707–7720 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Engelmann, M., Hadicke, J. & Noack, J. Testing declarative memory in laboratory rats and mice using the nonconditioned social discrimination procedure. Nat. Protoc. 6, 1152–1162 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Walsh, J. J., Christoffel, D. J. & Malenka, R. C. Neural circuits regulating prosocial behaviors. Neuropsychopharmacology 48, 79–89 (2023).

    Article  PubMed  Google Scholar 

  25. Wong, L. C. et al. Effective modulation of male aggression through lateral septum to medial hypothalamus projection. Curr. Biol. 26, 593–604 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Oettl, L. L. et al. Oxytocin enhances social recognition by modulating cortical control of early olfactory processing. Neuron 90, 609–621 (2016). This study provides evidence for a role of OXTR signaling in the AON in enhancing the signal-to-noise ratio during odour processing within the olfactory bulb.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tang, Y. et al. Social touch promotes interfemale communication via activation of parvocellular oxytocin neurons. Nat. Neurosci. 23, 1125–1137 (2020). The authors dissected an intra-PVN circuit regulated by OXT that is activated by somatosensory cues during social interactions.

    Article  CAS  PubMed  Google Scholar 

  28. Grund, T. et al. Chemogenetic activation of oxytocin neurons: temporal dynamics, hormonal release, and behavioral consequences. Psychoneuroendocrinology 106, 77–84 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Hung, L. W. et al. Gating of social reward by oxytocin in the ventral tegmental area. Science 357, 1406–1411 (2017). This study revealed a significant role of PVN–OXT neurons in mediating reward by activating VTA-dopaminergic neurons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Menon, R. et al. Oxytocin signaling in the lateral septum prevents social fear during lactation. Curr. Biol. 28, 1066–1078.e6 (2018). This study shows a role for LS-projecting OXT neurons, mainly of the SON, in mediating reduced social fear expression during lactation in mice.

    Article  CAS  PubMed  Google Scholar 

  31. Yao, S., Bergan, J., Lanjuin, A. & Dulac, C. Oxytocin signaling in the medial amygdala is required for sex discrimination of social cues. eLife 6, e31373 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Anpilov, S. et al. Wireless optogenetic stimulation of oxytocin neurons in a semi-natural setup dynamically elevates both pro-social and agonistic behaviors. Neuron 107, 644–655 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lukas, M. et al. The neuropeptide oxytocin facilitates pro-social behavior and prevents social avoidance in rats and mice. Neuropsychopharmacology 36, 2159–2168 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shamay-Tsoory, S. G. & Abu-Akel, A. The social salience hypothesis of oxytocin. Biol. Psychiatry 79, 194–202 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Tamir, D. I. & Hughes, B. L. Social rewards: from basic social building blocks to complex social behavior. Perspect. Psychol. Sci. 13, 700–717 (2018).

    Article  PubMed  Google Scholar 

  36. Dolen, G., Darvishzadeh, A., Huang, K. W. & Malenka, R. C. Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature 501, 179–184 (2013). This study shows that processing of social reward within the NAc requires coordinated activity of both OXT and serotonin.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Xiao, L., Priest, M. F., Nasenbeny, J., Lu, T. & Kozorovitskiy, Y. Biased oxytocinergic modulation of midbrain dopamine systems. Neuron 95, 368–384.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gunaydin, L. A. et al. Natural neural projection dynamics underlying social behavior. Cell 157, 1535–1551 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xiao, L., Priest, M. F. & Kozorovitskiy, Y. Oxytocin functions as a spatiotemporal filter for excitatory synaptic inputs to VTA dopamine neurons. eLife 7, e33892 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wei, D. et al. Endocannabinoid signaling mediates oxytocin-driven social reward. Proc. Natl Acad. Sci. USA 112, 14084–14089 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Raam, T., McAvoy, K. M., Besnard, A., Veenema, A. H. & Sahay, A. Hippocampal oxytocin receptors are necessary for discrimination of social stimuli. Nat. Commun. 8, 2001 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Dluzen, D. E., Muraoka, S., Engelmann, M. & Landgraf, R. The effects of infusion of arginine vasopressin, oxytocin, or their antagonists into the olfactory bulb upon social recognition responses in male rats. Peptides 19, 999–1005 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Dluzen, D. E., Muraoka, S., Engelmann, M., Ebner, K. & Landgraf, R. Oxytocin induces preservation of social recognition in male rats by activating alpha-adrenoceptors of the olfactory bulb. Eur. J. Neurosci. 12, 760–766 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Choe, H. K. et al. Oxytocin mediates entrainment of sensory stimuli to social cues of opposing valence. Neuron 87, 152–163 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tobin, V. A. et al. An intrinsic vasopressin system in the olfactory bulb is involved in social recognition. Nature 464, 413–417 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Suyama, H., Egger, V. & Lukas, M. Top-down acetylcholine signaling via olfactory bulb vasopressin cells contributes to social discrimination in rats. Commun. Biol. 4, 603 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Qian, T. et al. A genetically encoded sensor measures temporal oxytocin release from different neuronal compartments. Nat. Biotechnol. 41, 944–957 (2023).

    Article  CAS  PubMed  Google Scholar 

  48. Tirko, N. N. et al. Oxytocin transforms firing mode of CA2 hippocampal neurons. Neuron 100, 593–608.e3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rogers-Carter, M. M. et al. Insular cortex mediates approach and avoidance responses to social affective stimuli. Nat. Neurosci. 21, 404–414 (2018). This study implicates OXTR signaling within the IC in mediating emotion discrimination ability in rats.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rogers-Carter, M. M., Djerdjaj, A., Gribbons, K. B., Varela, J. A. & Christianson, J. P. Insular cortex projections to nucleus accumbens core mediate social approach to stressed juvenile rats. J. Neurosci. 39, 8717–8729 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Pisansky, M. T., Hanson, L. R., Gottesman, I. I. & Gewirtz, J. C. Oxytocin enhances observational fear in mice. Nat. Commun. 8, 2102 (2017). This study provides evidence for PVN–OXT neurons in mediating the learning of observational fear in male and female mice.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ferretti, V. et al. Oxytocin signaling in the central amygdala modulates emotion discrimination in mice. Curr. Biol. 29, 1938–1953.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Burkett, J. P. et al. Oxytocin-dependent consolation behavior in rodents. Science 351, 375–378 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. de Jong, T. R., Beiderbeck, D. I. & Neumann, I. D. Measuring virgin female aggression in the female intruder test (FIT): effects of oxytocin, estrous cycle, and anxiety. PLoS ONE 9, e91701 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hathaway, G. A., Faykoo-Martinez, M., Peragine, D. E., Mooney, S. J. & Holmes, M. M. Subcaste differences in neural activation suggest a prosocial role for oxytocin in eusocial naked mole-rats. Horm. Behav. 79, 1–7 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Tan, O. et al. Oxytocin and vasopressin inhibit hyper-aggressive behaviour in socially isolated mice. Neuropharmacology 156, 107573 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Arakawa, H., Blanchard, D. C. & Blanchard, R. J. Central oxytocin regulates social familiarity and scent marking behavior that involves amicable odor signals between male mice. Physiol. Behav. 146, 36–46 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Witt, D. M., Carter, C. S. & Walton, D. M. Central and peripheral effects of oxytocin administration in prairie voles (Microtus ochrogaster). Pharmacol. Biochem. Behav. 37, 63–69 (1990).

    Article  CAS  PubMed  Google Scholar 

  59. Pagani, J. H. et al. Raphe serotonin neuron-specific oxytocin receptor knockout reduces aggression without affecting anxiety-like behavior in male mice only. Genes Brain Behav. 14, 167–176 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Calcagnoli, F. et al. Local oxytocin expression and oxytocin receptor binding in the male rat brain is associated with aggressiveness. Behav. Brain Res. 261, 315–322 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Veenema, A. H. & Neumann, I. D. Neurobiological mechanisms of aggression and stress coping: a comparative study in mouse and rat selection lines. Brain Behav. Evol. 70, 274–285 (2007).

    Article  PubMed  Google Scholar 

  62. Menon, R., Suss, T., Oliveira, V. E. M., Neumann, I. D. & Bludau, A. Neurobiology of the lateral septum: regulation of social behavior. Trends Neurosci. 45, 27–40 (2022).

    Article  CAS  PubMed  Google Scholar 

  63. Calcagnoli, F. et al. Oxytocin microinjected into the central amygdaloid nuclei exerts anti-aggressive effects in male rats. Neuropharmacology 90, 74–81 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Harmon, A. C., Huhman, K. L., Moore, T. O. & Albers, H. E. Oxytocin inhibits aggression in female Syrian hamsters. J. Neuroendocrinol. 14, 963–969 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Veening, J. G., de Jong, T. R., Waldinger, M. D., Korte, S. M. & Olivier, B. The role of oxytocin in male and female reproductive behavior. Eur. J. Pharmacol. 753, 209–228 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Waldherr, M. & Neumann, I. D. Centrally released oxytocin mediates mating-induced anxiolysis in male rats. Proc. Natl Acad. Sci. USA 104, 16681–16684 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bergan, J. F., Ben-Shaul, Y. & Dulac, C. Sex-specific processing of social cues in the medial amygdala. eLife 3, e02743 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Dominguez, J., Riolo, J. V., Xu, Z. & Hull, E. M. Regulation by the medial amygdala of copulation and medial preoptic dopamine release. J. Neurosci. 21, 349–355 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gil, M., Bhatt, R., Picotte, K. B. & Hull, E. M. Sexual experience increases oxytocin receptor gene expression and protein in the medial preoptic area of the male rat. Psychoneuroendocrinology 38, 1688–1697 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Szymanski, L. A. & Keller, M. Activation of the olfactory system in response to male odors in female prepubertal mice. Behav. Brain Res. 271, 30–38 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. McCarthy, M. M., Kleopoulos, S. P., Mobbs, C. V. & Pfaff, D. W. Infusion of antisense oligodeoxynucleotides to the oxytocin receptor in the ventromedial hypothalamus reduces estrogen-induced sexual receptivity and oxytocin receptor binding in the female rat. Neuroendocrinology 59, 432–440 (1994).

    Article  CAS  PubMed  Google Scholar 

  72. Hu, R. K. et al. An amygdala-to-hypothalamus circuit for social reward. Nat. Neurosci. 24, 831–842 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Normandin, J. J. & Murphy, A. Z. Somatic genital reflexes in rats with a nod to humans: anatomy, physiology, and the role of the social neuropeptides. Horm. Behav. 59, 656–665 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Melis, M. R. & Argiolas, A. Oxytocin, erectile function and sexual behavior: last discoveries and possible advances. Int. J. Mol. Sci. 22, 10376 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kita, I., Yoshida, Y. & Nishino, S. An activation of parvocellular oxytocinergic neurons in the paraventricular nucleus in oxytocin-induced yawning and penile erection. Neurosci. Res. 54, 269–275 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Oti, T. et al. Oxytocin influences male sexual activity via non-synaptic axonal release in the spinal cord. Curr. Biol. 31, 103–114.e5 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Walum, H. & Young, L. J. The neural mechanisms and circuitry of the pair bond. Nat. Rev. Neurosci. 19, 643–654 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ophir, A. G., Gessel, A., Zheng, D. J. & Phelps, S. M. Oxytocin receptor density is associated with male mating tactics and social monogamy. Horm. Behav. 61, 445–453 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ross, H. E. et al. Variation in oxytocin receptor density in the nucleus accumbens has differential effects on affiliative behaviors in monogamous and polygamous voles. J. Neurosci. 29, 1312–1318 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Keebaugh, A. C., Barrett, C. E., Laprairie, J. L., Jenkins, J. J. & Young, L. J. RNAi knockdown of oxytocin receptor in the nucleus accumbens inhibits social attachment and parental care in monogamous female prairie voles. Soc. Neurosci. 10, 561–570 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Johnson, Z. V. et al. Central oxytocin receptors mediate mating-induced partner preferences and enhance correlated activation across forebrain nuclei in male prairie voles. Horm. Behav. 79, 8–17 (2016).

    Article  CAS  PubMed  Google Scholar 

  82. Ross, H. E. et al. Characterization of the oxytocin system regulating affiliative behavior in female prairie voles. Neuroscience 162, 892–903 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Froemke, R. C. & Young, L. J. Oxytocin, neural plasticity, and social behavior. Annu. Rev. Neurosci. 44, 359–381 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Berendzen, K. M. et al. Oxytocin receptor is not required for social attachment in prairie voles. Neuron 111, 787–796.e4 (2023).

    Article  CAS  PubMed  Google Scholar 

  85. Neumann, I. D. The advantage of social living: brain neuropeptides mediate the beneficial consequences of sex and motherhood. Front. Neuroendocrinol. 30, 483–496 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Slattery, D. A. & Neumann, I. D. No stress please! Mechanisms of stress hyporesponsiveness of the maternal brain. J. Physiol. 586, 377–385 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Zingg, H. H. & Lefebvre, D. L. Oxytocin and vasopressin gene expression during gestation and lactation. Brain Res. 464, 1–6 (1988).

    CAS  PubMed  Google Scholar 

  88. Moos, F. et al. Release of oxytocin within the supraoptic nucleus during the milk ejection reflex in rats. Exp. Brain Res. 76, 593–602 (1989).

    Article  CAS  PubMed  Google Scholar 

  89. Meddle, S. L., Bishop, V. R., Gkoumassi, E., van Leeuwen, F. W. & Douglas, A. J. Dynamic changes in oxytocin receptor expression and activation at parturition in the rat brain. Endocrinology 148, 5095–5104 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Bosch, O. J. & Neumann, I. D. Both oxytocin and vasopressin are mediators of maternal care and aggression in rodents: from central release to sites of action. Horm. Behav. 61, 293–303 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Scott, N., Prigge, M., Yizhar, O. & Kimchi, T. A sexually dimorphic hypothalamic circuit controls maternal care and oxytocin secretion. Nature 525, 519–522 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Rich, M. E., deCardenas, E. J., Lee, H. J. & Caldwell, H. K. Impairments in the initiation of maternal behavior in oxytocin receptor knockout mice. PLoS ONE 9, e98839 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Kendrick, K. M., Keverne, E. B., Chapman, C. & Baldwin, B. A. Microdialysis measurement of oxytocin, aspartate, gamma-aminobutyric acid and glutamate release from the olfactory bulb of the sheep during vaginocervical stimulation. Brain Res. 442, 171–174 (1988).

    Article  CAS  PubMed  Google Scholar 

  94. Marlin, B. J., Mitre, M., D’Amour J, A., Chao, M. V. & Froemke, R. C. Oxytocin enables maternal behaviour by balancing cortical inhibition. Nature 520, 499–504 (2015). This study shows that PVN–OXT neurons mediate maternal responses to pup calls by activation of auditory cortex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Valtcheva, S. et al. Neural circuitry for maternal oxytocin release induced by infant cries. Nature https://doi.org/10.1038/s41586-023-06540-4 (2023). This study elucidates an auditory circuit that activates PVN–OXT neurons in response to pup calls in lactating mice.

  96. Shahrokh, D. K., Zhang, T. Y., Diorio, J., Gratton, A. & Meaney, M. J. Oxytocin-dopamine interactions mediate variations in maternal behavior in the rat. Endocrinology 151, 2276–2286 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cohen, L., Rothschild, G. & Mizrahi, A. Multisensory integration of natural odors and sounds in the auditory cortex. Neuron 72, 357–369 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Yoon, H., Enquist, L. W. & Dulac, C. Olfactory inputs to hypothalamic neurons controlling reproduction and fertility. Cell 123, 669–682 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Levy, F., Kendrick, K. M., Goode, J. A., Guevara-Guzman, R. & Keverne, E. B. Oxytocin and vasopressin release in the olfactory bulb of parturient ewes: changes with maternal experience and effects on acetylcholine, gamma-aminobutyric acid, glutamate and noradrenaline release. Brain Res. 669, 197–206 (1995).

    Article  CAS  PubMed  Google Scholar 

  100. Kendrick, K. M., Levy, F. & Keverne, E. B. Changes in the sensory processing of olfactory signals induced by birth in sheep. Science 256, 833–836 (1992).

    Article  CAS  PubMed  Google Scholar 

  101. Ferris, C. F. et al. Oxytocin in the amygdala facilitates maternal aggression. Ann. N. Y. Acad. Sci. 652, 456–457 (1992).

    Article  CAS  PubMed  Google Scholar 

  102. Knobloch, H. S. et al. Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron 73, 553–566 (2012). This study provides evidence for a functional role of axonally released OXT in regulating conditioned fear responses.

    Article  CAS  PubMed  Google Scholar 

  103. Ebner, K., Bosch, O. J., Kromer, S. A., Singewald, N. & Neumann, I. D. Release of oxytocin in the rat central amygdala modulates stress-coping behavior and the release of excitatory amino acids. Neuropsychopharmacology 30, 223–230 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Rickenbacher, E., Perry, R. E., Sullivan, R. M. & Moita, M. A. Freezing suppression by oxytocin in central amygdala allows alternate defensive behaviours and mother-pup interactions. eLife 6, e24080 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Consiglio, A. R., Borsoi, A., Pereira, G. A. & Lucion, A. B. Effects of oxytocin microinjected into the central amygdaloid nucleus and bed nucleus of stria terminalis on maternal aggressive behavior in rats. Physiol. Behav. 85, 354–362 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Lubin, D. A., Elliott, J. C., Black, M. C. & Johns, J. M. An oxytocin antagonist infused into the central nucleus of the amygdala increases maternal aggressive behavior. Behav. Neurosci. 117, 195–201 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Grippo, A. J., Trahanas, D. M., Zimmerman, R. R. 2nd, Porges, S. W. & Carter, C. S. Oxytocin protects against negative behavioral and autonomic consequences of long-term social isolation. Psychoneuroendocrinology 34, 1542–1553 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Guzman, Y. F. et al. Fear-enhancing effects of septal oxytocin receptors. Nat. Neurosci. 16, 1185–1187 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Musardo, S., Contestabile, A., Knoop, M., Baud, O. & Bellone, C. Oxytocin neurons mediate the effect of social isolation via the VTA circuits. eLife 11, e73421 (2022). The authors provide evidence for a role of PVN–OXT neurons in compensating for the effects of adolescent social isolation in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Arias Del Razo, R. et al. Effects of chronic and acute intranasal oxytocin treatments on temporary social separation in adult titi monkeys (Plecturocebus cupreus). Front. Behav. Neurosci. 16, 877631 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Sandi, C. & Haller, J. Stress and the social brain: behavioural effects and neurobiological mechanisms. Nat. Rev. Neurosci. 16, 290–304 (2015).

    Article  CAS  PubMed  Google Scholar 

  112. Solie, C., Girard, B., Righetti, B., Tapparel, M. & Bellone, C. VTA dopamine neuron activity encodes social interaction and promotes reinforcement learning through social prediction error. Nat. Neurosci. 25, 86–97 (2022).

    Article  CAS  PubMed  Google Scholar 

  113. Wallace, D. L. et al. CREB regulation of nucleus accumbens excitability mediates social isolation-induced behavioral deficits. Nat. Neurosci. 12, 200–209 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Oliveira, V. E. M., de Jong, T. R. & Neumann, I. D. Synthetic oxytocin and vasopressin act within the central amygdala to exacerbate aggression in female Wistar rats. Front. Neurosci. 16, 906617 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Moaddab, M., Hyland, B. I. & Brown, C. H. Oxytocin excites nucleus accumbens shell neurons in vivo. Mol. Cell Neurosci. 68, 323–330 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Tomizawa, K. et al. Oxytocin improves long-lasting spatial memory during motherhood through MAP kinase cascade. Nat. Neurosci. 6, 384–390 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Ebner, K., Wotjak, C. T., Landgraf, R. & Engelmann, M. A single social defeat experience selectively stimulates the release of oxytocin, but not vasopressin, within the septal brain area of male rats. Brain Res. 872, 87–92 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Williams, A. V. et al. Social approach and social vigilance are differentially regulated by oxytocin receptors in the nucleus accumbens. Neuropsychopharmacology 45, 1423–1430 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Nasanbuyan, N. et al. Oxytocin-oxytocin receptor systems facilitate social defeat posture in male mice. Endocrinology 159, 763–775 (2018).

    Article  CAS  PubMed  Google Scholar 

  120. Reber, S. O. & Neumann, I. D. Defensive behavioral strategies and enhanced state anxiety during chronic subordinate colony housing are accompanied by reduced hypothalamic vasopressin, but not oxytocin, expression. Ann. N. Y. Acad. Sci. 1148, 184–195 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Peters, S., Slattery, D. A., Uschold-Schmidt, N., Reber, S. O. & Neumann, I. D. Dose-dependent effects of chronic central infusion of oxytocin on anxiety, oxytocin receptor binding and stress-related parameters in mice. Psychoneuroendocrinology 42, 225–236 (2014). This paper provides evidence for dose-dependent effects of chronic OXT in regulating the anxiety-like behaviour induced by chronic subordinate colony housing.

    Article  CAS  PubMed  Google Scholar 

  122. Oliveira, V. E. M. & Bakker, J. Neuroendocrine regulation of female aggression. Front. Endocrinol. 13, 957114 (2022).

    Article  Google Scholar 

  123. Duque-Wilckens, N. et al. Oxytocin receptors in the anteromedial bed nucleus of the stria terminalis promote stress-induced social avoidance in female California mice. Biol. Psychiatry 83, 203–213 (2018).

    Article  CAS  PubMed  Google Scholar 

  124. Morrison, A. S. & Heimberg, R. G. Social anxiety and social anxiety disorder. Annu. Rev. Clin. Psychol. 9, 249–274 (2013).

    Article  PubMed  Google Scholar 

  125. Toth, I., Neumann, I. D. & Slattery, D. A. Social fear conditioning: a novel and specific animal model to study social anxiety disorder. Neuropsychopharmacology 37, 1433–1443 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Sun, P., Smith, A. S., Lei, K., Liu, Y. & Wang, Z. Breaking bonds in male prairie vole: long-term effects on emotional and social behavior, physiology, and neurochemistry. Behav. Brain Res. 265, 22–31 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bosch, O. J. et al. Oxytocin in the nucleus accumbens shell reverses CRFR2-evoked passive stress-coping after partner loss in monogamous male prairie voles. Psychoneuroendocrinology 64, 66–78 (2016).

    Article  CAS  PubMed  Google Scholar 

  128. Bosch, O. J., Nair, H. P., Ahern, T. H., Neumann, I. D. & Young, L. J. The CRF system mediates increased passive stress-coping behavior following the loss of a bonded partner in a monogamous rodent. Neuropsychopharmacology 34, 1406–1415 (2009).

    Article  CAS  PubMed  Google Scholar 

  129. Dabrowska, J., Hazra, R., Guo, J. D., Dewitt, S. & Rainnie, D. G. Central CRF neurons are not created equal: phenotypic differences in CRF-containing neurons of the rat paraventricular hypothalamus and the bed nucleus of the stria terminalis. Front. Neurosci. 7, 156 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Yu, H. et al. Social touch-like tactile stimulation activates a tachykinin 1-oxytocin pathway to promote social interactions. Neuron 110, 1051–1067.e7 (2022). This study reveals a neuronal circuit that activates PVN–OXT neurons in response to social touch.

    Article  CAS  PubMed  Google Scholar 

  131. Dai, B. et al. Responses and functions of dopamine in nucleus accumbens core during social behaviors. Cell Rep. 40, 111246 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Chen, Y. & Baram, T. Z. Toward understanding how early-life stress reprograms cognitive and emotional brain networks. Neuropsychopharmacology 41, 197–206 (2016).

    Article  PubMed  Google Scholar 

  133. Dedic, N., Chen, A. & Deussing, J. M. The CRF family of neuropeptides and their receptors — mediators of the central stress response. Curr. Mol. Pharmacol. 11, 4–31 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Grieb, Z. A. et al. Oxytocin receptors in the midbrain dorsal raphe are essential for postpartum maternal social and affective behaviors. Psychoneuroendocrinology 131, 105332 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Schneiderman, I., Zagoory-Sharon, O., Leckman, J. F. & Feldman, R. Oxytocin during the initial stages of romantic attachment: relations to couples’ interactive reciprocity. Psychoneuroendocrinology 37, 1277–1285 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Demirci, E., Ozmen, S., Kilic, E. & Oztop, D. B. The relationship between aggression, empathy skills and serum oxytocin levels in male children and adolescents with attention deficit and hyperactivity disorder. Behav. Pharmacol. 27, 681–688 (2016).

    Article  CAS  PubMed  Google Scholar 

  137. Suzuki, S. et al. Development of social attention and oxytocin levels in maltreated children. Sci. Rep. 10, 7407 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Carmichael, M. S. et al. Plasma oxytocin increases in the human sexual response. J. Clin. Endocrinol. Metab. 64, 27–31 (1987).

    Article  CAS  PubMed  Google Scholar 

  139. Strathearn, L., Iyengar, U., Fonagy, P. & Kim, S. Maternal oxytocin response during mother-infant interaction: associations with adult temperament. Horm. Behav. 61, 429–435 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Bernhard, A. et al. Adolescent oxytocin response to stress and its behavioral and endocrine correlates. Horm. Behav. 105, 157–165 (2018).

    Article  CAS  PubMed  Google Scholar 

  141. Romero, T., Nagasawa, M., Mogi, K., Hasegawa, T. & Kikusui, T. Oxytocin promotes social bonding in dogs. Proc. Natl Acad. Sci. USA 111, 9085–9090 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Bernhard, A. et al. Neuroendocrine stress response in female and male youths with conduct disorder and associations with early adversity. J. Am. Acad. Child Adolesc. Psychiatry 61, 698–710 (2022).

    Article  PubMed  Google Scholar 

  143. Quintana, D. S. et al. Oxytocin pathway gene networks in the human brain. Nat. Commun. 10, 668 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Rokicki, J. et al. Oxytocin receptor expression patterns in the human brain across development. Neuropsychopharmacology 47, 1550–1560 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Heim, C. et al. Lower CSF oxytocin concentrations in women with a history of childhood abuse. Mol. Psychiatry 14, 954–958 (2009).

    Article  CAS  PubMed  Google Scholar 

  146. Freeman, S. M. et al. Effect of age and autism spectrum disorder on oxytocin receptor density in the human basal forebrain and midbrain. Transl. Psychiatry 8, 257 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Baio, J. et al. Prevalence of autism spectrum disorder among children aged 8 years — autism and developmental disabilities monitoring network, 11 sites, United States, 2014. MMWR Surveill. Summ. 67, 1–23 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Aspe-Sanchez, M., Moreno, M., Rivera, M. I., Rossi, A. & Ewer, J. Oxytocin and vasopressin receptor gene polymorphisms: role in social and psychiatric traits. Front. Neurosci. 9, 510 (2015).

    PubMed  Google Scholar 

  149. Rodrigues, S. M., Saslow, L. R., Garcia, N., John, O. P. & Keltner, D. Oxytocin receptor genetic variation relates to empathy and stress reactivity in humans. Proc. Natl Acad. Sci. USA 106, 21437–21441 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Poore, H. E. & Waldman, I. D. The association of oxytocin receptor gene (OXTR) polymorphisms with antisocial behavior: a meta-analysis. Behav. Genet. 50, 161–173 (2020).

    Article  PubMed  Google Scholar 

  151. Chander, R. J. et al. The influence of rs53576 polymorphism in the oxytocin receptor (OXTR) gene on empathy in healthy adults by subtype and ethnicity: a systematic review and meta-analysis. Rev. Neurosci. 33, 43–57 (2022).

    Article  CAS  PubMed  Google Scholar 

  152. Opitz, T. et al. No links between genetic variation and developing theory of mind: a preregistered replication attempt of candidate gene studies. Dev. Sci. 24, e13100 (2021).

    Article  PubMed  Google Scholar 

  153. Francis, S. M. et al. ASD and genetic associations with receptors for oxytocin and vasopressin — AVPR1A, AVPR1B, and OXTR. Front. Neurosci. 10, 516 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Meyer, M. et al. Structure-function relationships of the disease-linked A218T oxytocin receptor variant. Mol. Psychiatry 27, 907–917 (2022). This study provides evidence on the functional implications of an OXTR polymorphism associated with ASD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Gregory, S. G. et al. Genomic and epigenetic evidence for oxytocin receptor deficiency in autism. BMC Med. 7, 62 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Puglia, M. H., Connelly, J. J. & Morris, J. P. Epigenetic regulation of the oxytocin receptor is associated with neural response during selective social attention. Transl. Psychiatry 8, 116 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Fujisawa, T. X. et al. Oxytocin receptor DNA methylation and alterations of brain volumes in maltreated children. Neuropsychopharmacology 44, 2045–2053 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Rijlaarsdam, J. et al. Prenatal stress exposure, oxytocin receptor gene (OXTR) methylation, and child autistic traits: the moderating role of OXTR rs53576 genotype. Autism Res. 10, 430–438 (2017).

    Article  PubMed  Google Scholar 

  159. Dadds, M. R. et al. Methylation of the oxytocin receptor gene and oxytocin blood levels in the development of psychopathy. Dev. Psychopathol. 26, 33–40 (2014).

    Article  PubMed  Google Scholar 

  160. Ziegler, C. et al. Oxytocin receptor gene methylation: converging multilevel evidence for a role in social anxiety. Neuropsychopharmacology 40, 1528–1538 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Striepens, N. et al. Elevated cerebrospinal fluid and blood concentrations of oxytocin following its intranasal administration in humans. Sci. Rep. 3, 3440 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Guastella, A. J. & MacLeod, C. A critical review of the influence of oxytocin nasal spray on social cognition in humans: evidence and future directions. Horm. Behav. 61, 410–418 (2012).

    Article  PubMed  Google Scholar 

  163. Petrovic, P., Kalisch, R., Singer, T. & Dolan, R. J. Oxytocin attenuates affective evaluations of conditioned faces and amygdala activity. J. Neurosci. 28, 6607–6615 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Hurlemann, R. et al. Oxytocin enhances amygdala-dependent, socially reinforced learning and emotional empathy in humans. J. Neurosci. 30, 4999–5007 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Kosfeld, M., Heinrichs, M., Zak, P. J., Fischbacher, U. & Fehr, E. Oxytocin increases trust in humans. Nature 435, 673–676 (2005).

    Article  CAS  PubMed  Google Scholar 

  166. Scheele, D. et al. Oxytocin enhances brain reward system responses in men viewing the face of their female partner. Proc. Natl Acad. Sci. USA 110, 20308–20313 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Marsh, N. et al. Oxytocin-enforced norm compliance reduces xenophobic outgroup rejection. Proc. Natl Acad. Sci. USA 114, 9314–9319 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Paloyelis, Y. et al. A spatiotemporal profile of in vivo cerebral blood flow changes following intranasal oxytocin in humans. Biol. Psychiatry 79, 693–705 (2016).

    Article  CAS  PubMed  Google Scholar 

  169. Declerck, C. H., Boone, C., Pauwels, L., Vogt, B. & Fehr, E. A registered replication study on oxytocin and trust. Nat. Hum. Behav. 4, 646–655 (2020).

    Article  PubMed  Google Scholar 

  170. Nave, G., Camerer, C. & McCullough, M. Does oxytocin increase trust in humans? A critical review of research. Perspect. Psychol. Sci. 10, 772–789 (2015).

    Article  PubMed  Google Scholar 

  171. Radke, S. & de Bruijn, E. R. Does oxytocin affect mind-reading? A replication study. Psychoneuroendocrinology 60, 75–81 (2015).

    Article  CAS  PubMed  Google Scholar 

  172. Tabak, B. A. et al. Advances in human oxytocin measurement: challenges and proposed solutions. Mol. Psychiatry 28, 127–140 (2023).

    Article  CAS  PubMed  Google Scholar 

  173. Winterton, A., Westlye, L. T., Steen, N. E., Andreassen, O. A. & Quintana, D. S. Improving the precision of intranasal oxytocin research. Nat. Hum. Behav. 5, 9–18 (2021).

    Article  PubMed  Google Scholar 

  174. Engelmann, M., Ebner, K., Landgraf, R., Holsboer, F. & Wotjak, C. T. Emotional stress triggers intrahypothalamic but not peripheral release of oxytocin in male rats. J. Neuroendocrinol. 11, 867–872 (1999).

    Article  CAS  PubMed  Google Scholar 

  175. Wotjak, C. T. et al. Dissociated central and peripheral release of vasopressin, but not oxytocin, in response to repeated swim stress: new insights into the secretory capacities of peptidergic neurons. Neuroscience 85, 1209–1222 (1998).

    Article  CAS  PubMed  Google Scholar 

  176. Leng, G. & Ludwig, M. Intranasal oxytocin: myths and delusions. Biol. Psychiatry 79, 243–250 (2016).

    Article  CAS  PubMed  Google Scholar 

  177. Grund, T. et al. Neuropeptide S activates paraventricular oxytocin neurons to induce anxiolysis. J. Neurosci. 37, 12214–12225 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Engelmann, M., Landgraf, R. & Wotjak, C. T. The hypothalamic-neurohypophysial system regulates the hypothalamic-pituitary-adrenal axis under stress: an old concept revisited. Front. Neuroendocrinol. 25, 132–149 (2004).

    Article  CAS  PubMed  Google Scholar 

  179. Hostetler, C. M. & Ryabinin, A. E. The CRF system and social behavior: a review. Front. Neurosci. 7, 92 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Veenema, A. H. & Neumann, I. D. Central vasopressin and oxytocin release: regulation of complex social behaviours. Prog. Brain Res. 170, 261–276 (2008).

    Article  CAS  PubMed  Google Scholar 

  181. Lukas, M. & Neumann, I. D. Nasal application of neuropeptide S reduces anxiety and prolongs memory in rats: social versus non-social effects. Neuropharmacology 62, 398–405 (2012).

    Article  CAS  PubMed  Google Scholar 

  182. Jamieson, B. B., Nair, B. B. & Iremonger, K. J. Regulation of hypothalamic corticotropin-releasing hormone neurone excitability by oxytocin. J. Neuroendocrinol. 29, e12532 (2017).

    Article  Google Scholar 

  183. Winter, J. et al. Chronic oxytocin-driven alternative splicing of Crfr2alpha induces anxiety. Mol. Psychiatry https://doi.org/10.1038/s41380-021-01141-x (2021).

  184. Chini, B. & Manning, M. Agonist selectivity in the oxytocin/vasopressin receptor family: new insights and challenges. Biochem. Soc. Trans. 35, 737–741 (2007).

    Article  CAS  PubMed  Google Scholar 

  185. Song, Z. & Albers, H. E. Cross-talk among oxytocin and arginine-vasopressin receptors: relevance for basic and clinical studies of the brain and periphery. Front. Neuroendocrinol. 51, 14–24 (2018).

    Article  CAS  PubMed  Google Scholar 

  186. Smith, C. J. W., DiBenedictis, B. T. & Veenema, A. H. Comparing vasopressin and oxytocin fiber and receptor density patterns in the social behavior neural network: implications for cross-system signaling. Front. Neuroendocrinol. 53, 100737 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Anacker, A. M., Christensen, J. D., LaFlamme, E. M., Grunberg, D. M. & Beery, A. K. Septal oxytocin administration impairs peer affiliation via V1a receptors in female meadow voles. Psychoneuroendocrinology 68, 156–162 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Sala, M. et al. Pharmacologic rescue of impaired cognitive flexibility, social deficits, increased aggression, and seizure susceptibility in oxytocin receptor null mice: a neurobehavioral model of autism. Biol. Psychiatry 69, 875–882 (2011).

    Article  CAS  PubMed  Google Scholar 

  189. Bakermans-Kranenburg, M. J. & van Ijzendoorn, M. H. A sociability gene? Meta-analysis of oxytocin receptor genotype effects in humans. Psychiatr. Genet. 24, 45–51 (2014).

    Article  CAS  PubMed  Google Scholar 

  190. LoParo, D. & Waldman, I. D. The oxytocin receptor gene (OXTR) is associated with autism spectrum disorder: a meta-analysis. Mol. Psychiatry 20, 640–646 (2015).

    Article  CAS  PubMed  Google Scholar 

  191. Sasayama, D. et al. Negative correlation between cerebrospinal fluid oxytocin levels and negative symptoms of male patients with schizophrenia. Schizophr. Res. 139, 201–206 (2012).

    Article  PubMed  Google Scholar 

  192. van Londen, L. et al. Plasma levels of arginine vasopressin elevated in patients with major depression. Neuropsychopharmacology 17, 284–292 (1997).

    Article  PubMed  Google Scholar 

  193. Cyranowski, J. M. et al. Evidence of dysregulated peripheral oxytocin release among depressed women. Psychosom. Med. 70, 967–975 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Andari, E. et al. Promoting social behavior with oxytocin in high-functioning autism spectrum disorders. Proc. Natl Acad. Sci. USA 107, 4389–4394 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Modahl, C. et al. Plasma oxytocin levels in autistic children. Biol. Psychiatry 43, 270–277 (1998).

    Article  CAS  PubMed  Google Scholar 

  196. Miller, M. et al. Oxytocin and vasopressin in children and adolescents with autism spectrum disorders: sex differences and associations with symptoms. Autism Res. 6, 91–102 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Parker, K. J. et al. Plasma oxytocin concentrations and OXTR polymorphisms predict social impairments in children with and without autism spectrum disorder. Proc. Natl Acad. Sci. USA 111, 12258–12263 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Jansen, L. M. et al. Autonomic and neuroendocrine responses to a psychosocial stressor in adults with autistic spectrum disorder. J. Autism Dev. Disord. 36, 891–899 (2006).

    Article  PubMed  Google Scholar 

  199. Alvares, G. A., Quintana, D. S. & Whitehouse, A. J. Beyond the hype and hope: critical considerations for intranasal oxytocin research in autism spectrum disorder. Autism Res. 10, 25–41 (2017). This review provides an overview of critical aspects of OXT research in humans in the context of ASD.

    Article  PubMed  Google Scholar 

  200. Meyer-Lindenberg, A., Domes, G., Kirsch, P. & Heinrichs, M. Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. Nat. Rev. Neurosci. 12, 524–538 (2011).

    Article  CAS  PubMed  Google Scholar 

  201. Lee, M. R. et al. Oxytocin receptor mRNA expression in dorsolateral prefrontal cortex in major psychiatric disorders: a human post-mortem study. Psychoneuroendocrinology 96, 143–147 (2018).

    Article  CAS  PubMed  Google Scholar 

  202. Watanabe, T. et al. Oxytocin receptor gene variations predict neural and behavioral response to oxytocin in autism. Soc. Cogn. Affect. Neurosci. 12, 496–506 (2017).

    Article  PubMed  Google Scholar 

  203. Andari, E. et al. Epigenetic modification of the oxytocin receptor gene: implications for autism symptom severity and brain functional connectivity. Neuropsychopharmacology 45, 1150–1158 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. De Cagna, F. et al. The role of intranasal oxytocin in anxiety and depressive disorders: a systematic review of randomized controlled trials. Clin. Psychopharmacol. Neurosci. 17, 1–11 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Guastella, A. J., Howard, A. L., Dadds, M. R., Mitchell, P. & Carson, D. S. A randomized controlled trial of intranasal oxytocin as an adjunct to exposure therapy for social anxiety disorder. Psychoneuroendocrinology 34, 917–923 (2009).

    Article  CAS  PubMed  Google Scholar 

  206. Hall, S. S., Lightbody, A. A., McCarthy, B. E., Parker, K. J. & Reiss, A. L. Effects of intranasal oxytocin on social anxiety in males with fragile X syndrome. Psychoneuroendocrinology 37, 509–518 (2012).

    Article  CAS  PubMed  Google Scholar 

  207. Rein, B., Ma, K. & Yan, Z. A standardized social preference protocol for measuring social deficits in mouse models of autism. Nat. Protoc. 15, 3464–3477 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Harda, Z. et al. Establishment of a social conditioned place preference paradigm for the study of social reward in female mice. Sci. Rep. 12, 11271 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Panksepp, J. B. & Lahvis, G. P. Social reward among juvenile mice. Genes Brain Behav. 6, 661–671 (2007).

    Article  CAS  PubMed  Google Scholar 

  210. Williams, J. R., Catania, K. C. & Carter, C. S. Development of partner preferences in female prairie voles (Microtus ochrogaster): the role of social and sexual experience. Horm. Behav. 26, 339–349 (1992).

    Article  CAS  PubMed  Google Scholar 

  211. Bosch, O. J. & Neumann, I. D. Brain vasopressin is an important regulator of maternal behavior independent of dams’ trait anxiety. Proc. Natl Acad. Sci. USA 105, 17139–17144 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Bosch, O. J., Meddle, S., Beiderbeck, D. I., Douglas, A. J. & Neumann, I. D. Brain oxytocin regulates maternal aggression in lactating high and low anxiety rats. J. Neurosci. 25, 6807–6815 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank B. Trainor for critically reading the manuscript. This work was supported by the German Research Foundation (DFG; GRK2174; NE465/34-1; and NE465/37-1).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Inga D. Neumann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks Alexander Ophir; Francesco Papaleo, who co-reviewed with Christine Stubbendorff; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Allostasis

Adaptive processes of the body that take place in expectance of, or in response to, external stimuli to maintain physiological and mental stability.

Conspecifics

Individuals belonging to the same species.

Epigenetic modifications

Heritable biochemical modifications of DNA or histones (for example, DNA methylation and histone modifications) that result in long-lasting alteration in gene expression without altering the DNA sequence.

Genetic polymorphisms

Two or more variants of a specific DNA sequence in a population. The most common genetic polymorphisms involve variations at a single nucleotide (single-nucleotide polymorphisms).

G protein-coupled receptor

A cell surface transmembrane receptor that is coupled to proteins that bind guanosine triphosphate or guanosine diphosphate (G proteins). Their stimulation activates isoform-specific (Gi, Gq or Gs) intracellular signalling cascades.

Neuroendocrine cells

Specialized neurons that respond to stimulation by synthesizing and secreting hormones (neurohormones) into the bloodstream (for example, hypothalamic magnocellular oxytocinergic and vasopressinergic neurons).

Neurohypophysis

A brain structure (also called the posterior lobe of the pituitary gland) that is located at the base of the brain, embryologically of neuroectodermal origin and consists of the pars nervosa and the infundibulum. The axons of magnocellular neurons, which are located in the hypothalamus and synthesize the neuropeptides oxytocin and vasopressin, project through the infundibulum, terminate in the pars nervosa and secrete the neurohormones via neurohaemal contacts into the bloodstream.

Neuromodulators

Endogenous substances, often neuropeptides, that are co-released with neurotransmitters and regulate neuronal activity not directly via postsynaptic actions but via modulating neurotransmitter actions.

Neuropeptides

Short-chain polypeptides (for example, oxytocin, vasopressin, orexins and corticotropin-releasing factor) that are synthesized in specialized neurons (neuroendocrine cells) and are released either within the brain as neuromodulators or into the blood as neurohormones. They can be released from various parts of the neuronal membrane (axonal terminals, dendrites and soma) and modulate the activity of target cells via G protein-coupled receptors.

Posttranscriptional modifications

Chemical modifications of the primary mRNA, such as splicing or processing at the 3′ or 5′ end of the mRNA molecule, which result in a mature, functional mRNA.

Reinforcement

The process that supports establishing and enhancing a specific pattern of behaviour.

Social memory

The cognitive and behavioural processes involved in the acquisition, storage and retrieval of social information from individual conspecifics.

Social reward

Pleasurable aspects of interactions with conspecifics.

Transcription factors

Intracellular proteins (such as CREB, MEF-2 or oestrogen receptors) that often represent the endpoints of receptor-coupled intracellular signalling cascades and regulate the expression of their target gene and transcription of DNA into messenger RNA by binding to the DNA, the RNA polymerases or other proteins.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menon, R., Neumann, I.D. Detection, processing and reinforcement of social cues: regulation by the oxytocin system. Nat. Rev. Neurosci. 24, 761–777 (2023). https://doi.org/10.1038/s41583-023-00759-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-023-00759-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing